Towards Understanding Acceleration Tradeoff between Momentum and Asynchrony in Nonconvex Stochastic Optimization

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental


Tianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, Tuo Zhao


Asynchronous momentum stochastic gradient descent algorithms (Async-MSGD) have been widely used in distributed machine learning, e.g., training large collaborative filtering systems and deep neural networks. Due to current technical limit, however, establishing convergence properties of Async-MSGD for these highly complicated nonoconvex problems is generally infeasible. Therefore, we propose to analyze the algorithm through a simpler but nontrivial nonconvex problems --- streaming PCA. This allows us to make progress toward understanding Aync-MSGD and gaining new insights for more general problems. Specifically, by exploiting the diffusion approximation of stochastic optimization, we establish the asymptotic rate of convergence of Async-MSGD for streaming PCA. Our results indicate a fundamental tradeoff between asynchrony and momentum: To ensure convergence and acceleration through asynchrony, we have to reduce the momentum (compared with Sync-MSGD). To the best of our knowledge, this is the first theoretical attempt on understanding Async-MSGD for distributed nonconvex stochastic optimization. Numerical experiments on both streaming PCA and training deep neural networks are provided to support our findings for Async-MSGD.