
A Review of Differential Geometry

We first recall some definitions of differential and hyperbolic geometry.

A.1 Differential geometry

Manifold. An d−dimensional manifoldM is a topological space that locally resembles the topologi-
cal space Rd near each point. More concretely, for each point x onM, we can find a homeomorphism
(continuous bijection with continuous inverse) between a neighbourhood of x and Rd. The notion of
manifold is a generalization of surfaces in high dimensions.

Tangent space. Intuitively, if we think ofM as a d−dimensional manifold embedded in Rd+1, the
tangent space TxM at point x onM is a d−dimensional hyperplane in Rd+1 that best approximates
M around x. Another possible interpretation for TxM is that it contains all the possible directions
of curves onM passing through x. The elements of TxM are called tangent vectors and the union
of all tangent spaces is called the tangent bundle TM = ∪x∈MTxM.

Riemannian manifold. A Riemannian manifold is a pair (M,g), whereM is a smooth manifold
and g = (gx)x∈M is a Riemannian metric, that is a family of smoothly varying inner products on
tangent spaces, gx : TxM×TxM→ R. Riemannian metrics can be used to measure distances on
manifolds.

Distances and geodesics. Let (M,g) be a Riemannian manifold. For v ∈ TxM, define the norm of
v by ||v||g :=

√
gx(v,v). Suppose γ : [a, b]→M is a smooth curve onM. Define the length of γ

by:

L(γ) :=

∫ b

a

||γ′(t)||gdt.

Now with this definition of length, every connected Riemannian manifold becomes a metric space
and the distance d :M×M→ [0,∞) is defined as:

d(x,y) := infγ{L(γ) : γ is a continuously differentiable curve joining x and y}.
Geodesic distances are a generalization of straight lines (or shortest paths) to non-Euclidean geometry.
A curve γ : [a, b]→M is geodesic if d(γ(t), γ(s)) = L(γ|[t,s])∀(t, s) ∈ [a, b](t < s).

Parallel transport. Parallel transport is a generalization of translation to non-Euclidean geometry.
Given a smooth manifoldM, parallel transport Px→y(·) maps a vector v ∈ TxM to Px→y(v) ∈
TyM. In Riemannian geometry, parallel transport preserves the Riemannian metric tensor (norm,
inner products...).

Curvature. At a high level, curvature measures how much a geometric object such as surfaces
deviate from a flat plane. For instance, the Euclidean space has zero curvature while spheres have
positive curvature. We illustrate the concept of curvature in Figure 6.

A.2 Hyperbolic geometry

Hyperbolic space. The hyperbolic space in d dimensions is the unique complete, simply connected
d−dimensional Riemannian manifold with constant negative sectional curvature. There exist several
models of hyperbolic space such as the Poincaré model or the hyperboloid model (also known as
the Minkowski model or the Lorentz model). In what follows, we review the Poincaré and the
hyperboloid models of hyperbolic space as well as connections between these two models.

A.2.1 Poincaré ball model

Let ||.||2 be the Euclidean norm. The Poincaré ball model with unit radius and constant negative
curvature −1 in d dimensions is the Riemannian manifold (Dd,1, (gx)x) where

Dd,1 := {x ∈ Rd : ||x||2 < 1},
and

gx = λ2xId,
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Figure 6: From left to right: a surface of negative curvature, a surface of zero curvature, and a surface
of positive curvature.

where λx := 2
1−||x||22

and Id is the identity matrix. The induced distance between two points (x,y)

in Dd,1 can be computed as:

d1D(x,y) = arcosh

(
1 + 2

||x− y||22
(1− ||x||22)(1− ||y||22)

)
.

A.2.2 Hyperboloid model

Hyperboloid model. Let 〈., .〉L : Rd+1 × Rd+1 → R denote the Minkowski inner product,

〈x,y〉L := −x0y0 + x1y1 + . . .+ xdyd.

The hyperboloid model with unit imaginary radius and constant negative curvature−1 in d dimensions
is defined as the Riemannian manifold (Hd,1, (gx)x) where

Hd,1 := {x ∈ Rd+1 : 〈x,x〉L = −1, x0 > 0},
and

gx :=


−1

1
. . .

1

 .

The induced distance between two points (x,y) in Hd,1 can be computed as:

d1L(x,y) = arcosh(−〈x,y〉L).

