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Abstract

We study the problem of generalized uniformity testing of a discrete probability
distribution: Given samples from a probability distribution p over an unknown
size discrete domain Ω, we want to distinguish, with probability at least 2/3,
between the case that p is uniform on some subset of Ω versus ε-far, in total vari-
ation distance, from any such uniform distribution. We establish tight bounds
on the sample complexity of generalized uniformity testing. In more detail, we
present a computationally efficient tester whose sample complexity is optimal,
within constant factors, and a matching worst-case information-theoretic lower
bound. Specifically, we show that the sample complexity of generalized unifor-
mity testing is Θ

(
1/(ε4/3‖p‖3) + 1/(ε2‖p‖2)

)
.

1 Introduction

Consider the following statistical task: Given independent samples from a distribution over an un-
known size discrete domain Ω, determine whether it is uniform on some subset of the domain versus
significantly different from any such uniform distribution. Formally, let CU

def
= {uS : S ⊆ Ω}

denote the set of uniform distributions uS over subsets S of Ω. Given sample access to an unknown
distribution p on Ω and a proximity parameter ε > 0, we want to correctly distinguish between the
case that p ∈ CU versus dTV (p, CU )

def
= minS⊆Ω dTV (p,uS) ≥ ε, with probability at least 2/3.

Here, dTV (p, q) = (1/2)‖p− q‖1 denotes the total variation distance between distributions p and q.
This natural problem, termed generalized uniformity testing, was recently introduced by Batu and
Canonne [BC17], who gave the first upper and lower bounds on its sample complexity.

Generalized uniformity testing bears a strong resemblance to the familiar task of uniformity testing,
where one is given samples from a distribution p on a domain of known size n and the goal is to
determine, with probability at least 2/3, whether p is the uniform distribution un on this domain
versus dTV (p,un) ≥ ε. Uniformity testing is arguably the most extensively studied problem in
distribution property testing [GR00, Pan08, VV14, DKN15b, Gol16, DGPP16, DGPP17] and its
sample complexity is well understood. Specifically, it is known [Pan08, CDVV14, VV14, DKN15b]
that Θ(n1/2/ε2) samples are necessary and sufficient for this task.

The field of distribution property testing [BFR+00] has seen substantial progress in the past decade,
see [Rub12, Can15] for two recent surveys. A large body of the literature has focused on char-
acterizing the sample size needed to test properties of arbitrary distributions of a given support
size. This regime is fairly well understood: for many properties of interest there exist sample-
efficient testers [Pan08, CDVV14, VV14, DKN15b, ADK15, CDGR16, DK16, DGPP16, CDS17,
DGPP18, CDKS18]. Moreover, an emerging body of work has focused on leveraging a pri-
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ori structure of the underlying distributions to obtain significantly improved samples complexi-
ties [BKR04, DDS+13, DKN15b, DKN15a, CDKS17, DP17, DDK16, DKN17].

Perhaps surprisingly, the natural setting where the distribution is arbitrary on a discrete but un-
known domain (of unknown size) does not seem to have been explicitly studied before the recent
work of Batu and Canonne [BC17]. Returning to the specific problem studied here, at first glance
it might seem that generalized uniformity testing and uniformity testing are essentially the same
task. Naively, one might attempt to apply the existing uniformity testers directly without explicit
knowledge of the domain. This nearly works, as standard testers do not need to make use of any
particular information about the names of domain elements. However, these algorithms do make use
of the domain size in a critical way. This difficulty is not so easy to overcome. In fact, as was shown
in [BC17], the sample complexity with an unknown domain size is significantly different. Specifi-
cally, [BC17] gave a generalized uniformity tester with expected sample complexity O(1/(ε6‖p‖3))
and showed a lower bound of Ω(1/‖p‖3). This should be compared to theO(n1/2/ε2)-sample tester
for distributions on domains of size n. Of particular interest here is that distributions p with support
size n can have 1/‖p‖3 as large as n2/3, making the problem with unknown domain substantially
harder in the worst case.

