
A Proofs

A.1 Computing Empirical Misfit

Estimating the misfitW(π,M, h) directly may not be possible when dealing with large state spaces,
since a given roll-in state-action pair (sh−1, ah−1) may only be observed once and we do not have
access to the true model to compute the distribution PM?(·|sh−1, ah−1). However, we can use an
alternate approach based on Integral Probability Metrics (IPMs) [33] similar to that described in
Appendix B of [49]. Let F = {f : S ×A× S → R : ‖f‖∞ ≤ 1}. Using this class of test functions,
the total variation distance can be written as:

‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV =

max
f∈F

Esh∼PM (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]− Esh∼PM? (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]︸ ︷︷ ︸
g(M,f,sh−1,ah−1)

The next lemma shows thatW(π,M, h) can be expressed using the IPM definition with the max
operator placed outside both expectation operators. This will then allow us to estimate the misfit
using a smaller (finite) set of test functions and apply concentration arguments to bound the difference
between the true and estimated values.
Technical Lemma 1.

W(π,M, h) =

max
f∈F

Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
Esh∼PM (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]− Esh∼PM? (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]

]
Proof. Define fmax

s,a,M = argmaxf∈Fg(M,f, s, a) and fmax
M : S ×A× S → R by fmax

M (s, a, s′) =

fmax
s,a,M (s, a, s′). Note that ‖fmax

M ‖∞ ≤ 1 so fmax
M ∈ F .

We can then write:

W(π,M, h) = Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
max
f∈F

g(M,f, sh−1, ah−1)
]

= Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
g(M,fmax

sh−1,ah−1,M
, sh−1, ah−1)

]
= Esh−1∼Pπ,h−1

M?
,ah−1∼U(A)

[
g(M,fmax

M , sh−1, ah−1)
]

≤ max
f∈F

Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
g(M,f, sh−1, ah−1)

]

Now let f? be the function which maximizes the last quantity. We then have:

max
f∈F

Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
g(M,f, sh−1, ah−1)

]
= Esh−1∼Pπ,h−1

M?
,ah−1∼U(A)

[
g(M,f?, sh−1, ah−1)

]
≤ Esh−1∼Pπ,h−1

M?
,ah−1∼U(A)

[
max
f∈F

g(M,f, sh−1, ah−1)
]

=W(π,M, h)

Combining the two inequalities gives the result.

We next define a new set of functions F̃ as follows. Let

fπ,M,h = argmaxf∈FEsh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
g(M,f, sh−1, ah−1)

]
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and F̃ = {±fπ,M,h : π ∈ Π,M ∈M, h ∈ [H]}. We then have:

W(π,M, h) = max
f∈F

Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
g(M,f, sh−1, ah−1)

]
= max

f∈F̃
Esh−1∼Pπ,h−1

M?
,ah−1∼U(A)

[
g(M,f, sh−1, ah−1)

]

The misfit can thus be computed using a smaller (finite) set of test functions F̃ , with size |F̃ | ≤
|Π| · |M| ·H .

Given a dataset Rπ = {(s(i)
h−1, a

(i)
h−1, s

(i)
h }nn=1 generated by following policy π, we estimate the

empirical misfit for a model M at time step h using F̃ as follows:

W̃(π,M, h) = max
f∈F̃

1

n

n∑
i=1

[
Esh∼PM (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]− f(s

(i)
h−1, a

(i)
h−1, s

(i)
h )]

]
Technical Lemma 2. (Deviation Bound for W̃(π,M, h)). Fix h and π ∈ Π. Sample a dataset{

(s
(i)
h−1, a

(i)
h−1, s

(i)
h )
}n
i=1

of size n with:

s
(i)
h−1 ∼ P

π,h−1
M? , a

(i)
h−1 ∼ U(A), s

(i)
h ∼ PM?(·|s(i)

h−1, a
(i)
h−1)

Then with probability at least 1− δ, we have for all M ∈M:∣∣∣W̃(π,M, h)−W(π,M, h)
∣∣∣ ≤ 4 log(2|M||Π|H/δ)

3n
+ 4

√
2 log(2|M||Π|H/δ)

n

Proof. Fix M ∈M and f ∈ F̃ . Define the random variable zi(M,f) as

zi(M,f) = E
sh∼PM (·|s(i)h−1,a

(i)
h−1)

f(s
(i)
h−1, a

(i)
h−1, sh)− f(s

(i)
h−1, a

(i)
h−1, s

(i)
h )

The expectation is given by:

E[zi(M,f)] = Esh−1∼Pπ,hM?
,ah−1∼U

[
Esh∼PM (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]−Esh∼PM? (·|sh−1,ah−1)[f(sh−1, ah−1, sh)]

]
Note that |zi(M,f)| ≤ 2 and Var(zi(M,f)) ≤ 2. Therefore we can apply Bernstein’s inequality
which states that for any ε:

