A Reduction for Efficient LDA Topic Reconstruction

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental


Matteo Almanza, Flavio Chierichetti, Alessandro Panconesi, Andrea Vattani


We present a novel approach for LDA (Latent Dirichlet Allocation) topic reconstruction. The main technical idea is to show that the distribution over the documents generated by LDA can be transformed into a distribution for a much simpler generative model in which documents are generated from {\em the same set of topics} but have a much simpler structure: documents are single topic and topics are chosen uniformly at random. Furthermore, this reduction is approximation preserving, in the sense that approximate distributions-- the only ones we can hope to compute in practice-- are mapped into approximate distribution in the simplified world. This opens up the possibility of efficiently reconstructing LDA topics in a roundabout way. Compute an approximate document distribution from the given corpus, transform it into an approximate distribution for the single-topic world, and run a reconstruction algorithm in the uniform, single topic world-- a much simpler task than direct LDA reconstruction. Indeed, we show the viability of the approach by giving very simple algorithms for a generalization of two notable cases that have been studied in the literature, $p$-separability and Gibbs sampling for matrix-like topics.