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Figure 1: (a) Precision (blue) and recall (orange) for
several neighborhood sizes k. (b) Using Inception-v3
features instead of VGG-16 yields a substantially similar
result. (c) Our metric behaves similarly to FID in terms
of varying sample count.
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Figure 2: (a) Real data covers five modes (1–5) and
the generated data is expanded, one mode at a time, to
cover the real modes (1–5) and five extraneous modes
(6–10). Both metrics were evaluated using 20k real and
generated samples. (b) Results from our metric with
k = 3. (c) Results from the method of Sajjadi et al. [1].

We thank the reviewers for their comments and remarks, and will gladly implement the suggested clarifications.1

Reviewers 1 and 3 ask about different neighborhood sizes k, the number of samples |Φ|, and the choice of feature2

space. Figure 1a illustrates the effect of varying k in the setup used in Figure 4b of the submission (truncation sweep3

in StyleGAN, VGG-16 features, 50k samples). In general, different k yield consistent results and affect mainly the4

saturation towards 0 or 1. Therefore, selecting k is a tradeoff between under- or overestimating the manifolds. We5

chose k = 3 for slight underestimation, as overestimation leads to quicker saturation of precision and consequently6

makes it harder to measure differences between models. Figure 1b further shows that our metric is not sensitive to the7

choice of feature space: extracting the features from pool3 of Inception-v3 [3] instead of VGG-16 makes no qualitative8

difference. Finally, Figure 1c shows that our metric behaves similarly to FID as the number of samples increases.9

Reviewer 3 points out that our precision and recall do not measure the distance between generated and real distributions,10

and gives a counterexample where two continuous probability distributions have the same support sets but different11

densities. In this case our proposed metric would return perfect precision and recall scores, as it explicitly aims to12

disregard the density of the target distribution, measuring only the probability that a sample drawn from one distribution13

falls within the support of the other. FID remains an important tool for measuring distances between the distributions,14

and we argue that precision, recall, and FID all have well-justified roles in evaluating generative models as they provide15

complementary information about them.16

Reviewer 3 further questions our claim that the curve representation in [1] is ambiguous. Making this claim was a result17

of an unfortunate grammatical mistake in our paper on line 57. Our intent was to say that the choice in [1] to use curves18

resulted from an ambiguity (that they discuss in Section 3.1), not that it came with any ambiguity. We apologize for19

the error and will revise the text. We have no objections to summarizing the curves using Fβ scores as done in [1].20

Furthermore, we thank the reviewer for bringing [2] to our attention, and will cite it as parallel work.21

Finally, reviewer 3 suggested experimenting with simple or synthetic datasets similar to [1]. In Figure 2, we replicate22

the mode dropping and invention experiment in [1], albeit with a 10-class 2D Gaussian mixture model instead of23

CIFAR-10 images. As in [1], the real data covers five modes, and we measure precision and recall when 1–10 of the24

modes are covered by a hypothetical generator that draws samples from the corresponding Gaussian distributions. In25

Figure 2b we see that our method yields the correct values for precision and recall in all cases: when not all modes are26

being generated, precision is perfect and recall measures the fraction of modes covered, and when extraneous modes are27

generated, recall remains perfect while precision measures the fraction of real vs. generated modes. Figure 2c illustrates28

that the method of Sajjadi et al. [1] performs similarly except for artifacts from k-means clustering. We agree that29

including an experiment like this would strengthen the paper.30
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