P
[∣∣∣ n∑
i=1

(zi(M,f)− E[zi(M,f))
∣∣∣ > ε

]
≤ 2exp

(
− ε2/2∑n

i=1 E[(zi(M,f)− E[zi(M,f)])2] + 2ε/3

)
≤ 2exp

(
− ε2/2

2n+ 2ε/3

)
, δ

Solving for ε in terms of δ, we get: ε2/2
2n+2ε/3 = log(2/δ) =⇒ ε2 − 4n log(2/δ)− 2

3ε log(2/δ) = 0.
Applying the quadratic formula then gives us:
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ε =
1

3
log(2/δ) +

1

2

√
(
2

3
log(2/δ))2 + 16n log(2/δ)

≤ 1

3
log(2/δ) +

1

2

√
(
2

3
log(2/δ))2 +

√
16n log(2/δ)

=
2

3
log(2/δ) + 4

√
n log(2/δ)

Therefore with probability at least 1− δ we have:

∣∣∣ n∑
i=1

(zi(M,f)− E[zi(M,f))
∣∣∣ < ε ≤ 2

3
log(2/δ) + 4

√
n log(2/δ)

And therefore:

∣∣∣[ 1

n

n∑
i=1

(zi(M,f)
]
− E[zi(M,f)]

∣∣∣ ≤ 2 log(2/δ)

3n
+ 4

√
n log(2/δ)

n
=

2 log(2/δ)

3n
+ 4

√
log(2/δ)

n

Via a union bound overM and F̃ , we have that for all pairs M ∈ F and f ∈ F̃ , with probability at
least 1− δ:

∣∣∣[ 1

n

n∑
i=1

(zi(M,f)
]
− E[zi(M,f)]

∣∣∣ ≤ 2 log(2|M||F̃ |/δ)
3n

+ 4

√
log(2|M||F̃ |/δ)

n

≤ 2 log(2|M|2|Π|H/δ)
3n

+ 4

√
log(2|M|2|Π|H/δ)

n

≤ 4 log(2|M||Π|H/δ)
3n

+ 4

√
2 log(2|M||Π|H/δ)

n

Note thatW(π,M, h) = maxf∈F̃ E[zi(M,f)] and W̃(π,M, h) = maxf∈F̃
1
n

∑n
i=1 zi(M,f). For

a fixed M , we have shown uniform convergence over F̃ which implies that the empirical and
population maxima must be similarly close, which yields the result.

A.2 Main Results

Proposition 1. Assume |S| is finite and let Ah be the matrix defined above. Then rank(Ah) ≤ |S|.

Proof. This proposition is a special case of Proposition 2 so the proof carries over. It can also be
shown with a direct argument as follows. Define the matrix Uh ∈ R|Π|×|S| by Uh(π, s) = Pπ,h−1

M? (s)

and the matrix Vh ∈ R|M|×|S| by Vh(M, s) = Ea∼U(A)[‖PM (·|s, a)− PM?(·|s, a)‖TV ].
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Then we can write:

Ah(π,M) =W(π,M, h) = Es∼Pπ,h−1
M?

,a∼U(A)

[
||PM (·|s, a)− PM?(·|s, a)||TV

]
=
∑
s

Pπ,h−1
M? (s)Ea∼U(A)[||PM (·|s, a)− PM?(·|s, a)||TV ]

=
∑
s

Uh(π, s)Vh(M, s)

Therefore we have Ah = UhV
>
h and so rank(Ah) ≤ |S|.

Proposition 2. Let Γ denote the true transition matrix of size |S| × |S × A|, with Γ(s′, (s, a)) =
PM?(s′|s, a). Assume that there exist two matrices Γ1,Γ2 with sizes |S| ×K and K × |S ×A| such
that Γ = Γ1Γ2. Then rank(Ah) ≤ K.

Proof. We first define the vectors zπ,h of size K as follows:

zπ,hk =
∑
sh−1

∑
ah−1

Pπ,h−1
M? (sh−1)π(ah−1|sh−1)Γ2(k, (sh−1, ah−1))

This allows us to rewrite:

Pπ,hM? (sh) =
∑
sh−1

∑
ah−1

Pπ,h−1
M? (sh−1)π(ah−1|sh−1)PM?(sh|sh−1, ah−1)

=
∑
sh−1

∑
ah−1

K∑
k=1

Pπ,h−1
M? (sh−1)π(ah−1|sh−1)Γ2(k, (sh−1, ah−1))Γ1(sh, k)

=

K∑
k=1

zπ,hk Γ1(sh, k)

We can now rewrite the witnessed model misfit as follows:

W(π,M, h) = Esh−1∼Pπ,h−1
M?