Geodesics. We recall a result that gives the unit speed geodesics in the hyperboloid model with
curvature −1 [33]. This result can be used to show Propositions 3.1 and 3.2 for the hyperboloid
manifold with negative curvature −1/K, and then learn K as a model parameter in HGCN.

Theorem A.1. Let x ∈ Hd,1 and u ∈ TxHd,1 unit-speed (i.e. 〈u,u〉L = 1). The unique unit-speed
geodesic γx→u : [0, 1]→ Hd,1 such that γx→u(0) = x and γ̇x→u(0) = u is given by:

γx→u(t) = cosh(t)x + sinh(t)u.

Parallel Transport. If two points x and y on the hyperboloid Hd,1 are connected by a geodesic,
then the parallel transport of a tangent vector v ∈ TxHd,1 to the tangent space TyHd,1 is:

Px→y(v) = v − 〈logx(y),v〉L
d1L(x,y)2

(logx(y) + logy(x)). (15)

Projections. Finally, we recall projections to the hyperboloid manifold and its corresponding tangent
spaces. A point x = (x0,x1:d) ∈ Rd+1 can be projected on the hyperboloid manifold Hd,1 with:

ΠRd+1→Hd,1(x) := (
√

1 + ||x1:d||22,x1:d). (16)
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Figure 7: Illustration of the hyperboloid model (top) in 3 dimensions and its connection to the
Poincaré disk (bottom).

Similarly, a point v ∈ Rd+1 can be projected on TxHd,1 with:

ΠRd+1→TxHd,1(v) := v + 〈x,v〉Lx. (17)

In practice, these projections are very useful for optimization purposes as they constrain embeddings
and tangent vectors to remain on the manifold and tangent spaces.

A.2.3 Connection between the Poincaré ball model and the hyperboloid model

While the hyperboloid model tends to be more stable for optimization than the Poincaré model [30],
the Poincaré model is very interpretable and embeddings can be directly visualized on the Poincaré
disk. Fortunately, these two models are isomorphic (cf. Figure 7) and there exist a diffeomorphism
ΠHd,1→Dd,1(·) mapping one space onto the other:

ΠHd,1→Dd,1(x0, . . . , xd) =
(x1, . . . , xd)

x0 + 1
(18)

and ΠDd,1→Hd,1(x1, . . . , xd) =
(1 + ||x||22, 2x1, . . . , 2xd)

1− ||x||22
. (19)

B Proofs of Results

B.1 Hyperboloid model of hyperbolic space

For completeness, we re-derive results of hyperbolic geometry for any arbitrary curvature. Similar
derivations can be found in the literature [43].

Proposition 3.1. Let x ∈ Hd,K , u ∈ TxHd,K be unit-speed. The unique unit-speed geodesic
γx→u(·) such that γx→u(0) = x, γ̇x→u(0) = u is γKx→u(t) = cosh

(
t√
K

)
x +
√
Ksinh

(
t√
K

)
u,

and the intrinsic distance function between two points x,y in Hd,K is then:

dKL (x,y) =
√
Karcosh(−〈x,y〉L/K). (4)

Proof. Using theorem A.1, we know that the unique unit-speed geodesic γy→u(.) in Hd,1 must
satisfy

γy→u(0) = y and γ̇y→u(0) = u and
d

dt
〈γ̇y→u(t), γ̇y→u(t)〉L = 0 ∀t,

and is given by
γy→u(t) = cosh(t)y + sinh(t)u.
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Now let x ∈ Hd,K and u ∈ TxHd,K be unit-speed and denote γKx→u(.) the unique unit-speed
geodesic in Hd,K such that γKx→u(0) = x and γ̇Kx→u(0) = u. Let us define y := x√

K
∈ Hd,1 and

φy→u(t) = 1√
K
γKx→u(

√
Kt). We have,

φy→u(0) = y and φ̇y→u(0) = u,

and since γKx→u(.) is the unique unit-speed geodesic in Hd,K , we also have

d

dt
〈φ̇y→u(t), φ̇y→u(t)〉L = 0 ∀t.

Furthermore, we have y ∈ Hd,1, u ∈ TyHd,1 as 〈u,y〉L = 1√
K
〈u,x〉L = 0 and

〈φy→u(t), φy→u(t)〉L = −1∀t. Therefore φy→u(.) is a unit-speed geodesic in Hd,1 and we get

φy→u(t) = cosh(t)y + sinh(t)u.

