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Abstract

This paper concerns the problem of learning control policies for an unknown
linear dynamical system to minimize a quadratic cost function. We present a
method, based on convex optimization, that accomplishes this task robustly: i.e.,
we minimize the worst-case cost, accounting for system uncertainty given the
observed data. The method balances exploitation and exploration, exciting the
system in such a way so as to reduce uncertainty in the model parameters to which
the worst-case cost is most sensitive. Numerical simulations and application to a
hardware-in-the-loop servo-mechanism demonstrate the approach, with appreciable
performance and robustness gains over alternative methods observed in both.

1 Introduction

Learning to make decisions in an uncertain and dynamic environment is a task of fundamental
importance in a number of domains. Though it has been the subject of intense research activity since
the formulation of the ‘dual control problem’ in the 1960s[17], the recent success of reinforcement
learning (RL), particularly in games [33}|37], has inspired a resurgence in interest in the topic.
Problems of this nature require decisions to be made with respect to two objectives. First, there is
a goal to be achieved, typically quantified as a reward function to be maximized. Second, due to
the inherent uncertainty there is a need to gather information about the environment, often referred
to as ‘learning’ via ‘exploration’. These two objectives are often competing, a fact known as the
exploration/exploitation trade-off in RL, and the ‘dual effect’ (of decision) in control.

It is important to recognize that the second objective (exploration) is important only in so far as it
facilitates the first (maximizing reward); there is no intrinsic value in reducing uncertainty. As a
consequence, exploration should be targeted or application specific; it should not excite the system
arbitrarily, but rather in such a way that the information gathered is useful for achieving the goal.
Furthermore, in many real-world applications, it is desirable that exploration does not compromise
the safe and reliable operation of the system.

This paper is concerned with control of uncertain linear dynamical systems, with the goal of maxi-
mizing (minimizing) rewards (costs) that are a quadratic function of states and actions; cf. for
a detailed problem formulation. We derive methods to synthesize control policies that balance the
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exploration/exploitation tradeoff by performing robust, targeted exploration: robust in the sense
that we optimize for worst-case performance given uncertainty in our knowledge of the system, and
targeted in the sense that the policy excites the system so as to reduce uncertainty in such a way
that specifically minimizes the worst-case cost. To this end, this paper makes the following specific
contributions. We derive a high-probability bound on the spectral norm of the system parameter
estimation error, in a form that is applicable to both robust control synthesis and design of targeted
exploration; cf. We also derive a convex approximation of the worst-case (w.r.t. parameter
uncertainty) infinite-horizon linear quadratic regulator (LQR) problem; cf. We then combine
these two developments to present an approximate solution, via convex semidefinite programing
(SDP), to the problem of minimizing the worst-case quadratic costs for an uncertain linear dynamical
system; cf. For brevity, we will refer to this as a ‘robust reinforcement learning’ (RRL) problem.

1.1 Related work

Inspired, perhaps in part, by the success of RL in games [33}/37], there has been a flurry of recent
research activity in the analysis and design of RL methods for linear dynamical systems with quadratic
rewards. Works such as [1}/23}|15] employ the so-called ‘optimism in the face of uncertainty’ (OFU)
principle, which selects control actions assuming that the true system behaves as the ‘best-case’
model in the uncertain set. This leads to optimal regret but requires the solution of intractable non-
convex optimization problems. Alternatively, the works of |35/|3/|4] employ Thompson sampling,
which optimizes the control action for a system drawn randomly from the posterior distribution over
the set of uncertain models, given data. The work of [30] eschews uncertainty quantification, and
demonstrates that ‘so-called’ certainty equivalent control attains optimal regret. There has also been
considerable interest in ‘model-free’ methods|39] for direct policy optimization [16}[29], as well
partially model-free methods based on spectral filtering [22}/21]. Unlike the present paper, none
of the works above consider robustness which is essential for implementation on physical systems.
Robustness is studied in the so-called ‘coarse-ID’ family of methods, c.f. [12}[13||11]. In [11], sample
convexity bounds are derived for LQR with unknown linear dynamics. This approach is extended to
adaptive LQR in [12], however, unlike the present paper, the policies are not optimized for exploration
and exploitation jointly; exploration is effectively random. Also of relevance is the field of so-called
‘safe RL’ [19] in which one seeks to respect certain safety constraints during exploration and/or policy
optimization [20!/2], as well as ‘risk-sensitive RL’, in which the search for a policy also considers the
variance of the reward [32}|14]. Other works seek to incorporate notions of robustness commonly
encountered in control theory, e.g. stability [34,/7,/10]. In closing, we mention that related problems
of simultaneous learning and control have a long history in control theory, beginning with the study
of ‘dual control’ [17,[18] in the 1960s. Many of these formulations relied on a dynamic programing
(DP) solution and, as such, were applicable only in special cases |6, |8]. Nevertheless, these early
efforts [9] established the importance of balancing ‘probing’ (exploration) with ‘caution’ (robustness).
For subsequent developments from the field of control theory, cf. e.g. [24}125}5].

