
A Distance metrics and completeness

This section reviews some basic properties of the Wasserstein distance. It then proves that the metrics
defined in the main text are indeed distance functions and define complete metric spaces.

`1-Wasserstein distance and dual representation. The `1 Wasserstein distance over P(X ) for
X ⊆ Rk is defined as

W1(ν, ν′) := inf
M∈M(ν,ν′)

∫
X×X

‖x− y‖2dM(x, y). (12)

whereM(ν, ν′) is the set of all measures (couplings) on X × X , with marginals ν and ν′ on the two
components, respectively.

The Kantorovich duality theorem enables the following equivalent dual representation of W1:

W1(ν, ν′) = sup
‖f‖L≤1

∣∣∣∣∫
X
fdν −

∫
X
fdν′

∣∣∣∣ , (13)

where the supremum is taken over all 1-Lipschitz functions f , i.e., f satisfying |f(x) − f(y)| ≤
‖x− y‖2 for all x, y ∈ X .

The Wasserstein distance W1 can also be related to the total variation distance via the following
inequalities [9]:

dmin(X )dTV (ν, ν′) ≤W1(ν, ν′) ≤ diam(X )dTV (ν, ν′), (14)

where dmin(X ) = minx 6=y∈X ‖x− y‖2, which is guaranteed to be positive when X is finite.

When S andA are compact, for any compact subsetX ⊆ Rk, and for any ν, ν′ ∈ P(X ),W1(ν, ν′) ≤
diam(X )dTV (ν, ν′) ≤ diam(X ) <∞, where diam(X ) = supx,y∈X ‖x− y‖2 and dTV is the total
variation distance. Moreover, one can verify
Lemma 3. Both D andW1 are distance functions, and they are finite for any input distribution pairs.
In addition, both ({Π}∞t=0, D) and ({P(S ×A)}∞t=0,W1) are complete metric spaces.

These facts enable the usage of Banach fixed-point mapping theorem for the proof of existence and
uniqueness (Theorems 1 and 4).

Proof of Lemma 3. It is known that for any compact set X ⊆ Rk, (P(X ),W1) defines a complete
metric space [5]. Since W1(ν, ν′) ≤ diam(X ) is uniformly bounded for any ν, ν′ ∈ P(X ), we know
thatW1(LLL,LLL′) ≤ diam(X ) and D(πππ,π′π′π′) ≤ diam(X ) as well, so they are both finite for any input
distribution pairs. It is clear that they are distance functions based on the fact that W1 is a distance
function.

Finally, we show the completeness of the two metric spaces ({Π}∞t=0, D) and ({P(S ×A)}∞t=0,W1).
Take ({Π}∞t=0, D) for example. Suppose that πππk is a Cauchy sequence in ({Π}∞t=0, D). Then for any
ε > 0, there exists a positive integer N , such that for any m, n ≥ N ,

D(πππn,πππm) ≤ ε =⇒W1(πnt (s), πmt (s)) ≤ ε for any s ∈ S, t ∈ N, (15)

which implies that πkt (s) forms a Cauchy sequence in (P(A),W1), and hence by the completeness of
(P(A),W1), πkt (s) converges to some πt(s) ∈ P(A). As a result, πππn → πππ ∈ {Π}∞t=0 under metric
D, which shows that ({Π}∞t=0, D) is complete.

The completeness of ({P(S ×A)}∞t=0,W1) can be proved similarly.

The same argument for Lemma 3 shows that both D and W1 are distance functions and are finite for
any input distribution pairs, with both (Π, D) and (P(S ×A),W1) again complete metric spaces.

B Existence and uniqueness for stationary NE of GMFGs

Definition B.1 (Stationary NE for GMFGs). In (GMFG), a player-population profile (π?, L?) is
called a stationary NE if
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1. (Single player side) For any policy π and any initial state s ∈ S,

V (s, π?,L?) ≥ V (s, π,L?) . (16)

2. (Population side) Pst,at = L? for all t ≥ 0, where {st, at}∞t=0 is the dynamics under the
policy π? starting from s0 ∼ µ?, with at ∼ π?(st, µ

?), st+1 ∼ P (·|st, at,L?), and µ?
being the population state marginal of L?.

The existence and uniqueness of the NE to (GMFG) in the stationary setting can be established by
modifying appropriately the same fixed-point approach for the GMFG in the main text.

Step 1. Fix L, the GMFG becomes the classical optimization problem. That is, solving (GMFG) is
now reduced to finding a policy π?L ∈ Π := {π |π : S → P(A)} to maximize

V (s, πL,L) := E
[ ∞∑
t=0

γtr(st, at,L)|s0 = s

]
,

subject to st+1 ∼ P (st, at,L), at ∼ πL(st).

