A probabilistic population code based on neural samples

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews


Sabyasachi Shivkumar, Richard Lange, Ankani Chattoraj, Ralf Haefner


Sensory processing is often characterized as implementing probabilistic inference: networks of neurons compute posterior beliefs over unobserved causes given the sensory inputs. How these beliefs are computed and represented by neural responses is much-debated (Fiser et al. 2010, Pouget et al. 2013). A central debate concerns the question of whether neural responses represent samples of latent variables (Hoyer & Hyvarinnen 2003) or parameters of their distributions (Ma et al. 2006) with efforts being made to distinguish between them (Grabska-Barwinska et al. 2013). A separate debate addresses the question of whether neural responses are proportionally related to the encoded probabilities (Barlow 1969), or proportional to the logarithm of those probabilities (Jazayeri & Movshon 2006, Ma et al. 2006, Beck et al. 2012). Here, we show that these alternatives -- contrary to common assumptions -- are not mutually exclusive and that the very same system can be compatible with all of them. As a central analytical result, we show that modeling neural responses in area V1 as samples from a posterior distribution over latents in a linear Gaussian model of the image implies that those neural responses form a linear Probabilistic Population Code (PPC, Ma et al. 2006). In particular, the posterior distribution over some experimenter-defined variable like "orientation" is part of the exponential family with sufficient statistics that are linear in the neural sampling-based firing rates.