2 Problem statement

In this section we describe in detail the problem addressed in this paper. Notation is as follows: AT
denotes the transpose of a matrix A. x1.,, is shorthand for the sequence {x; }7 ;. Amax(A) denotes the
maximum eigenvalue of a matrix A. ® denotes the Kronecker product. vec (A) stacks the columns of
A to form a vector. 7 (S7} ;) denotes the cone(s) of n x n symmetric positive semidefinite (definite)
matrices. w.p. means ‘with probability. x2(p) denotes the value of the Chi-squared distribution with
n degrees of freedom and probability p. blkdiag is the block diagonal operator.

Dynamics and cost function We are concerned with control of linear time-invariant systems
Tep1 = Az + Bug +we, we ~ N (0,0515,) 20 =0, )
where x; € R, u; € R™ and wy; € R™ denote the state (which is assumed to be observed directly,
without noise), input and process noise, respectively, at time ¢. The objective is to design a feedback
control policy u; = ¢({x1.¢,u1.4—1}) S0 as to minimize the cost function ZtT:i c(x¢, uy), where
c(xg,up) = srtT Qx; + u;r Ruy; for user-specified positive semidefinite matrices () and R. When the

parameters of the true system, denoted { Ay, By, }, are known this is exactly the finite-horizon LQR
problem, the optimal solution of which is well-known. We assume that { A, By, } are unknown.
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Modeling and data As { Ay, By} are unknown, all knowledge about the true system dynamics
must be inferred from observed data, D,, := {x;, us }},. We assume that o, is known, or has been
estimated, and that we have access to initial data, denoted (with slight notational abuse) Dy, obtained,
e.g. during a preliminary experiment. For the model , parameter uncertainty can be quantified as:

Proposition 2.1. Given observed data D,, from (1), and a uniform prior over the parameters
0 = vec ([A B)), i.e., p(0) 1, the posterior distribution p(0|D,,) is given by N (ug, Xg), where

2 je., the ordinary least

g = vec ([fl B]) = argMiNy_pn2 tnon, Z?:_ll |1 — [z v ] ® L, 0

T
. -1 _ 1 yn-l| 2 Tt

squares estimator, and g~ = oz 2it=1 [ s } { u ] ® Ip,.

Proof: cf. i The uniform prior, p(f) o 1, sometimes called an improper prior, is used as an

uninformative prior, signifying that we have no prior knowledge of 0, i.e., all values are equally likely.

Based on Propositionwe can define a high-probability credibility region by:

@e(D”) = {9 . (9 — /J,Q)ng_l(e — ug) S 05}, (2)

where c5 = x> (0) for 0 < § < 1. Then, 6, = vec ([Ay By|) € ©c(D,,) w.p. 1 — 6.

n2+ngng

Policies Though not necessarily optimal, we will restrict our attention to static-gain policies of
the form u; = Kz, + X'/?¢,, where ¢; ~ N (0, I) represent random excitations for the purpose of
learning. Static-gain policies are popular in practice, due to simplicity of synthesis and implementation
[12]113}/11], and encompass many common control strategies, e.g., proportional-derivative (PD)
control. A policy comprises K € RP*™ and ¥ € S'}*, and is denoted K = {K, X}. Let {t;}]¥, € N,
with 0 =ty < t; < ..., <ty =T, partition the time horizon T into N intervals. The ith interval
is of length T} := t; — t;_1. We will then design N policies, {KC;}¥,, such that K; = {K;,3;} is
deployed during the ith interval, ¢ € [t;_1, ¢;]. For convenience, we define the function Z : Ry — N
given by Z(t) := arg min;en{é : t < ¢;}, which maps time ¢ to the index ¢ = Z(t) of the policy to
be deployed. We also make use of the notation u; = K(x;) as shorthand for u; = Kx; + Y12,