1.1 Our Results and Techniques

An immediate open question arising from the work of [BC17] is to precisely characterize the sample
complexity of generalized uniformity testing. The main result of this paper provides an answer to
this question. In particular, we show the following:

Theorem 1.1 (Main Result). There is an algorithm with the following performance guarantee:
Given sample access to an arbitrary distribution p over an unknown size discrete domain Ω and
a parameter 0 < ε < 1, the algorithm uses O

(
1/(ε4/3‖p‖3) + 1/(ε2‖p‖2)

)
independent samples

from p in expectation, and distinguishes between the case p ∈ CU versus dTV (p, CU ) ≥ ε with
probability at least 2/3. Moreover, for every 0 < ε < 1/10 and n > 1, any algorithm that
distinguishes between p ∈ CU and dTV (p, CU ) ≥ ε requires at least Ω(n2/3/ε4/3 + n1/2/ε2)
samples, where p is guaranteed to have ‖p‖3 = Θ(n−2/3) and ‖p‖2 = Θ(n−1/2).

In the following paragraphs, we provide an intuitive explanation of our algorithm and our matching
sample size lower bound, in tandem with a comparison to the prior work [BC17].

Sample-Optimal Generalized Uniformity Tester Our algorithm requires considering two cases
based on the relative size of ε and ‖p‖22. This case analysis seems somewhat intrinsic to the problem
as the correct sample complexity branches into these cases.

For large ε, we use the same overall technique as [BC17], noting that p is uniform if and only
if ‖p‖3 = ‖p‖4/32 , and that for p far from uniform, ‖p‖3 must be substantially larger. The basic
idea from here is to first obtain rough approximations to ‖p‖2 and ‖p‖3 in order to ascertain the
correct number of samples to use, and then use standard unbiased estimators of ‖p‖22 and ‖p‖33
to approximate them to appropriate precision, so that their relative sizes can be compared with
appropriate accuracy.

We improve upon the work of [BC17] in this parameter regime in a couple of ways. First, we
obtain more precise lower bounds on the difference ‖p‖33 − ‖p‖42 in the case where p is far from
uniform (Lemma 2.8). This allows us to reduce the accuracy needed in estimating ‖p‖2 and ‖p‖3.
Second, we refine the method used for performing the approximations to these moments (`r-norms).
In particular, we observe that using the generic estimators for these quantities yields sub-optimal
bounds for the following reason: The error of the unbiased estimators is related to their variance,
which in turn can be expressed in terms of the higher moments of p (Fact 2.1). This implies for
example that the worst case sample complexity for estimating ‖p‖3 comes when the fourth and fifth
moments of p are large. However, since we are trying to test for the case of uniformity (where
these higher moments are minimal), we do not need to worry about this worst case. In particular,
after applying sample efficient tests to ensure that the higher moments of p are not much larger than
expected, the standard estimators for the second and third moments of p can be shown to converge
more rapidly than they would in the worst case (Fact 2.1).
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The above algorithm is not sufficient for small values of ε. For ε sufficiently small, we employ a
different, perhaps more natural, algorithm. Here we take m samples (for m appropriately chosen
based on an approximation to ‖p‖2) and consider the subset S of the domain that appears in the
sample. We then test whether the conditional distribution p on S is uniform, and output the answer
of this tester. The number of samples m drawn in the first step is sufficiently large so that p(S),
the probability mass of S under p, is relatively high. Hence, it is easy to sample from the condi-
tional distribution using rejection sampling. Furthermore, we can use a standard uniformity testing
algorithm requiring O(

√
|S|/ε2) samples.

To establish correctness of this algorithm, we need to show that if p is far from uniform, then the
conditional distribution p on S is far from uniform as well. We show (Lemma 2.10) that for any
x = Θ(1/n), with high constant probability, the random variable Z(x) =

∑
i∈S |pi − x| is large. It

is not hard to show that this holds with high probability for each fixed x, as p being far from uniform
implies that

∑
i∈Ω min(pi, |pi − x|) is large. This latter condition can be shown to provide a clean

lower bound for the expectation of Z(x). To conclude the argument, we show that Z(x) is tightly
concentrated around its expectation. Applying an appropriate union bound, allows us to show that
Z(x) is large for all x, and thus that the conditional distribution is far form uniform.

Sample Complexity Lower Bound The lower bound of Ω(n1/2/ε2) follows directly from the
standard lower bound of [Pan08] for uniformity testing on a given domain of size n. The other
branch of the lower bound, namely Ω(n2/3/ε4/3), is more involved. To prove this lower bound,
we use the shared information method of [DK16] for the following family of hard instances: In the
“YES” case, we consider the distribution over (pseudo-)distributions on N bins, where each pi is
(1+ε2)/nwith probability n/(N(1+ε2)), and 0 otherwise. (Here we assume that the parameterN is
sufficiently large compared to the other parameters.) In the “NO” case, we consider the distribution
over (pseudo-)distributions onN bins, where each pi is (1+ε)/nwith probability n/(2N), (1−ε)/n
with probability n/(2N), and 0 otherwise.

Notation. Let Ω denote the unknown discrete domain. Each probability distribution over Ω can be
associated with a probability mass function p : Ω → R+ such that

∑
i∈Ω pi = 1. We will use pi,

instead of p(i), to denote the probability of element i ∈ Ω in p. For a distribution p and a set S ⊆ Ω,
we denote by p(S)

def
=
∑
i∈S pi and by (p|S) the conditional distribution of p on S. For r ≥ 1, the

`r-norm of a function p : Ω → R is ‖p‖r
def
=
(∑

i∈Ω |pi|r
)1/r

. For convenience, we will denote

Fr(p)
def
= ‖p‖rr =

∑
i∈Ω |pi|r. For ∅ 6= S ⊆ Ω, let uS be the uniform distribution over S. Let

CU
def
= {uS : ∅ 6= S ⊆ Ω} be the set of uniform distributions over subsets of Ω. The total variation

distance between distributions p, q on Ω is defined as dTV (p, q)
def
= maxS⊆Ω |p(S) − q(S)| =

(1/2) · ‖p− q‖1. Finally, we denote by Poi(λ) the Poisson distribution with parameter λ.

2 Generalized Uniformity Tester

Before we describe our algorithm, we summarize a few preliminary results on estimating the power
sums Fr(p) =

∑
i∈Ω |pi|r of an unknown distribution p. We present these results in Section 2.1. In

Section 2.2, we present and analyze the algorithm for large values of ε. In Section 2.3, we do the
same for the small ε algorithm. Finally, in Section 2.4, we present the full algorithm.

2.1 Estimating the Power Sums of a Discrete Distribution

We will require various notions of approximation for the power sums of a discrete distribution.

Fact 2.1 ([AOST17]). Let p be a probability distribution on an unknown discrete domain. For any
r ≥ 1, there exists an estimator F̂r(p) for Fr(p) that draws Poi(m) samples from p and satisfies the
following: E[F̂r(p)] = Fr(p) and Var[F̂r(p)] = m−2r

∑r−1
t=0 m

r+t
(
r
t

)
rr−tFr+t(p).

The estimator F̂r(p) draws Poi(m) samples from p and mr · F̂r(p) equals the number of r-wise
collisions, i.e., ordered r-tuples of samples that land in the same bin. We use this fact to get a few
useful algorithms for approximating these moments:
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Lemma 2.2. There exists an algorithm that given an integer r ≥ 1 and sample access to a distribu-
tion p returns a positive real number x so that:

1. With at least 99% probability x is within a constant (depending on r) multiple of ‖p‖r.

2. The expectation of 1/x is Or(1/‖p‖r).

3. The expected number of samples taken by the algorithm is Or(1/‖p‖r).

Proof. The algorithm is as follows:

Algorithm 1 Algorithm for Rough Moment Estimation
1: procedure ROUGH-MOMENT-ESTIMATOR(p, r)

input: Sample access to distribution p on unknown discrete domain Ω and an integer r > 0.
output: A value x approximating ‖p‖r.

2: Draw samples from p until there is some r-wise collision among these samples.
3: Return 1/n, where n is the number of samples taken in Step 2.

Firstly, we note that with large constant probability n �r 1/‖p‖r. This is because after taking
m samples, the expected number of r-wise collisions is at most Fr(p)mr = (‖p‖rm)r. Thus, by
Markov’s inequality, if m � 1/‖p‖r, then with large constant probability, our algorithm will not
have terminated yet. To finish the proof, it suffices to show that E[n] = Or(1/‖p‖r). This implies by
Markov’s inequality that with large constant probability n�r 1/‖p‖r, and bounds the expectations
of the number of samples and of 1/x. Let m = 1/‖p‖r. We note, by Fact 2.1 , if we take Poi(m)
samples from p, the expected number of r-wise collisions is 1, and the variance is Or(1). By the
Paley-Zygmund inequality, every time the algorithm takes Poi(m) samples, there is at least a cr > 0
probability of seeing an r-wise collision. Therefore, if we consider our algorithm to take samples
in blocks of size Poi(m), the probability that we have not found an r-wise collision after t blocks is
at most (1− cr)t. Thus, the expected number of blocks until we have an r-wise collision is Or(1).
Therefore, the expected number of samples is Or(m) = Or(1/‖p‖r) completing the proof.

From the above, we derive an algorithm that approximates ‖p‖r to a small relative error:

Lemma 2.3. There exists an algorithm that given sample access to a distribution p, a positive
integer r and a 1 > δ > 0, computes a value γ̂r so that with probability at least 19/20 we have that
|γ̂r − Fr(p)| ≤ δ · Fr(p). Furthermore, this algorithm uses an expected Or( 1

δ2‖p‖r ) samples.

Proof. The algorithm is as follows:

Algorithm 2 Algorithm for Moment Estimation
1: procedure MOMENT-ESTIMATOR(p, r, δ)

input: Sample access to arbitrary distribution p on unknown discrete domain Ω and an integer
r > 0, and a 1 > δ > 0.

output: A value γ̂r approximating Fr(p).
2: Run Rough-Moment-Estimator(p, r) returning a value x.
3: Let m be Cr/(δ2x) for Cr a sufficiently large constant in terms of r.
4: Run the algorithm from Fact 2.1 using Poi(m) samples and return the result.

To show correctness, first note that with 99% probability we have that x = Θr(‖p‖r), and thus, m is
at least a sufficiently large multiple of 1/δ2‖p‖r. If this holds, then the output of our algorithm will
be a random variable with mean Fr(p). We need to bound the variance, which we do as follows:

Claim 2.4. If m‖p‖r � 1, then Var(F̂r(p)) = Or(Fr(p)
2(‖p‖r/m)).

Proof. The variance is Or
(∑r−1

t=0 m
t−r‖p‖t+rr

)
= Or(m

−1‖p‖2r−1
r ) = Or(Fr(p)

2(‖p‖r/m)),

which completes the proof.
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If Cr is large enough, this implies that Var(F̂r(p)) ≤ (Fr(p)
2δ2)/100. Given this, our bound on

|γ̂r − Fr(p)| follows from Chebyshev’s inequality. In terms of sample complexity, we note that the
expected number of samples in Step 1 is Or(1/‖p‖r), and the expected number of samples in Step
2 is O(m) = Or(1/(δ

2x)), which in expectation is Or(1/(δ2‖p‖r)). This completes the proof.

Our algorithm will begin by running Rough-Moment-Estimator to compute rough estimates of
the second and third moments of p. Unless there is some n for which ‖p‖2 = Θ(n−1/2) and
‖p‖3 = Θ(n−2/3), then we know that p cannot possibly be uniform. Otherwise, we know that if p
is uniform, then its support must have size Θ(n). Our algorithm will thus critically depend on the
following proposition:

Proposition 2.5. There exists an algorithm that given sample access to a distribution p, and n, ε > 0
takes an expectedO(n2/3/ε4/3+n1/2/ε2) samples from p and distinguishes with probability at least
2/3 between the cases: (i) p is the uniform distribution on a domain of size Θ(n), and (ii) p is ε-far
from any uniform distribution.

Our algorithm will begin by verifying that ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3) using Lemma
2.2. Thus, in the second case, we can assume that ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3). We
will further split our algorithm into cases depending on whether ε is bigger than n−1/4, which in
particular determines which term dominates the sample complexity.

We will need the following simple claim giving a useful condition for the soundness case:

Claim 2.6. If dTV (p, CU ) ≥ ε, then for all x ∈ [0, 1] we have that
∑
i∈Ω min{pi, |x− pi|} ≥ ε/2.

Proof. Let Sh be the set of i ∈ Ω on which pi > x/2. Let δ =
∑
i∈Ω min{pi, |x− pi|}. Note that

δ = ‖p− cx,Sh
‖1, where cx,Sh

is the pseudo-distribution that is x on Sh on 0 elsewhere. If ‖cx,Sh
‖1

were 1, cx,Sh
would be the uniform distribution uSh

and we would have δ ≥ ε. However, this need
not be the case. That said, it is easy to see that ‖uSh

−cx,Sh
‖1 = |1−‖cx,Sh

‖1| ≤ ‖p−cx,Sh
‖1 = δ.

Therefore, by the triangle inequality 2δ ≥ ‖p− cx,Sh
‖1 + ‖uSh

− cx,Sh
‖1 ≥ ‖p−uSh

‖1 ≥ ε .

2.2 Algorithm for Large ε

Lemma 2.7. There exists an algorithm that given sample access to a distribution p, and n, ε > 0
with ε ≥ n−1/4 takes an expected O(n2/3/ε4/3) samples from p and distinguishes with probability
at least 9/10 between the cases: (i) p is the uniform distribution on a domain of size Θ(n). (ii) p
satisfies ‖p‖2 = Θ(n−1/2), ‖p‖3 = Θ(n−2/3), and p is ε-far from any uniform distribution.

The basic idea of this algorithm is that if p is uniform over any discrete domain then

F3(p) = F2(p)2 . (1)

We claim that this condition is robust. Namely for p far from uniform, Equation (1) will fail by a lot.
Therefore, we can distinguish between the relevant cases by finding suitably close approximations
to F2(p) and F3(p). To start with, we need to prove the robust version of Equation (1):

Lemma 2.8. We have the following: (i) If p ∈ CU , then F3(p) = F2
2(p). (ii) If dTV (p, CU ) ≥ ε,

then F3(p)− F2
2(p) > ε2F2

2(p)/64.

Proof. The proof of (i) is straightforward. Suppose that p = uS for some ∅ 6= S ⊆ Ω. It then
follows that F2(p) = 1/|S| and F3(p) = 1/|S|2, yielding part (i) of the lemma. We now proceed
to prove part (ii). Suppose that dTV (p, CU ) ≥ ε. First, it will be useful to rewrite the quantity
F3(p)− F2

2(p) as follows:

F3(p)− F2
2(p) =

∑
i∈Ω

pi(pi − F2(p))2 . (2)

Note that (2) follows from the identity pi(pi − F2(p))2 = p3
i + piF2(p)2 − 2p2

iF2(p) by summing
over i ∈ Ω. Since dTV (p, CU ) ≥ ε, an application of Claim 2.6 for x = F2(p) ∈ [0, 1], gives that∑
i∈Ω min{pi, |F2(p)−pi|} ≥ ε/2 .We partition Ω into the sets Sl = {i ∈ Ω | pi < F2(p)/2} and

its complement Sh = Ω\Sl. Note that
∑
i∈Ω min{pi, |F2(p)−pi|} =

∑
i∈Sl

pi+
∑
i∈Sh
|F2(p)−
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pi| . It follows that either
∑
i∈Sl

pi ≥ ε/4 or
∑
i∈Sh
|F2(p) − pi| ≥ ε/4. We analyze each case

separately. First, suppose that
∑
i∈Sl

pi ≥ ε/4. Using (2) we can now write

F3(p)− F2
2(p) ≥

∑
i∈Sl

pi(pi − F2(p))2 > (F2(p)/2)2 ·
∑
i∈Sl

pi = εF2
2(p)/16 .

Now suppose that
∑
i∈Sh
|F2(p) − pi| ≥ ε/4. Note that 1 ≤ |Sh| ≤ 2/|F2(p)|. In this case, using

(2) we obtain

F3(p)− F2
2(p) ≥

∑
i∈Sh

pi(pi − F2(p))2 ≥ (F2(p)/2) ·
∑
i∈Sh

(pi − F2(p))2

≥ (F2(p)/2) ·
(
∑
i∈Sh
|F2(p)− pi|)2

|Sh|
≥ (F2(p)/2)2 · (ε/4)2 = ε2F2

2(p)/64 ,

where the second inequality uses the definition of Sh, and the third is Cauchy-Schwarz.

We are now ready to prove Lemma 2.7. At a high level, the algorithm is simple. Compute ap-
proximations to F2(p) and F3(p) using Fact 2.1 and apply Lemma 2.8. However, there is one
technical problem with this scheme. Namely that the variance in our estimator for F3(p) depends
on the values of F4(p) and F5(p). If either of these are too large, then it will affect the accuracy
of our final estimator. However, if p is uniform on a domain of size Θ(n), it must be the case that
F4(p) = O(n−3) and F5(p) = O(n−4). Se we will first perform a pre-processing step where we
verify that neither F4(p) nor F5(p) are too large, before estimating F2(p) and F3(p).

Proof of Lemma 2.7. The pseudocode is described in Algorithm 3.

Algorithm 3 Algorithm for Large ε
1: procedure LARGE-EPS-TESTER(p, n, ε)

input: Sample access to arbitrary distribution p on unknown discrete domain Ω and n, ε > 0 and
ε ≥ n−1/4.

output: “YES” with probability 9/10 if p is uniform on a set of size Θ(n), “NO” with probability
9/10 if ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3) and p is ε-far from any uniform distribution.

2: Let C,C ′ be a sufficiently large constants, with C large enough relative to C ′. Let m =
Cn2/3/ε4/3.

3: Draw Poi(O(m)) samples from p and let γ̂4 denote the value of F̂4(p) on this sample.
4: if γ̂4 > C ′n−3 then return “NO”.
5: Draw Poi(O(m)) samples from p and let γ̂5 denote the value of F̂5(p) on this sample.
6: if γ̂5 > C ′n−4 then return “NO”.
7: Compute the estimates F̂2(p), F̂3(p) on two separate sets of Poi(m) samples.
8: if

(
F̂3(p)− F̂2(p)2 ≤ ε2/(300n2)

)
then return “YES”.

9: else return “NO”.

Note that the expected number of samples taken by this algorithm is O(m) = O(n2/3/ε4/3).
We next prove correctness. We start by considering Steps 3 through 6. Firstly, in the complete-
ness case, we note that Fr(p) = Θ(n1−r), and therefore, by the Markov bound, γ̂r ≤ C ′n1−r

with at least 99% probability. In the completeness case, we claim that these steps will reject
with at least 99% probability unless Fr(p) = O(C ′(n1−r + m−r)). In particular, if Fr(p) ≥
KC ′(n1−r + m−r), then m‖p‖r ≥ 1, and therefore, by Claim 2.4 we have that E[γ̂r] = Fr(p)
and Var(γ̂r) = O(Fr(p)

2/K2). So, if K is sufficiently large, by Chebyshev’s inequality, with 99%

probability we have that (̂γ)r > Fr(p)/2 ≥ C ′n1−r. Thus, in the remainder, we can assume that
F4(p) = O(C ′(n−3 + m−4)) and F5(p) = O(C ′(n−4 + m−5)). To analyze Step 7, we note that
Var(F̂2(p)) = O(m−2F2(p) + m−1F3(p)) = O(m−2n−1 + m−1n−2) = O(ε4/n2)/C , where
we use that ε ≥ n−1/4 and m = Cn2/3/ε4/3. Similarly, we have

Var(F̂3(p)) = O(m−3F3(p) +m−2F4(p) +m−1F5(p))

= O(m−3n−2 + C ′m−2n−3 + C ′m−6 + C ′m−1n−4) = O(ε4/n4)(C ′/C).
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Therefore, by Chebyshev’s inequality, with 99% probability we have that |F̂2(p) − F2(p)| =

O(ε2/n)/
√
C , and |F̂3(p)− F3(p)| = O(ε2/n2)

√
C ′/C . Assuming these hold, we have that∣∣∣(F3(p)− F2(p)2

)
−
(
F̂3(p)− F̂2(p)2

)∣∣∣ = O(ε2/n2)
√
C ′/C.

Thus, if C/C ′ is sufficiently large, if p is uniform, we accept, and if p is ε-far from uniform, then by
Lemma 2.8, we reject. This completes the proof.

2.3 Algorithm for Small ε

In this section, we give a tester that works for ε ≤ n−1/4.

Lemma 2.9. There exists an algorithm that given sample access to a distribution p, and n, ε > 0
with ε ≤ n−1/4 takes an expected O(n1/2/ε2) samples from p and distinguishes with probability at
least 9/10 between the cases: (i) p is the uniform distribution on a domain of size Θ(n), and (ii) p
is ε-far from any uniform distribution.

Proof. The basic idea is that we will take Θ(n) samples from p and let S be the set of distinct
elements seen. We then test uniformity of (p|S) using the standard uniformity tester.

Algorithm 4 Algorithm for Small Epsilon
1: procedure SMALL-EPS-TESTER(p, n, ε)

input: Sample access to arbitrary distribution p on unknown discrete domain Ω and n, ε > 0 and
n−1/4 ≥ ε.

output: “YES” with probability 9/10 if p is uniform on a set of size Θ(n), “NO” with probability
9/10 p is ε-far from any uniform distribution.

2: Let C,C ′ be a sufficiently large constants with C large even relative to C ′. Let m = Cn.
3: Draw Poi(m) samples from p. