Single-Agent Policy Tree Search With Guarantees

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber

Abstract

We introduce two novel tree search algorithms that use a policy to guide search. The first algorithm is a best-first enumeration that uses a cost function that allows us to provide an upper bound on the number of nodes to be expanded before reaching a goal state. We show that this best-first algorithm is particularly well suited for ``needle-in-a-haystack'' problems. The second algorithm, which is based on sampling, provides an upper bound on the expected number of nodes to be expanded before reaching a set of goal states. We show that this algorithm is better suited for problems where many paths lead to a goal. We validate these tree search algorithms on 1,000 computer-generated levels of Sokoban, where the policy used to guide search comes from a neural network trained using A3C. Our results show that the policy tree search algorithms we introduce are competitive with a state-of-the-art domain-independent planner that uses heuristic search.