Contextual Pricing for Lipschitz Buyers

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental


Jieming Mao, Renato Leme, Jon Schneider


We investigate the problem of learning a Lipschitz function from binary feedback. In this problem, a learner is trying to learn a Lipschitz function $f:[0,1]^d \rightarrow [0,1]$ over the course of $T$ rounds. On round $t$, an adversary provides the learner with an input $x_t$, the learner submits a guess $y_t$ for $f(x_t)$, and learns whether $y_t > f(x_t)$ or $y_t \leq f(x_t)$. The learner's goal is to minimize their total loss $\sum_t\ell(f(x_t), y_t)$ (for some loss function $\ell$). The problem is motivated by \textit{contextual dynamic pricing}, where a firm must sell a stream of differentiated products to a collection of buyers with non-linear valuations for the items and observes only whether the item was sold or not at the posted price. For the symmetric loss $\ell(f(x_t), y_t) = \vert f(x_t) - y_t \vert$, we provide an algorithm for this problem achieving total loss $O(\log T)$ when $d=1$ and $O(T^{(d-1)/d})$ when $d>1$, and show that both bounds are tight (up to a factor of $\sqrt{\log T}$). For the pricing loss function $\ell(f(x_t), y_t) = f(x_t) - y_t {\bf 1}\{y_t \leq f(x_t)\}$ we show a regret bound of $O(T^{d/(d+1)})$ and show that this bound is tight. We present improved bounds in the special case of a population of linear buyers.