Worst-case dynamics We are now in a position to define the optimization problem that we wish to
solve in this paper. In the absence of knowledge of the true dynamics, { Ay, By}, given initial data

Dy, we wish to find a sequence of policies {/C;}¥, that minimize the expected cost Zle c(xe,ut),
assuming that, at time ¢, the system evolves according to the worst-case dynamics within the high-
probability credibility region ©. (D), i.e.,

T

min [E su c(xg,up) |, stoxpry = Agxy + Byug +wy, ug = K ), (3
O, ;{At,Bt}epee(Dt) (T, u) t+1 tLt tUt ts Ut 7ty (1), (3)

where the expectation is w.r.t. w; ~ N (0, Ug,Im) and e; ~ N (0, I,,,,). We choose to optimize for
the worst-case dynamics so as to bound, with high probability, the cost of applying the policies to the
unknown true system. In principle, problems such as (3) can be solved via dynamic programing (DP)
[17]. However, such DP-based solutions require gridding to obtain finite state-action spaces, and
are hence computationally intractable for systems of even modest dimension [6]; cf. also [31! §IV]
for a discussion of RL methods for finite state-action spaces. In what follows, we will present an
approximate solution to this problem, which we refer to as a ‘robust reinforcement learning’” (RRL)
problem, that retains the continuous sate-action space formulation and is based on convex optimization.
To facilitate such a solution, we require a refined means of quantifying system uncertainty, which we
present next.



3 Modeling uncertainty for robust control

In this paper, we adopt a model-based approach to control, in which quantifying uncertainty in
the estimates of the system dynamics is of central importance. From Propositionthe posterior
distribution over parameters is Gaussian, which allows us to construct an ‘ellipsoidal’ credibility
region O, centered about the ordinary least squares estimates of the model parameters, as in (2).

To allow for an exact convex formulation of the control problem involving the worst-case dynamics,
cf. it is desirable to work with a credibility region that bounds uncertainty in terms of the

spectral properties of the parameter error matrix [A — Ay, B — ﬁ, where {A, B} are the ordinary

least squares estimates, i.e. vec ([/1 B]) = g, cf. Proposition To this end, we will work with
models of the form M (D) := {A, B, D} where D € S™=*+"« specifies the following region, in
parameter space, centered about { A, B}:

Om(M):={A, B : X'DX<I, X=[A-A B-B]"}. (4)

The following lemma, cf. §A.1.2 for proof, suggests a specific means of constructing D, so as to
ensure that ©,,, defines a high-probability credibility region:

T

. n—-1| T x .
Lemma 3.1. Given data D,, from (1)), and 0 < § < 1, let D = ?105 ::1 { uz ] [ uz } , With
cs = Xfﬂ nn, (6). Then [Ay, By € (M) wp. 1 —4.

For convenience, we will make use of the following shorthand notation: M(D;,) = {fli, Bi, D;}.

Credibility regions of the form , i.e. bounds on the spectral properties of the estimation error, have
appeared in recent works on data-driven and adaptive control, cf. e.g., |11, Proposition 2.4] which
makes use of results from high-dimensional statistics [40]. The construction in [11} Proposition
2.4] requires {x¢41, T+, us } to be independent, and as such is not directly applicable to time series
data, without subsampling to attain uncorrelated samples (though more complicated extensions to
circumvent this limitation have been suggested [38]). Lemmais directly applicable to correlated
time series data, and provides a credibility region that is well suited to the RRL problem, cf.

4 Convex approximation to robust reinforcement learning problem

Equipped with the high-probability bound on the spectral properties of the parameter estimation
error presented in Lemma we now proceed with the main contribution of this paper: a convex
approximation to the ‘robust reinforcement learning’ (RRL) problem in (3).

4.1 Steady-state approximation of cost

In pursuit of a more tractable formulation, we first introduce the following approximation of ,

N t;

Z sup E Z (g, up) |, st ey = Az + Bug + wyy ug = Ki(2y). (5)
— A,BYe fry

Sl (apyy L=t

Observe that (5) has introduced two approximations to (3). First, in (5) we only update the ‘worst-
case’ model at the beginning of each epoch, when we deploy a new policy, rather than at each time
step as in (3). This introduces some conservatism, as model uncertainty will generally decrease
as more data is collected, but results in a simpler control synthesis problem. Second, we select
the worst-case model from the ‘spectral’ credibility region ©,,, as defined in (4), rather than the
‘ellipsoidal’ region O, defined in . Again, this introduces some conservatism as O, C O,,, cf.
but permits convex optimization of the worst-case cost, cf. For convenience, we denote

Jr (21, K, 0., (M)) := sup ZT c(xeyut), s.toxppy = Axy + Bug + wy, ur = K(24).