,ah−1∼U(A)

[
‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV

]
=
∑
sh−1

∑
ah−1

Pπ,h−1
M? (sh−1)

1

|A|
[
‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV

]
=
∑
sh−1

∑
ah−1

K∑
k=1

zπ,h−1
k Γ1(sh−1, k)

1

|A|
[
‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV

]
=

K∑
k=1

zπ,h−1
k

∑
sh−1

∑
ah−1

Γ1(sh−1, k)
1

|A|
[
‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV

]

Define the matrices Uh and Vh of size |Π| ×K and |M| ×K by:

Uh(π, k) = zπ,h−1
k

Vh(M,k) =
∑
sh−1

∑
ah−1

Γ1(sh−1, k)
1

|A|
[
‖PM (·|sh−1, ah−1)− PM?(·|sh−1, ah−1)‖TV

]
We then have Ah = UhV

>
h , which proves the desired result.
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Lemma 1. LetM be a set of models and Π a set of policies. If there exist M,M ′ ∈M, π ∈ Π and
h ≤ H such that D(π,M,M ′, h) > α, then there exists h′ ≤ h such thatW(π,M, h′) > α

4|A|·H or
W(π,M ′, h′) > α

4|A|·H (or both).

Proof. If there exists h′ ≤ h− 1 such that eitherW(π,M, h′) > α
4|A|·H orW(π,M ′, h′) > α

4|A|·H
then we are done. Therefore assume thatW(π,M, h′),W(π,M ′, h′) ≤ α

4|A|·H for all h′ ∈ [H − 1].
To keep notation light, for the following we will use the following abbreviations:

PhM := PM (sh|sh−1, ah−1)

Pπ,h−1
M := Pπ,h−1

M (sh−1)

We now write:

D(π,M,M ′, h)

=
1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhMP
π,h−1
M − PhM ′P

π,h−1
M ′ |

=
1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhMP
π,h−1
M − PhM ′P

π,h−1
M ′ − PhMP

π,h−1
M? + PhMP

π,h−1
M? + PhM ′P

π,h−1
M? − PhM ′P

π,h−1
M? |

=
1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhM (Pπ,h−1
M − Pπ,h−1

M? ) + PhM ′(P
π,h−1
M? − Pπ,h−1

M ′ ) + (PhM − PhM ′)P
π,h−1
M? |

≤ 1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? |+ PhM ′ |P
π,h−1
M? − Pπ,h−1

M ′ |+ |PhM − PhM ′ |P
π,h−1
M?

≤ 1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? |+ PhM ′ |P
π,h−1
M? − Pπ,h−1

M ′ |+ |PhM − PhM? |Pπ,h−1
M? + |PhM ′ − PhM? |Pπ,h−1

M?

=
1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? |+ 1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM ′ |P
π,h−1
M? − Pπ,h−1

M ′ |

+
1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhM − PhM? |Pπ,h−1
M? +

1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhM ′ − PhM? |Pπ,h−1
M?

=
1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? |+ 1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM ′ |P
π,h−1
M? − Pπ,h−1

M ′ |+W(π,M, h) +W(π,M ′, h)

We now bound the first term in this sum:
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1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM

∣∣∣Pπ,h−1
M − Pπ,h−1

M?

∣∣∣
=
∑
sh−1

∣∣∣Pπ,h−1
M − Pπ,h−1

M?

∣∣∣
=
∑
sh−1

∣∣∣ ∑
sh−2

∑
ah−2

π(ah−2|sh−2)(Ph−1
M Pπ,h−2

M − Ph−1
M? P

π,h−2
M? )

∣∣∣
=
∑
sh−1

∑
sh−2

∑
ah−2

π(ah−2|sh−2)
∣∣∣Ph−1
M Pπ,h−2

M − Ph−1
M? P

π,h−2
M? − Ph−1

M Pπ,h−2
M? + Ph−1

M Pπ,h−2
M?

∣∣∣
=
∑
sh−1

∑
sh−2

∑
ah−2

π(ah−2|sh−2)
∣∣∣Ph−1
M (Pπ,h−2

M − Pπ,h−2
M? ) + (Ph−1

M − Ph−1
M? )Pπ,h−2

M?

∣∣∣
≤
∑
sh−1

∑
sh−2

∑
ah−2

π(ah−2|sh−2)
∣∣∣Ph−1
M (Pπ,h−2

M − Pπ,h−2
M? )

∣∣∣+
∑
sh−1

∑
sh−2

∑
ah−2

π(ah−2|sh−2)
∣∣∣(Ph−1

M − Ph−1
M? )Pπ,h−2

M?

∣∣∣
≤
∑
sh−1

∑
sh−2

∑
ah−2

π(ah−2|sh−2)
∣∣∣Ph−1
M (Pπ,h−2

M − Pπ,h−2
M? )

∣∣∣+
∑
sh−1

∑
sh−2

∑
ah−2

∣∣∣(Ph−1
M − Ph−1

M? )Pπ,h−2
M?

∣∣∣
=
∑
sh−2

[ ∑
sh−1

[ ∑
ah−2

π(ah−2|sh−2)
]
Ph−1
M

]∣∣∣Pπ,h−2
M − Pπ,h−2

M?

∣∣∣+ |A| · W(π,M, h− 1)

=
∑
sh−2

∣∣∣Pπ,h−2
M − Pπ,h−2

M?

∣∣∣+ |A| · W(π,M, h− 1)

≤
∑
sh−2

∣∣∣Pπ,h−2
M − Pπ,h−2

M?