Now given this fixed L and the solution π?L to the above optimization problem, one can again define

Γ1 : P(S ×A)→ Π,

such that π?L = Γ1(L). Note that this π?L satisfies the single player side condition for the population
state-action pair L,

V (s, π?L,L) ≥ V (s, π,L) , (17)
for any policy π and any initial state s ∈ S.

Accordingly, a similar feedback regularity condition is needed in this step.
Assumption 3. There exists a constant d1 ≥ 0, such that for any L,L′ ∈ P(S ×A),

D(Γ1(L),Γ1(L′)) ≤ d1W1(L,L′), (18)

where
D(π, π′) := sup

s∈S
W1(π(s), π′(s)), (19)

and W1 is the `1-Wasserstein distance (a.k.a. earth mover distance) between probability measures.

Step 2. Based on the analysis of Step 1 and π?L, update the initial L to L′ following the controlled
dynamics P (·|st, at,L).

Accordingly, define a mapping Γ2 : Π× P(S ×A)→ P(S ×A) as follows:

Γ2(π,L) := L̂ = Ps1,a1 , (20)

where a1 ∼ π(s1), s1 ∼ µP (·|·, a0,L), a0 ∼ π(s0), s0 ∼ µ, and µ is the population state marginal
of L.

One also needs a similar assumption in this step.
Assumption 4. There exist constants d2, d3 ≥ 0, such that for any admissible policies π, π1, π2 and
joint distributions L,L1,L2,

W1(Γ2(π1,L),Γ2(π2,L)) ≤ d2D(π1, π2), (21)

W1(Γ2(π,L1),Γ2(π,L2)) ≤ d3W1(L1,L2). (22)

Step 3. Repeat until L′ matches L.

This step is to ensure the population side condition. To ensure the convergence of the combined
step one and step two, it suffices if Γ : P(S × A) → P(S × A) with Γ(L) := Γ2(Γ1(L),L) is a
contractive mapping (under the W1 distance).

Similar to the proof of Theorem 1, again by the Banach fixed point theorem and the completeness of
the related metric spaces, there exists a unique stationary NE of the GMFG. That is,
Theorem 4 (Existence and Uniqueness of stationary MFG solution). Given Assumptions 3 and 4,
and assume d1d2 + d3 < 1. Then there exists a unique stationary NE to (GMFG).
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C Additional comments on assumptions

As mentioned in the main text, the single player side Assumption 1 and its counterpart Assumption
3 for the stationary version correspond to the feedback regularity condition in the classical MFG
literature. Here we add some comments on the population side Assumption 2 and its stationary
version Assumption 4. For simplicity and clarity, let us consider the stationary case with finite state
and action spaces. Then we have the following result.
Lemma 5. Suppose that maxs,a,L,s′ P (s′|s, a,L) ≤ c1, and that P (s′|s, a, ·) is c2-Lipschitz in W1,
i.e.,

|P (s′|s, a,L1)− P (s′|s, a,L2)| ≤ c2W1(L1,L2). (23)
Then in Assumption 4, d2 and d3 can be chosen as

d2 =
2diam(S)diam(A)|S|c1

dmin(A)
(24)

and d3 = diam(S)diam(A)c2
2 , respectively.

Lemma 5 provides an explicit characterization of the population side assumptions based only on the
boundedness and Lipschitz properties of the transition dynamics P . In particular, c1 becomes smaller
when the transition dynamics becomes more diverse and the state space becomes larger.

Proof. (Lemma 5) We begin by noticing that L′ = Γ2(π,L) can be expanded and computed as
follows:

µ′(s′) =
∑

s∈S,a∈A
µ(s)P (s′|s, a,L)π(s, a), L′(s′, a′) = µ′(s′)π(s′, a′), (25)

where µ is the state marginal distribution of L.

Now by the inequalities (14), we have

W1(Γ2(π1,L),Γ2(π2,L)) ≤ diam(S ×A)dTV (Γ2(π1,L),Γ2(π2,L))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣∣
∑

s∈S,a∈A
µ(s)P (s′|s, a,L) (π1(s, a)π1(s′, a′)− π2(s, a)π2(s′, a′))

∣∣∣∣∣∣
≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑

s,a,s′,a′

µ(s)(π1(s, a) + π2(s, a))|π1(s′, a′)− π2(s′, a′)|

≤diam(S ×A)

2
max
s,a,L,s′

P (s′|s, a,L)
∑
s′,a′

|π1(s′, a′)− π2(s′, a′)| · (1 + 1)

=2diam(S ×A) max
s,a,L,s′

P (s′|s, a,L)
∑
s′

dTV (π1(s′), π2(s′))

≤2diam(S ×A) maxs,a,L,s′ P (s′|s, a,L)|S|
dmin(A)

D(π1, π2) =
2diam(S)diam(A)|S|c1

dmin(A)
D(π1, π2).