Next, we approximate the cost between epochs with the infinite-horizon cost, scaled appropriately for
the epoch duration, i.e., between the 7 — 1th and ith epoch we approximate the cost as

JTi (xtm’ci7 Gm(M(Ithq))) ~ TiX{JOO(ICiﬂ Gm(M(Dti—l))) = .,-li_)ngo %J’F(OJCU @m(M(IDtiq)))}'
(6)

This approximation is accurate when the epoch duration 7; is sufficiently long relative to the time
required for the state to reach the stationary distribution. Substituting (6) into (3)), the cost function
that we seek to minimize becomes

E [Zjv_lTi X Joo (Ki, O (M(Dr,_,))) | - -

The expectation in (7) is w.r.t. to w; and e, as D;, depends on the random variables z1.¢, and u1.¢,,
which evolve according to the worst-case dynamics in .

4.2 Optimization of worst-case cost

The previous subsection introduced an approximation of our ‘ideal’ problem , based on the worst-
case infinite horizon cost, cf. . In this subsection we present a convex approach to the optimization
of Joo (K, ©,,,(M)) w.rt. K, given M. The infinite horizon cost can be expressed as

o([§ 2Jamige| ][] ]) @

Under the feedback policy K, the covariance appearing on the RHS of (8) can be expressed as

lim li Ty Tt i W WKT ©)
T—00 T Kl‘t+21/26t KIt+Zl/26t o KW KWKT+E ’

t=1

T—00 T

1 T
lim —E lz x; Q4 u] Ruy
t=1

E

where W = E [z,2, | denotes the stationary state covariance. For known A and B, W is given by
the (minimum trace) solution to the Lyapunov inequality

W = (A+BK)W(A+ BK)" + BEB' +421,,, (10)

i.e., argminy tr W s.t. (10). To optimize J (K, ©,,(M)) via convex optimization, there are two
challenges to overcome: i. non-convexity of jointly searching for K and W, satisfying and
minimizing (8), ii. computing W for worst-case { A, B} € ©,, (M), rather than known {4, B}.

Let us begin with the first challenge: nonconvexity. To facilitate a convex formulation of the RRL

problem (7) we write as

W>[AB][ 144 WKT

KW KWKT+% |4 B|" + 021, (11)

and introduce the change of variables 7 = WK TandY = KWKT + X, collated in the variable
| wZ
1 ZT Y

(1]

} . With this change of variables, minimizing (8) subject to is a convex program.

Now, we turn to the second challenge: computation of the stationary state covariance under the
worst-case dynamics. As a sufficient condition, we require (IT)) to hold for all { A, B} € ©,,(M). In
particular, we define the following approximation of J.. (XC, M)

= . 0 W WK
Toll6, M) 1= i, ({ @ 9 ] [ A EWET 4% D , s.t. (TT) holds ¥ {4, B} € ©,,(M).
(12)

Lemma 4.1. Consider the worst-case cost J (K, M), cf. (6), and the approximation Jo (K, M),
of (12). Joo (KK, M) > Joo (KK, M).

Proof: cf. 5. To optimize .J (K, M), as defined in (I2), we make use of the following result
from [28]:



Theorem 4.1. The data matrices (A,B,C, P, F,G,H) satisfy, for all X with I — X "PX = 0, the

robust fractional quadratic matrix inequality

H F g

H F+GX . T T
T T T T =0,iff | FT C—X B =0,
(F+GX) C+X'B+B'X+X'AX GT B A+ \P

(13)

for some X\ > 0.