∣∣∣+ |A| · α

4|A| ·H

=
∑
sh−2

∣∣∣Pπ,h−2
M − Pπ,h−2

M?

∣∣∣+
α

4H

By induction on h, we have

1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? | =
∑
sh−1

∣∣∣Pπ,h−1
M − Pπ,h−1

M?

∣∣∣ ≤ h · α
4H
≤ α

4

An analogous argument shows that

1

|A|
∑
sh−1

∑
ah−1

∑
sh

|PhM ′(P
π,h−1
M ′ − Pπ,h−1

M? )| ≤ α

4

Putting these together we have:

α ≤ D(π,M,M ′, h) ≤ 1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM |P
π,h−1
M − Pπ,h−1

M? |

+
1

|A|
∑
sh−1

∑
ah−1

∑
sh

PhM ′ |P
π,h−1
M? − Pπ,h−1

M ′ |W(π,M, h) +W(π,M ′, h)

≤ α

4
+
α

4
+W(π,M, h) +W(π,M ′, h)

=
α

2
+W(π,M, h) +W(π,M ′, h)
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Therefore W(π,M, h) +W(π,M ′, h) ≥ α/2 and sinceW(π,M, h),W(π,M ′, h) ≥ 0 we have
eitherW(π,M, h) ≥ α

4 ≥
α

4|A|H orW(π,M ′, h) ≥ α
4 ≥

α
4|A|H , as desired.

Lemma 2. (Explore or Exploit) Suppose the true model M? is never eliminated. At iteration t,
one of the following two conditions must hold: either there exists M ∈ Mt, ht ≤ H such that
W(πtexplore,M, ht) >

ε
4H2|A|2 , or the algorithm returns πexploit such that vπexploit

> vπ? − ε.

Proof. First consider the case where vexplore(πtexplore,Mt) >
ε
|A| . Then by definition of vexplore

there exists some M,M ′ and h ∈ [H] such that D(πtexplore,M,M ′, h) > ε
H|A| . By Lemma 1 we

also haveW(πtexplore,M, ht) >
ε

4H2|A|2 orW(πtexplore,M
′, ht) >

ε
4H2|A|2 for some ht ≤ h.

Now consider the case where vexplore(πtexplore,Mt) ≤ ε
|A| . Since πexploit is the optimal policy for

M̃ , we have vπexploit

M̃
≥ vπ?

M̃
.

We will now bound |vπ?
M̃
− vπ?M? | :

|vπ
?

M̃
− vπ

?

M? | =
∣∣∣ H∑
h=1

∑
sh

Pπ
?,h

M̃
(sh)R?(sh)−

H∑
h=1

∑
sh

Pπ
?,h

M? (sh)R?(sh)
∣∣∣

=
∣∣∣ H∑
h=1

∑
sh

(Pπ
?,h

M̃
(sh)− Pπ

?,h
M? (sh))R?(sh)

∣∣∣
≤

H∑
h=1

∑
sh

|Pπ
?,h

M̃
(sh)− Pπ

?,h
M? (sh)|

where we have used the fact that the per-timestep rewards are bounded by 1. Expanding further we
get:

|vπ
?

M̃
− vπ

?

M? | ≤
H∑
h=1

∑
sh

|Pπ
?,h

M̃
− Pπ

?,h
M? (sh)|

=

H∑
h=1

∑
sh

∣∣∣ ∑
sh−1

∑
ah−1

Pπ
?,h−1

M̃
π?(ah−1|sh−1)Ph

M̃
− Pπ

?,h−1
M? π?(ah−1|sh−1)PhM?

∣∣∣
≤

H∑
h=1

∑
sh

∑
sh−1

∑
ah−1

∣∣∣Pπ?,h−1

M̃
π?(ah−1|sh−1)Ph

M̃
− Pπ

?,h−1
M? π?(ah−1|sh−1)PhM?

∣∣∣
≤

H∑
h=1

∑
sh

∑
sh−1

∣∣∣Pπ?,h−1

M̃
Ph
M̃
− Pπ

?,h−1
M? PhM?

∣∣∣ · |A|
≤

H∑
h=1

D(π?, M̃ ,M?, h)|A|

Note that
∑H
h=1D(π?, M̃ ,M?, h) ≤ vexplore(π?,Mt) ≤ vexplore(πtexplore,Mt) ≤ ε

|A| since
πtexplore is the optimal policy for the exploration MDP. Therefore we have

|vπ
?

M̃
− vπ

?

M? | ≤
ε

|A|
· |A| = ε
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Combining this with the fact that vπexploit

M̃
≥ vπ?

M̃
, we get vπexploit

M? ≥ vπexploit

M? − ε.

The proof for the following lemma can be found in [49] (Lemma 8).

Technical Lemma 3. Suppose that |W̃(πtexplore,M, ht) −W(πtexplore,M, ht)| ≤ φ holds for all
t, ht and M ∈M. Then:

1. M? ∈Mt for all t.

2. Denote M̃t+1 = {M ∈ M̃t : Aht(π
t
explore,M) ≤ 2φ} with M̃1 = M. We have

Mt ⊆ M̃t for all t.