Finally, this leads to

γKx→u(t) = cosh(
t√
K

)x +
√
Ksinh(

t√
K

)u.

Proposition 3.2. For x ∈ Hd,K , v ∈ TxHd,K and y ∈ Hd,K such that v 6= 0 and y 6= x, the
exponential and logarithmic maps of the hyperboloid model are given by:

expK
x (v) = cosh

(
||v||L√
K

)
x+
√
Ksinh

(
||v||L√
K

)
v

||v||L
, logKx (y) = dKL (x,y)

y + 1
K
〈x,y〉Lx

||y + 1
K
〈x,y〉Lx||L

.

Proof. We use a similar reasoning to that in Corollary 1.1 in [11]. Let γKx→v(.) be the unique geodesic
such that γKx→v(0) = x and γ̇Kx→v(0) = v. Let us define u := v

||v||L where ||v||L =
√
〈v,v〉L is

the Minkowski norm of v and

φKx→u(t) := γKx→v

(
t

||v||L

)
.

φx→u(t) satisfies,

φKx→u(0) = x and φ̇Kx→u(0) = u and
d

dt
〈φ̇Kx→u(t), φ̇Kx→u(t)〉L = 0 ∀t.

Therefore φKx→u(.) is a unit-speed geodesic in Hd,K and we get

φKx→u(t) = cosh(
t√
K

)x +
√
Ksinh(

t√
K

)u.

By identification, this leads to

γKx→v(t) = cosh

( ||v||L√
K

t

)
x +
√
Ksinh

( ||v||L√
K

t

)
v

||v||L
.

We can use this result to derive exponential and logarthimic maps on the hyperboloid model. We
know that expKx (v) = γKx→v(1). Therefore we get,

expKx (v) = cosh

( ||v||L√
K

)
x +
√
Ksinh

( ||v||L√
K

)
v

||v||L
.

Now let y = expKx (v). We have 〈x,y〉L = −Kcosh

(
||v||L√
K

)
as 〈x,x〉L = −K and 〈x,v〉L = 0.

Therefore y + 1
K 〈x,y〉Lx =

√
Ksinh

(
||v||L√
K

)
v
||v||L and we get

v =
√
Karsinh

( ||y + 1
K 〈x,y〉Lx||L√

K

)
y + 1

K 〈x,y〉Lx
||y + 1

K 〈x,y〉Lx||L
,
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where ||y + 1
K 〈x,y〉L||L is well defined since y + 1

K 〈x,y〉Lx ∈ TxHd,K . Note that,

||y +
1

K
〈x,y〉Lx||L =

√
〈y,y〉L +

2

K
〈x,y〉2L +

1

K2
〈x,y〉2L〈x,x〉L

=

√
−K +

1

K
〈x,y〉2L

=
√
K

√
〈 x√

K
,

y√
K
〉2L − 1

=
√
Ksinh arcosh

(
− 〈 x√

K
,

y√
K
〉L
)

as 〈 x√
K
, y√

K
〉L ≤ −1. Therefore, we finally have

logKx (y) =
√
Karcosh

(
− 〈 x√

K
,

y√
K
〉L
)

y + 1
K 〈x,y〉Lx

||y + 1
K 〈x,y〉Lx||L

.

B.2 Curvature

Lemma 1. For any hyperbolic spaces with constant curvatures −1/K,−1/K ′ > 0, and any pair of
hyperbolic points (u,v) embedded in Hd,K , there exists a mapping φ : Hd,K → Hd,K′ to another
pair of corresponding hyperbolic points in Hd,K′ , (φ(u), φ(v)) such that the Minkowski inner
product is scaled by a constant factor.

Proof. For any hyperbolic embedding x = (x0, x1, . . . , xd) ∈ Hd,K we have the identity: 〈x,x〉L =

−x20 +
∑d
i=1 x

2
i = −K. For any hyperbolic curvature −1/K < 0, consider the mapping φ(x) =√

K′

K x. Then we have the identity 〈φ(x), φ(x)〉L = −K ′ and therefore φ(x) ∈ Hd,K′ . For any pair

(u, v), 〈φ(u), φ(v)〉L = K′

K

(
−u0v0 +

∑d
i=1 uivi

)
= K′

K 〈u,v〉L. The factor K
′

K only depends on
curvature, but not the specific embeddings.