To put (I1) in a form to which Theorem[4.T]is applicable, we make use of of the nominal parameters
Aand B. With X defined as in (4), such that [A B] = [A B] — X', we can express as

owl U

where the ‘iff” follows from the Schur complement. Given this equivalent representation, by Theorem
holds for all XT DM < I (i.e. all {A, B} € ©,,(M)) iff

U :=W-[ABE[AB]"+X "E[AB|"+[ABIEX-X"EX = 021, + { ! “wf}zo,

I owl 0
S(\EA B, D)= | o,] W—[ABE[AB]T -A [ABE" | =0, (14)
0 =E[A BT AD —=

which is simply with the substitutions A = —Z, B = Z[A B]T,C = W — [4 B|Z[4 B]T,
F =0ywl,G =0,and P = D. We now have the following result, cf. §A.1.4|for proof.

Theorem 4.2. The solution to ming Joo (K, ©,,(M)), cf. (12), is given by the SDP:
min tr (blkdiag(Q, R)Z), st S(\,E,A,B,D) =0, A\>0, (15)

with the optimal policy given by K = {ZTW=1, Y — ZTW~1Z7}.

Note that as ming Joo (K, ©,,(M)) is purely an ‘exploitation’ problem > — 0 in the above SDP; in
general, ¥ # 0 in the RRL setting (i.e. (7)) where exploration is beneficial.

4.3 Approximate uncertainty propagation

Let us now return to the RRL problem . Given a model M, furnished us with a convex
method to minimize the worst-case cost. However, at time ¢ = 0, we have access only to data DO,

and therefore, only M (D). To optrmlze ) we need to approximate the models { M (D;,)},;= 11
based on the future data, {Dt ie1 s ! that we expect to see. To th1s end we denote the approximate
model, at time ¢ = ¢; given data Dy, by M;(Dy,) = {A;}i, Bjji» Djji} = E [M(Dy,)|Dy,]. We
now describe specific choices for A; |Z, i and D ilis beginning with the latter.

Recall that the uncertainty matrix D at the ith epoch is denoted D,. The uncertainty matrix at the

02 cs t=t; n i
empirical covariance matrix in this expression with the worst-case state covariance W; as follows:

n
i -+ 1th epoch is then given by D; ;1 = D; + e [ w } { e ] - We approximate the

tit1 T
Tt Tt ~ T W WKT . _
’ ;{“t][“t} - Z“[KTW KWiK] + 3 }—Tum. (16)

This approximation makes use of the same calculation appearing in (9). The equality makes use of
the change of variables introduced in §4.2] Note that in proof of Theorem[4.2] cf. §A.T.4] it was

shown that = = w WK' when = is the solution of
" | KW KWKT+% - :

Next, we turn our attention to approximating the effect of future data on the nominal parameter

estimates {A, B} Updating these (ordinary least squares) estimates based on the expected value
of future observations involves difficult integrals that must be approximated numerically [27| §5].
To preserve convexity in our formulation, we approxrmate future nominal parameter estimates with

the current estimates, i.e., given data D;, we set A = A; and B, |Z = B,. To summarize, our
approximate model at epoch j is given by /\/l] (Dy,) = {A,, B;, D; + = Zk i1 Ter1Zk )




4.4 Final convex program and receding horizon application

We are now in a position to present a convex approximation to our original problem (3). By
substituting Joo (-, ) for Joo(:,-), and M;(Dy) for M(Dy,) in (7), we attain the cost function:
ZLTZ- X Jo (ICZ-, G)m(./\;li,l(Do))) . Consider the ith term in this sum, which can be optimized

via the SDP @, with D = Di—1|0- Notice two important facts: 1. for fixed multiplier A, the
uncertainty D;_1|o enters linearly in the constraint S(-) = 0, cf. ; 2. D;_qo is linear in the
decision variables {Z; }:_}, cf. end of Therefore, the constraint S(-) > 0 remains linear in the
decision variables, which means that the cost function derived by substituting M, (Dy) into (7) can
be optimized as an SDP, cf. below.

Hitherto, we have considered the problem of minimizing the expected cost over time horizon T’
given initial data Dy. In practical applications, we employ a receding horizon strategy, i.e., at the
ith epoch, given data D,, ,, we find a sequence of policies {K; };J;}Z' that minimize the approximate
h-step-ahead expected cost

i+h
(i, b A Y7 Do) = Tidoo (K, O (M(De,_))) + Y Tidoo (K, Om(M(Dy,,)),
j=it1

and then apply XC; during the ith epoch. At the beginning of the ¢ 4+ 1th epoch, we repeat the process;
cf. Algorith The problem min gy~ J(i, h, {K; };JFZL, Dy, _,) can be solved as the SDP:
IS =i

i+h N ~
min_ Yt (blkdiag(Q,R) E;), st SO\, Ei, Ay, Bi,Di) = 0, E; = 04, (17a)