(26)

Similarly, we have

W1(Γ2(π,L1),Γ2(π,L2)) ≤ diam(S ×A)dTV (Γ2(π,L1),Γ2(π,L2))

=
diam(S ×A)

2

∑
s′∈S,a′∈A

∣∣∣∣∣∣
∑

s∈S,a∈A
µ(s)π(s, a)π(s′, a′) (P (s′|s, a,L1)− P (s′|s, a,L2))

∣∣∣∣∣∣
≤diam(S ×A)

2

∑
s,a,s′,a′

µ(s)π(s, a)π(s′, a′) |P (s′|s, a,L1)− P (s′|s, a,L2)|

≤diam(S)diam(A)c2
2

.

(27)

This completes the proof.
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D Proof of Theorems 1 and 4

For notational simplicity, we only present the proof for the stationary case (Theorem 4). The proof of
Theorems 1 is the same with appropriate notational changes.

First by Definition B.1 and the definitions of Γi (i = 1, 2), (π,L) is a stationary NE iff L =
Γ(L) = Γ2(Γ1(L),L) and π = Γ1(L), where Γ(L) = Γ2(Γ1(L),L). This indicates that for any
L1,L2 ∈ P(S ×A),

W1(Γ(L1),Γ(L2)) = W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L2))

≤W1(Γ2(Γ1(L1),L1),Γ2(Γ1(L2),L1)) +W1(Γ2(Γ1(L2),L1),Γ2(Γ1(L2),L2))

≤ (d1d2 + d3)W1(L1,L2).

(28)

And since d1d2 + d3 ∈ [0, 1), by the Banach fixed-point theorem, we conclude that there exists a
unique fixed-point of Γ, or equivalently, a unique stationary MFG solution to (GMFG).

E Proof of Theorem 2

The proof of Theorem 2 relies on the following lemmas.
Lemma 6 ([8]). The softmax function is c-Lipschitz, i.e., ‖softmaxc(x)−softmaxc(y)‖2 ≤ c‖x−y‖2
for any x, y ∈ Rn.

Notice that for a finite set X ⊆ Rk and any two (discrete) distributions ν, ν′ over X , we have

W1(ν, ν′) ≤ diam(X )dTV (ν, ν′) =
diam(X )

2
‖ν − ν′‖1 ≤

diam(X )

2
‖ν − ν′‖2, (29)

where in computing the `1-norm, ν, ν′ are viewed as vectors of length |X |.

Hence Lemma 6 implies that for any x, y ∈ R|X |, when softmaxc(x) and softmaxc(y) are viewed
as probability distributions over X , we have

W1(softmaxc(x), softmaxc(y)) ≤ diam(X )c

2
‖x− y‖2 ≤

diam(X )
√
|X |c

2
‖x− y‖∞.

Lemma 7. The distance between the softmax and the argmax mapping is bounded by
‖softmaxc(x)− argmax-e(x)‖2 ≤ 2n exp(−cδ),

where δ = xmax −maxxj<xmax xj , xmax = maxi=1,...,n xi, and δ :=∞ when all xj are equal.

Similar to Lemma 6, Lemma 7 implies that for any x ∈ R|X |, viewing softmaxc(x) as probability
distributions over X leads to

W1(softmaxc(x), argmax-e(x)) ≤ diam(X )|X | exp(−cδ).

Proof of Lemma 7. Without loss of generality, assume that x1 = x2 = · · · = xm =
maxi=1,...,n xi = x? > xj for all m < j ≤ n. Then

argmax-e(x)i =

{
1
m , i ≤ m,
0, otherwise.

softmaxc(x)i =


ecx

?

mecx?+
∑n
j=m+1 e

cxj , i ≤ m,
ecxi

mecx?+
∑n
j=m+1 e

cxj , otherwise.

Therefore
‖softmaxc(x)− argmax-e(x)‖2 ≤ ‖softmaxc(x)− argmax-e(x)‖1

=m

(
1

m
− ecx

?

mecx? +
∑n
j=m+1 e

cxj

)
+

∑n
i=m+1 e

cxi

mecx? +
∑n
j=m+1 e

cxj

=
2
∑n
i=m+1 e

cxi

mecx? +
∑n
i=m+1 e

cxi
=

2
∑n
i=m+1 e

−cδi

m+
∑n
i=m+1 e

−cδi

≤ 2

m

n∑
i=m+1

e−cδi ≤ 2(n−m)

m
e−cδ ≤ 2ne−cδ,
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with δi = xi − x?.

Lemma 8 ([7]). For an MDP, sayM, suppose that the Q-learning algorithm takes step-sizes

βt(s, a) =

{
|#(s, a, t) + 1|−h, (s, a) = (st, at),

0, otherwise.

with h ∈ (1/2, 1). Here #(s, a, t) is the number of times up to time t that one visits the state-action
pair (s, a). Also suppose that the covering time of the state-action pairs is bounded by L with
probability at least 1− p for some p ∈ (0, 1). Then ‖QTM(δ,ε) −Q?‖∞ ≤ ε with probability at least
1− 2δ. Here QT is the T -th update in Q-learning, and Q? is the (optimal) Q-function, given that

TM(δ,ε) = Ω

(L logp(δ)

β
log

Vmax

ε

) 1
1−h

+

(L logp(δ)
)1+3h

V 2
max log

(
|S||A|Vmax

δβε

)
β2ε2


1
h
 ,

where β = (1−γ)/2, Vmax = Rmax/(1−γ), and Rmax is an upper bound on the extreme difference
between the expected rewards, i.e., maxs,a,µ r(s, a, µ)−mins,a,µ r(s, a, µ) ≤ Rmax.

Here the covering time L of a state-action pair sequence is defined to be the number of steps needed
to visit all state-action pairs starting from any arbitrary state-action pair, and TM(δ, ε) is the number
of inner iterations Tk set in Algorithm 1. This will guarantee the convergence in Theorem 2. Also
notice that the l∞ norm above is defined in an element-wise sense, i.e., for M ∈ R|S|×|A|, we have
‖M‖∞ = maxs∈S,a∈A |M(s, a)|.

Proof of Theorem 2. Define Γ̂k1(Lk) := softmaxc
(
Q̂?Lk

)
. In the following, π = softmaxc(QL) is

understood as the policy π with π(s) = softmaxc(QL(s, ·)). Let L? be the population state-action
pair in a stationary NE of (GMFG). Then πk = Γ̂k1(Lk). Denoting d := d1d2 + d3, we see

W1(L̃k+1,L?) = W1(Γ2(πk,Lk),Γ2(Γ1(L?),L?))
≤W1(Γ2(Γ1(Lk),Lk),Γ2(Γ1(L?),L?)) +W1(Γ2(Γ1(Lk),Lk),Γ2(Γ̂k1(Lk),Lk))

≤W1(Γ(Lk),Γ(L?)) + d2D(Γ1(Lk), Γ̂k1(Lk))

≤(d1d2 + d3)W1(Lk,L?) + d2D(argmax-e(Q?Lk), softmaxc(Q̂?Lk))

≤dW1(Lk,L?) + d2D(softmaxc(Q̂?Lk), softmaxc(Q?Lk))

+ d2D(argmax-e(Q?Lk), softmaxc(Q?Lk))

≤dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
‖Q̂?µk −Q

?
µk
‖∞

+ d2D(argmax-e(Q?Lk), softmaxc(Q?Lk)).

Then since Lk ∈ Sε by the projection step, Lemma 7, and Lemma 8 with the choice of Tk =
TMµ(δk, εk)), we have, with probability at least 1− 2δk,

W1(L̃k+1,L?) ≤ dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
εk + d2diam(A)|A|e−cφ(ε). (30)

Finally, it is clear that with probability at least 1− 2δk,

W1(Lk+1,L?) ≤W1(L̃k+1,L?) +W1(L̃k+1,ProjSε(L̃k+1))

≤ dW1(Lk,L?) +
cd2diam(A)

√
|A|

2
εk + d2diam(A)|A|e−cφ(ε) + ε.

By telescoping, this implies that with probability at least 1− 2
∑K−1
k=0 δk,

W1(LK ,L?) ≤dKW1(L0,L?) +
cd2diam(A)

√
|A|

2

K−1∑
k=0

dK−kεk

+
(d2diam(A)|A|e−cφ(ε) + ε)(1− dK)

1− d
.

(31)
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Since εk is summable, hence supk≥0 εk < ∞,
∑K−1
k=0 dK−kεk ≤

supk≥0 εk

1− d
db(K−1)/2c +∑∞

k=d(K−1)/2e εk.

Now plugging in K = Kε,η , with the choice of δk and c = log(1/ε)
φ(ε) , and noticing that d ∈ [0, 1), it is

clear that with probability at least 1− 2δ,

W1(LKε,η ,L?) ≤dKε,ηW1(L0,L?)

+
cd2diam(A)

√
|A|

2

 supk≥0 εk

1− d
db(Kε,η−1)/2c +

∞∑
k=d(Kε,η−1)/2e

εk


+

(d2diam(A)|A|+ 1)ε

1− d
.

(32)

Setting εk = (k + 1)−(1+η), then when Kε,η ≥ 2(logd(ε/c) + 1),

supk≥0 εk

1− d
db(Kε,η−1)/2c ≤ ε/c

1− d
.

Similarly, when Kε,η ≥ 2(ηε/c)−1/η ,
∑∞
k=

⌈
Kε,η−1

2

⌉ εk ≤ ε/c.
Finally, when Kε,η ≥ logd(ε/(diam(S)diam(A))), dKε,ηW1(L0,L?) ≤ ε, since W1(L0,L?) ≤
diam(S ×A)= diam(S)diam(A).

In summary, if Kε,η = d2 max{(ηε/c)−1/η, logd(ε/max{diam(S)diam(A), c}) + 1}e, then with
probability at least 1− 2δ,

W1(LKε,η ,L?) ≤

(
1 +

d2diam(A)
√
|A|(2− d)

2(1− d)
+

(d2diam(A)|A|+ 1)

1− d

)
ε = O(ε).

Finally, plugging in εk and δk into TML(δk, εk), and noticing that k≤Kε,η and
∑Kε,η−1
k=0 (k+ 1)α ≤

Kα+1
ε,η

α+1 , we immediately arrive at

T = O

(log(Kε,η/δ))
1

1−h Kε,η (logKε,η)
1

1−h + (log(Kε,η/δ))
1
h+3 K

1+
2(1+η)
h

ε,η

1 + 2(1+η)
h

(log(Kε,η/δ))
1
h

 .

By further relaxing η to 1 and merging the terms, (11) follows.

F Naive algorithm

The Naive iterative algorithm (Algorithm 2) is to replace Step A in the three-step fixed-point approach
of GMFGs with Q-learning iterations. The limitation of this Naive algorithm has been discussed in
the main text (Step 1, Section 4) and empirically verified in Section 5 (Figure 4).

Algorithm 2 Alternating Q-learning for GMFGs (Naive)
1: Input: Initial population state-action pair L0

2: for k = 0, 1, · · · do
3: Perform Q-learning to find the Q-function Q?k(s, a) = Q?Lk(s, a) of an MDP with dynamics

PLk(s′|s, a) and rewards rLk(s, a).
4: Solve πk ∈ Π with πk(s) = argmax-e (Q?k(s, ·)).
5: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain Lk+1 from

G(s, πk, Lk).
6: end for
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G GMF-V

GMF-V, briefly mentioned in Section 4, is the value-iteration version of our main algorithm GMF-Q.
GMF-V applies to the GMFG setting with fully known transition dynamics P and rewards r.

Algorithm 3 Value Iteration for GMFGs (GMF-V)
1: Input: Initial L0, tolerance ε > 0.
2: for k = 0, 1, · · · do
3: Perform value iteration for Tk iterations to find the approximate Q-function QLk and value

function VLk :
4: for t = 1, 2, · · · , Tk do
5: for all s ∈ S and s ∈ A do
6: QLk(s, a)← E[r(s, a, Lk)] + γ

∑
s′ P (s′|s, a, Lk)VLk(s′)

7: VLk(s)← maxaQLk(s, a)
8: end for
9: end for

10: Compute a policy πk ∈ Π:
πk(s) = softmaxc(QLk(s, ·)).

11: Sample s ∼ µk, where µk is the population state marginal of Lk, and obtain L̃k+1 from
G(s, πk, Lk).

12: Find Lk+1 = ProjSε(L̃k+1)
13: end for

H More details for the experiments

H.1 Competition intensity index M .

In the experiment, the competition index M is interpreted and implemented as the number of selected
players in each auction competition. That is, in each round, M − 1 players will be randomly selected
from the population to compete with the representative advertiser for the auction. Therefore, the
population distribution Lt, the winner indicator wMt , and second-best price aMt all depend on M .
This parameter M is also referred to as the auction thickness in the auction literature [18].

H.2 Adjustment for Algorithm MF-Q.

For MF-Q, [40] assumes all N players have a joint state s. In the auction experiment, we make the
following adjustment for MF-Q for computational efficiency and model comparability: each player i

makes decision based on her own private state and table Qi is a functional of si, ai and
∑
j 6=i a

j

N−1 .
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