Streamlining Variational Inference for Constraint Satisfaction Problems

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental

Authors

Aditya Grover, Tudor Achim, Stefano Ermon

Abstract

Several algorithms for solving constraint satisfaction problems are based on survey propagation, a variational inference scheme used to obtain approximate marginal probability estimates for variable assignments. These marginals correspond to how frequently each variable is set to true among satisfying assignments, and are used to inform branching decisions during search; however, marginal estimates obtained via survey propagation are approximate and can be self-contradictory. We introduce a more general branching strategy based on streamlining constraints, which sidestep hard assignments to variables. We show that streamlined solvers consistently outperform decimation-based solvers on random k-SAT instances for several problem sizes, shrinking the gap between empirical performance and theoretical limits of satisfiability by 16.3% on average for k = 3, 4, 5, 6.