Xi20,{E; ity =i

1
S( vk Ag, By, Dy + —— Z Tk+1_k> =0forj=i+1,...,i+h. (17b)
C

w5k 1+1

Selecting multipliers For optimization of .J., (K, M) given a model M, i.e., {T5), the simultaneous
search for the policy K and multiplier A is convex, as D is fixed. However, in the RRL setting,
‘D’ is a function of the decision variables =;, cf. . and so the multipliers {\;}/T" €
RQL_ ! must be specified in advance. We propose the followmg method of selecting the multipliers:
given Dy, ,, solve K = argming Joo (K, 0, (M(Dy,_,))) via the SDP (T5). Then, compute the

cost J (i, h, {IC};”[ ,D¢,_,) by solving (17), but with the policies fixed to K, and the multipliers
{A; ;H; € Rh as free decision variables. In other words, approximate the worst-case cost of

deploying the /C, h epochs into the future. Then, use the multipliers found during the calculation of
this cost for control policy synthesis at the ¢th epoch.

Computational complexity The proposed method can be implemented via semidefinite program-
ing (SDP) for which computational complexity is well-understood. In particular, the cost of solving the
SDP scales as O(max{m?, mn3, m?n?}) [26], where m = (1/2)n,(n, + 1) + (1/2)ny(ny, +
1) + nzn, + 1 denotes the dimensionality of the decision variables, and n = 3n, + n, is the
dimensionality of the LMI S > 0. The cost of solving the SDP is then given, approximately, by
the cost of (15) multiplied by the horizon h.

5 Experimental results

Numerical simulations In this section, we consider the RRL problem with parameters

1.1 05 0 0 1
As=| 0 09 ,By=1|01 0|,Q=1I, R=>blkdiag(0.1,1), o, = 0.5.
0 -02 08 0 2

We partition the time horizon 7' = 102 into N = 10 equally spaced intervals, each of length T; = 100.
For robustness, we set § = 0.05. Each experimental trial consists of the following procedure. Initial



Algorithm 1 Receding horizon application to true system

1: Input: initial data Dy, confidence §, LQR cost matrices () and R, epochs {tl}ivzl
2: fori=1:Ndo

3 Compute/update nominal model M(Dy, ).

4: Solve convex program (17).

5 Recover policy IC;: K; = Z;W;l andY; =Y, — Z;'—WileZ-.

6

Apply policy to true system for ¢,_; < t < t;, which evolves according to (1) with u; =
Ki.il,‘t + Z;/zet.
7 Form Dy, = Dy, , U{x¢, ,.;,us,_,:t, ; based on newly observed data.
8: end for

data Dy is obtained by driving the system forward 6 time steps, excited by @; ~ A (0, 7). This
open-loop experiment is repeated 100 times, such that Dy = {74, 1.6 }12]. We then apply three
methods: i. rrl - the method proposed in with look-ahead horizon h = 10; ii. nom - applying
the ‘nominal’ robust policy K; = arg ming Joo (K, ©,,(M(Dy,))), i.e., a pure greedy exploitation
policy, with no explicit exploration; iii. greedy - first obtaining a nominal robustly stabilizing policy
as with nom, but then optimizing (i.e., increasing, if possible) the exploration variance X until the
greedy policy and the rrl policy have the same theoretical worst-case cost at the current epoch. This
is a greedy exploration policy; iv. ts - Thompson sampling [4]; v. rbst - the robust adaptive-control
synthesis method proposed in [13]. We perform 100 of these trials and plot the results in Figure

; . . 4 4
< 10° “10° < 10° x10 x10
3.5% 3.5 I T10.8 1
ol 14+ 1.6 : | |
3 I I
25§ 1.2 ! ozl I
2 2.5 1 o 14 |
=] =] n | -
g 8 S P
215 £ 9 £ 038 £ 1.2 . o6 I
(& £ o g —
o ‘S b o 8 S T i I |
1 g 0.6 A S 1l dosi s 4
L5
I a I Q i
I i 1
0.8} 0.4 i i
0.4- L1l &
0 500 1000 O 500 1000 0 500 1000 0 500 1000 Ensh Ed 534
N N : @ g 4 5 Qo a8 H N Q
time time time time a0 [N N
(@) (b) ©)

Figure 2: Results for the experiments described in §5} (a) cost and ‘information’ (a scalar measure of
uncertainty defined in @ when the system evolves according to the worst-case dynamics. The trace
denotes the median, and the shaded region spans from the 10th to the 90th percentile. (b) cost and
information when policies are applied to the true system. (¢) sum of costs (over all time steps) for
the worst-case dynamics (left) and the true system (right). Note that greedy is abbreviated as grdy.

In Figurea) we plot the cost at each epoch when the system evolves according to the worst-case
dynamics. we also plot the information, defined as 1/Amax (D, 1), at the ith epoch, which is the
(inverse) of the 2-norm of parameter error, cf. (4). This is a scalar measure of uncertainty: the
larger the information, the more certain our estimate of the system (in an absolute sense). ts is
omitted from these results as the closed-loop behavior diverges (i.e. attains infinite worst-case cost)
in 96% of the trials conducted. In Figure b) we plot the cost, and information, at each epoch
when the policies are applied to the true system. Figure c) plots the total cost (sum of costs
over all epochs). We make the following observations. Concerning worst-case performance, nom
attains the lowest cost at the initial epoch, as it does no explicit exploration. However, methods that
incorporate exploration achieve better performance at subsequent epochs (and in terms of total cost)
due to greater reduction in uncertainty. Of these methods, the proposed rrl performs best, optimally
balancing exploration with exploitation; we emphasize that this balance of exploration/exploitation
occurs automatically. Furthermore, observe that greedy actually achieves higher information (lower
absolute uncertainty) relative to rrl, yet attains higher cost. This suggests that rrl is reducing the



uncertainty in a structured way, targeting uncertainty reduction in the parameters that ‘matter most for
control’. Results on the true system are qualitatively similar, with rrl attaining better performance
than all other methods except ts. We note that Thompson sampling performs well when the policy
happens to stabilize the system; however, as stability is not a consideration during ts synthesis, this
cannot be guaranteed.

Hardware-in-the-loop experiment In this section, we consider the RRL problem for a hardware-
in-the-loop simulation comprised of the interconnection of a physical servo mechanism (Quanser
QUBE 2) and a synthetic (simulated) LTI dynamical system. Control of servomechanisms is a
ubiquitous task in practice (e.g. robotics); furthermore, the planar servo can be modeled reasonably
well (globally) as a linear system. As such, this setup represents a good compromise between the
complexities of a real world system (backlash, friction, unmodeled dynamics, disturbances, etc) and a
system that approximately satisfies the assumptions of the method; cf. Appendixfor full details
of the experimental setup. An experimental trial consisted of the following procedure. Initial data was
obtained by simulating the system for 0.5 seconds, under closed-loop feedback control (cf. Appendix
with data sampled at S00Hz, to give 250 initial data points. We then applied methods rrl (with
horizon h = 5) and greedy as described in The total control horizon was T = 1250 (2.5 seconds
at 500Hz) and was divided into N = 5 intervals, each of duration 0.5 seconds. We performed 5
of these experimental trials and plot the results in Figur In Figure b) and (d) we plot the total
cost (the sum of the costs at each epoch), and the cost at each epoch, respectively, for each method,
and observe significantly better performance from rrl in both cases. Additional plots decomposing
the cost into that associated with the physical and synthetic system are available in Appendix
We also applied ts, and observed that the resulting policy was unable to stabilize the system; cf.
Figure c) which demonstrates divergence of the angular position of the servomotor under ts.
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Figure 3: Results for the hardware-in-the-loop experiment in (a) median costs at each epoch; the
shaded region covers the best/worst costs at each epoch. (b) total costs (sum of costs at each epoch).
(c) angular position of the servo motor (z;) under feedback control with the proposed method and
Thompson sampling; the latter results in divergence (uncontrolled revolutions of the servo motor).

6 Conclusion

We have presented an algorithm for robust, targeted exploration in RL for linear systems with quadratic
rewards. Policies are robust in the sense that stability of the closed loop system is guaranteed, with
high probability, during learning, and targeted, in the sense that uncertainty is reduced so as to
improve performance of the controller on the specific task at hand. Roughly speaking, the policy
prioritizes uncertainty reduction in the parameters that ‘matter most for control’. The search for a
policy is formulated as a convex program; solving to global optimality then automatically gives the
optimal tradeoff between exploration and exploitation, in the worst-case setting.
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