Lemma 3. (Iteration Complexity) Let d = max1≤h≤H rank(Ah) and φ = ε
24H2|A|2

√
d

. Suppose

that |W̃(πtexplore,M, h) −W(πtexplore,M, h)| ≤ φ holds for all t, h ≤ H and M ∈ M. Then the
number of rounds of Algorithm 1 with the UpdateModelSet routine given by Algorithm 2 is at most
Hd log( β2φ )/ log(5/3).

Proof. From Lemma 2, if the algorithm does not terminate then we have πtexplore, ht,M
′ ∈Mt such

that:

W(πtexplore,M
′, ht) >

ε

4H2|A|2
= 6
√
dφ

which can be rewritten as:

Aht(π
t
explore,M

′) = Uht(π
t
explore)>Vht(M

′) > 6
√
dφ.

For any h and t, denote Oht as the origin-centered minimum volume enclosing ellipsoid (MVEE)
of {Vh(M) : M ∈ M̃t}. Also denote Ohtt,+ as the origin-centered MVEE of {v ∈ Ohtt :

Uht(π
t
explore))>v ≤ 2φ}. Note that by definition of M̃t+1, for all M ∈ M̃t+1 we have

Aht(π
t
explore,M) = Uht(π

t
explore)>Vht(M) ≤ 2φ and since Ohtt+1 ⊆ Ohtt we have Ohtt+1 ⊆ Ohtt,+

and hence vol(Ohtt ) ≤ vol(Ohtt,+). See Figure 3 for an illustration.

We can then apply Lemma 11 in [21], (setting B := Oht , p := Uht(π
t
explore), v := Vht(M

′), κ :=

6
√
dφ), and get:

vol(Ohtt+1)

vol(Ohtt )
≤

vol(Ohtt,+)

vol(Ohtt )
≤ 3/5

This shows that if the algorithm does not terminate, then we shrink the volume of Ohtt by a constant
factor. To show that the number of iterations is small, we must now show that the initial volume
is not too large and the final volume is not too small. Denote Φ := supπ∈Π ‖Uht(π)‖2 and Ψ :=
supM∈M ‖Vht(M)‖2. For Oh1 , we have that vol(Oh1 ) ≤ cdΨ

d where cd is the volume of the unit
Euclidean ball in d dimensions. For any t, we have

Oht ⊇ {q ∈ Rd : max
p:‖p‖2≤Φ

q>p ≤ 2φ} = {q ∈ Rd : ‖q‖2 ≤ 2φ/Φ}

Hence, at termination we must have that vol(OhT ) ≥ cd(2φ/Φ)d. Using the volume of Oh1 and the
lower bound of the volume of OhT and the fact that every round we shrink the volume of Ohtt by
a constant factor, we must have that for any h ∈ [H] the number of rounds for which ht = h is

19



Figure 3: Illustration of geometric argument for d = 2. Black dots represent embeddings of the
models inM, the star represents the embedding of the exploration policy πtexplore.

at most d log(ΦΨ
2φ )/ log(5/3). Using the definition β ≥ ΦΨ, this gives an iteration complexity of

Hd log( β2φ )/ log(5/3).

Theorem 1. Assuming that M? ∈ M, for any ε, δ ∈ (0, 1] set φ = ε
24H2|A|2

√
d

and

denote T = Hd log( β2φ )/ log(5/3). Run Algorithm 1 with inputs (M, n, φ) where n =

Θ(H4|A|4d log(T |M|/δ)/ε2), and the UpdateModelSet routine given by Algorithm 2. Then with
probability at least 1 − δ, Algorithm 1 outputs a policy πexploit such that vπexploit

≥ v∗ − ε. The

number of trajectories collected is at most Õ
(
H5d2|A|4

ε2 log
(
T |M||Π|

δ

))
.

Proof. We condition on the event that |W̃(πtexplore,M, h) −W(πtexplore,M, h)| ≤ φ for all t and
h ∈ [H],M ∈ M. Under this condition, by Lemma 3 we know that the algorithm must terminate
in at most Hd log( β2φ )/ log(5/3) iterations. Once the algorithm terminates, we know that we must
have an ε-optimal policy by Lemma 2. Now we show that this condition holds with probability at
least 1− δ. Applying Technical Lemma 2 and performing a union bound over all h ∈ {1, ...,H} and
t ∈ {1, ..., T}, we have that with probability at least 1− δ:

∣∣∣W̃(πtexplore,M, h)−W(πtexplore,M, h)
∣∣∣ ≤ 4 log(4TH|M||Π|/δ)

3n
+ 4

√
log(4TH|M||Π|/δ)

n

≤ 8

√
log(4TH|M||Π|/δ)

n

for all T iterations of the algorithm and n > 4 log(4TH|M||Π/δ)/3. Requiring this upper bound to
be less than φ = ε

24H2|A|2
√
d

and solving for n, we get:
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8

√
log(4TH|M||Π|/δ)

n
≤ ε

24H2|A|2
√
d

64
log(4TH|M||Π|/δ)

n
≤ ε2

576H4|A|4d
36864H4|A|4d log(4TH|M||Π|/δ)

ε2
≤ n

Since we are sampling this number of trajectories at each iteration of the algorithm, the total number
of trajectories is therefore n · T = Õ(H

5d2|A|4
ε2 log(T |M||Π|δ )).