Lemma 1 implies that given a set of embeddings learned in hyperbolic space Hd,K , we can find
embeddings in another hyperbolic space with different curvature, Hd,K′ , such that the Minkowski
inner products for all pairs of embeddings are scaled by the same factor K

′

K .

For link prediction tasks, Theorem 4.1 shows that with infinite precision, the expressive power of
hyperbolic spaces with varying curvatures is the same.

Theorem 4.1. For any hyperbolic curvatures −1/K,−1/K ′ < 0, for any node embeddings H =

{hi} ⊂ Hd,K of a graph G, we can find H ′ ⊂ Hd,K′ , H ′ = {h′i|h′i =
√

K′

K hi}, such that the
reconstructed graph from H ′ via the Fermi-Dirac decoder is the same as the reconstructed graph
from H , with different decoder parameters (r, t) and (r′, t′).

Proof. The Fermi-Dirac decoder predicts that there exists a link between node i and j iif[
e(d

K
L (hi,hj)−r)/t + 1

]−1
≥ b, where b ∈ (0, 1) is the threshold for determining existence of

links. The criterion is equivalent to dKL (hi,hj) ≤ r + t log( 1−b
b ).

Given H = {h1, . . . ,hn}, the graph GH reconstructed with the Fermi-Dirac decoder has the edge

set EH =
{

(i, j)|dKL (hi,hj) ≤ r + t log( 1−b
b )
}

. Consider the mapping to Hd,K′ , φ(x) :=
√

K′

K x.
Let H ′ = {φ(h1), . . . , φ(hn)}. By Lemma 1,

dK
′

L (φ(hi), φ(hj)) =
√
K ′arcosh

(
−K

′

K
〈hi,hj〉L/K ′

)
=

√
K ′

K
dKL (hi,hj). (20)
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Name Nodes Edges Classes Node features
CORA 2708 5429 7 1433

PUBMED 19717 88651 3 500
HUMAN PPI 17598 5429 4 17

AIRPORT 3188 18631 4 4
DISEASE 1044 1043 2 1000

DISEASE-M 43193 43102 2 1000
Table 3: Benchmarks’ statistics

Due to linearity, we can find decoder parameter, r′ and t′ that satisfy r′ + t′ log( 1−b
b ) =√

K′

K (r + t log( 1−b
b )). With such r′, t′, the criterion dKL (hi,hj) ≤ r + t log( 1−b

b ) is equiva-

lent to dK
′

L (φ(hi), φ(hj)) ≤ r′ + t′ log( 1−b
b ). Therefore, the reconstructed graph GH′ based on the

set of embeddings H ′ is identical to GH .

C Experimental Details

C.1 Dataset statistics

We detail the dataset statistics in Table 3.

C.2 Training details

Here we present details of HGCN’s training pipeline, with optimization and incorporation of
DropConnect [42].

Parameter optimization. Recall that linear transformations and attention are defined on the tangent
space of points. Therefore the linear layer and attention parameters are Euclidean. For bias, there
are two options: one can either define parameters in hyperbolic space, and use hyperbolic addition
operation [10], or define parameters in Euclidean space, and use Euclidean addition after transforming
the points into the tangent space. Through experiments we find that Euclidean optimization is much
more stable, and gives slightly better test performance compared to Riemannian optimization, if
we define parameters such as bias in hyperbolic space. Hence different from shallow hyperbolic
embeddings, although our model and embeddings are hyperbolic, the learnable graph convolution
parameters can be optimized via Euclidean optimization (Adam Optimizer [19]), thanks to exponential
and logarithmic maps. Note that to train shallow Poincaré embeddings, we use Riemannian Stochastic
Gradient Descent [4, 48], since its model parameters are hyperbolic. We use early stopping based on
validation set performance with a patience of 100 epochs.

Drop connection. Since rescaling vectors in hyperbolic space requires exponential and logarithmic
maps, and is conceptually not tied to the inverse dropout rate in terms of re-normalizing L1 norm,
Dropout cannot be directly applied in HGCN. However, as a result of using Euclidean parameters in
HGCN, DropConnect [42], the generalization of Dropout, can be used as a regularization. DropCon-
nect randomly zeros out the neural network connections, i.e. elements of the Euclidean parameters
during training time, improving the generalization of HGCN.

Projections. Finally, we apply projections similar to Equations 16 and 17 for the hyperboloid model
Hd,K after each feature transform and log or exp map, to constrain embeddings and tangent vectors
to remain on the manifold and tangent spaces.
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