A.3 Extension to Unknown d

Algorithm 3 (M,Π, ε, δ)

1: for i = 1, 2, ... do
2: Set di ← 2i

3: Set δi ← δ
i(i+1)

4: Set φi ← ε
24H2|A|2

√
di

5: Set ni = 36864H4|A|4di log(4TH|M||Π|/δi)
ε2

6: Run DREEM(M,Π, ni, ε, φi) until it returns a policy π or t > Hdi log( β
2φi

)/ log(5/3)

7: if a policy π was returned then
8: Return π
9: end if

10: end for

Algorithm 3 shows how a near-optimal policy can be computed without requiring knowledge of the
d parameter. It operates by running DREEM as a subroutine using guesses for d which follow a
doubling schedule with adjusted values of the δ parameter.

First note that since we assign δ
i(i+1) failure probability to each round of Algorithm 3, the total

probability that any of the subroutines returns a suboptimal policy is
∑∞
i=1

δ
i(i+1) = δ

∑∞
i=1( 1

i −
1
i+1 ) = δ. Also note that M? is never eliminated. Therefore with probability 1− δ, if the algorithm
does return a policy, it is near optimal. It remains to show that Algorithm 3 terminates. We know
that the subroutine terminates with a near-optimal policy when we reach the first iteration i such that
d ≤ di = 2i. Then we must have di−1 < d ≤ di =⇒ 2di−1 < 2d ≤ 2di =⇒ di ≤ 2d =⇒
2i ≤ 2d =⇒ i ≤ log2 d + 1, so the algorithm terminates after log2 d + 1 iterations. The sample
complexity of each subroutine call is monotonically increasing, and the sample complexity of the last
call is Õ(H

5di|A|4
ε2 log(T |M|δi

)) = Õ(H
52d|A|4
ε2 log( (log d)2T |M|

δ )) = Õ(H
5d|A|4
ε2 log(T |M|δ )), where

we have suppressed constant factors and factors which are logarithmic in d at the last step. Combining
this with the fact that there are at most log2 d+ 1 iterations, we see that the sample complexity of
Algorithm 3 is the same as Algorithm 1 up to factors which are logarithmic in d.

B Practical Algorithm Details

B.1 Model Updates

For the environments with deterministic dyanamics (Maze and Continuous Control), we found it
helpful to train the models to make multi-step rather than single-step predictions. For a trajectory
τ = (si, ai, si+1, ai+1, ...si+K+1) ∈ R and model M with parameters θ, the loss is given by:
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L(θ, τ) =

K∑
j=1

‖si+j+1 −Mθ(s̃i+j , ai+j)‖22 such that s̃i+j =

{
si if j = 0

Mθ(s̃i+j−1, ai+j−1) else

Beyond the first step, the model takes as input its prediction from the previous step, and gradients are
backpropagated through the model unrolled over K time steps. This helps the models make more
robust predictions over longer timescales, since errors which are magnified over time get penalized
and the models are trained on noisy inputs. We also used a simple form of prioritized experience
replay [41], where we sample trajectories from the last epoch with higher probability (p = 0.5) and
from all remaining epochs uniformly. This helps the models quickly learn from recent experience.
For the stochastic environment (combination lock), we found that single-step predictions worked
well.

B.2 Planning

B.2.1 Deterministic Dynamics

Algorithm 4 shows the procedure for searching in a continuous state space when the dynamics are
deterministic (note the start state can still be stochastic). If the state space is discrete, exponential
time complexity can be avoided by marking states as visited and only expanding unvisited states, an
idea which is used in breadth-first or depth-first search. Here we generalize this idea for continuous
spaces using a priority queue, where expanded states are assigned a priority based on their minimum
distance to other states in the currently expanded search tree. If two action sequences lead to nearby
states, only one of these states is likely to be expanded given a fixed computational budget as the
other will be given low priority due to its proximity to the first. The algorithm returns variable length
action sequences, and may be called multiple times within an episode.

Algorithm 4 DeterministicPlanner(s,M, Nmax, mode)

1: Input SetM = {fθ1 , ..., fθE} of dynamics models, current state s, max graph size Nmax.
2: Define root node: for i = 1, ..., E set v.si = s
3: Set v.ŝ← s
4: Set v.priority ←∞, v.π ← []
5: Initialize graph V ← {v}
6: while |V| < Nmax do
7: Pick vertex to expand: v ← argmaxv∈V

[
v.priority

]
8: Set v.priority ← −∞
9: for a ∈ A do

10: if mode = explore then
11: Utility is maximum disagreement: u← maxfθi ,fθj∈M ‖fθi(v.si, a)− fθj (v.sj , a)‖22
12: else if mode = exploit then
13: Utility is average predicted reward: u← 1

E

∑E
i=1R

?(fθi(v.si, a))
14: end if
15: Define new node v′ with v′.π ← append(v.π, a)
16: For i = 1, ..., E, set v′.si ← fθi(v.si, a)

17: Set v′.ŝ← 1
E

∑E
i=1 v

′.si
18: Set v′.priority ← minv∈V ‖v′.ŝ− v.ŝ‖2
19: Set v′.utility ← v.utility + u
20: V ← V ∪ {v′}
21: end for
22: end while
23: v? ← argmaxv∈Vv.utility/|v.π|
24: Return v?.π

B.2.2 Stochastic Dynamics

When planning in a stochastic environment, we use Monte-Carlo Tree Search where a given node ν
in the tree at depth h corresponding to a fixed action sequence πA (of length h) consists of empirical

22



estimates of PπA,hM1
, ..., PπA,hME

for each model in the ensemble. Concretely, ν is represented as a
tensor of size |E| ×K ×m where |E| is the number of models in the ensemble, K is the number
of samples drawn from each model M to estimate its predicted distribution PπA,hM , and m is the
dimension of the state vector. The root node is initialized with the current state s, i.e. Sroot

e,k = s for
all 1 ≤ e ≤ E, 1 ≤ k ≤ K. Given an action a ∈ A applied at a node ν, the next node is computed as
follows: ν′e,k ∼Me(νe,k, a).

The rewards at each node, which are then used to choose which action to execute in the real
environment, depend on whether the algorithm is in explore or exploit mode. In explore mode,
the reward is given by Rexplore(ν) = max1≤e,e′≤E ‖P̂Me

(·) − P̂Me′ (·)‖TV , where P̂Me
(·) is the

empirical distribution computed using the K samples νe,: drawn from model Me. In exploit mode,
the reward is given by Rexploit(ν) = 1

E·K
∑E
e=1

∑K
k=1R

?(νe,k), i.e. the mean reward across all
samples and all models in the ensemble. After a fixed number of playouts, the MCTS procedure
returns a sequence of actions which maximizes the expected exploration or exploitation reward. We
execute the first action in this sequence, and then replan at every step. See our code release for full
details.

C Experiment Details

For Neural-E3, we found that specifying a number of exploration epochs was simpler than tuning
the ε parameter in Algorithm 1, which determines when to switch to the exploit phase and which is
task-dependent. This is listed in the table of hyperparameters.

C.1 Stochastic Combination Lock

The environment consists of H levels with 3 underlying states per level (denoted s1,h, s2,h, s3,h) and
4 possible actions. The states s3,: are dead states from which it is impossible to recover: all actions
from s3,h lead to s3,h+1 with probability 1. 2 actions lead from each of the states s1,h and s2,h to the
dead state s3,h+1, and the other two actions lead to one of s1,h+1 and s2,h+1. Which action leads
to which state is randomly determined when the environment is initialized and kept fixed thereafter.
This means that simply repeating a single action is unlikely to lead to the reward. With probability
α = 0.1, the effect of the actions leading to the good states at the next level is flipped. Therefore,
executing a preplanned action sequence without accounting for intermediate observations is likely to
lead to the dead states.

Standard Reward Variant: The reward is zero everywhere except at the last two states, where a
reward of 5 is given for one of the actions.

Antishaped Reward Variant: As above, a reward of 5 is given at the last two states for one of the
actions. Furthermore, a reward of 0.1 is given for transitioning to any of the dead states (for example,
from s1,h to s3,h+1), and a negative reward of −1/H is given for transitioning to any state which is
not a dead state (for example, from s1,h to s1,h+1). This means that until the agent has explored the
last states which give high reward, the locally optimal policy appears to be to transition to the dead
states as quickly as possible.

Table 1: DQN Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 0.01, 0.001, 0.0001 0.01
Hidden Layer Size 64 64
Prioritized Replay true true
Discount Factor 0.99 0.99
Exploration Fraction (episodes) {0.1, 0.01, 0.001} 0.001 for standard rewards

0.01 for antishaped rewards

Figure 4 shows results for both variants of the task for larger numbers of episodes. A somewhat
surprising result was that for the standard variant of the task, the DQN is still able to achieve good
performance for longer horizons, using much fewer samples than PPO+RND. We found that the
DQN performed best when the exploration fraction is set to be very low (0.001 as shown in Table 1),
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Figure 4: Results on the Stochastic Combination Lock task given more episodes. PPO+RND is able
to eventually achieve reasonable performance given enough episodes.

meaning that the DQN agent quickly begins to act greedily. This suggests that acting greedily leads
the agent to explore the environment better than uniform exploration. Uniform exploration leads to a
vanishingly small chance of reaching the reward (≈ 10−6 for H = 20). One explanation could be
that the network happens to be initialized in a manner that gives optimistic estimates for the Q-values.
We found that the DQN performance was highly dependent on implementation details, for example,
the implementation in [43] gave very poor results, as did removing the prioritized experience replay.

Table 2: PPO+RND Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 0.01, 0.001, 0.0001 0.001
Hidden Layer Size 64 64
γI 0.99 0.99
γE 0.999 0.999
λ 0.95 0.95
Intrinsic Reward coefficient 1.0 1.0
Extrinsic Reward coefficient 2, 100 100

Table 3: E3 Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 0.01, 0.001 0.01
Hidden Layer Size 50, 100 50
Ensemble Size 5, 10 5
Minibatch Size 100 100
Number of Exploration Epochs 25H, 50H, 75H Horizon-dependent:

H = 5 : 25H,H = 10 : 50H
H = 15 : 50H,H = 20 : 75H

Exploration Episodes per Epoch 1 1
Model Updates per Epoch 100 100
MCTS playouts 200 200
MCTS samples (K) 100 100

For Neural-E3, we found that training a DQN offline using the data collected in the replay buffer (as
described in Section 4.3) performed better than using MCTS to maximize the reward, especially on
the task variant with antishaped rewards. This is likely because MCTS biases the search tree towards
action sequences which accumulate the best reward so far, and so the misleading rewards can lead the
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search procedure away from action sequences which produce the globally optimal reward. All the
Neural-E3 results reported use the DQN exploitation method.

C.2 Maze Domain

We used the source code for the maze environment provided by the authors https://github.com/
junhyukoh/value-prediction-network, and set the number of goals to 1 and the time limit to
100. All results are reported using 3 random seeds.

The forward dynamics model architecture is a 3-layer convolutional network (1 convolutional layer
followed by 2 deconvolutional layers, all with 16 feature maps). Actions are embedded to a 16-
dimensional vector replicated across all spatial locations and added to the feature maps. A separate
reward head consists of 2 strided convolution layers followed by a fully-connected layer producing a
scalar.

Table 4: DQN Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 10−3, 10−4, 10−5 10−4

Feature Maps 8, 32 8
Convolutional Layers 1, 2, 3 1
Hidden Layer Size 64, 256 64
Prioritized Replay true true
Parameter Noise false false
Discount Factor 0.99 0.99

Table 5: E3 Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 10−3, 10−4 10−3

Number of Feature Maps 16 16
Hidden Layer Size 64 64
Ensemble Size 4, 8 4
Minibatch Size 64 64
Number of exploration Epochs 5, 10 5
Exploration Episodes per Epoch 10 10
Model Updates per Epoch 10000 10000
Unrolling steps (K) 10, 20 10
Maximum Graph Size during Planning (Nmax) 500, 1000, 2000, 5000 2000

C.3 Continuous Control Domains

We used the environments provided by OpenAI Gym [6], available at: https://gym.openai.com/
envs/#classic_control. In initial experiments we experimented with adding parameter noise to
the DQN, but found that this did not help.

Table 6: DQN Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 10−2, 10−3, 10−4 10−3

Hidden Layer Size 64, 256 64
Prioritized Replay true, false true
Parameter Noise true, false false
Discount Factor 0.99 0.99

The forward model architecture is a 3-layer MLP with LeakyReLU non-linearities. The action is
embedded to a vector of size 64 and multiplied component-wise with the first layer of hidden units.
All models are trained using Adam [25].
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True state Predicted states (Different models)

Step 28

Step 29

Step 27

Figure 5: Predictions by the different dynamics models in the ensemble for the Maze task, 29 steps
into the future (best viewed in color). The green dot is the agent and the blue dot is the goal. The
models all agree in their predictions up to steps 27 and 28, but disagree for step 29 where the agent
collects the reward.

Table 7: PPO+RND Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 10−3, 10−4, 10−5 10−4

Hidden Layer Size 64 64
γI 0.99 0.99
γE 0.999 0.999
λ 0.95 0.95
Intrinsic Reward coefficient 1.0 1.0
Extrinsic Reward coefficient 2 2

Table 8: E3 Hyperparameters
Hyperparameter Values Considered Final Value
Learning Rate 10−3, 10−4 10−4

Hidden Layer Size 64 64
Ensemble Size 8 8
Minibatch Size 64 64
Number of exploration Epochs 10 10
Exploration Episodes per Epoch {10, 20} 10
Model Updates per Epoch 2000 2000
Unrolling steps (K) 20 20
Maximum Graph Size during Planning (Nmax) 2000 2000
DQN Learning Rate 10−2, 3 · 10−3, 1 · 10−3, 3 · 10−4, 1 · 10−4 3 · 10−4

DQN Updates for Exploit Phase {500000, 750000, 1000000} 750000
DQN Target Network Update Frequency 5000 5000

For the exploit phase, we initially train a DQN for 750000 updates on the data collected from the
replay buffer. It is then continued to be trained, and if performance begins decreasing, the model is
reverted to its best performing set of weights and training is stopped.
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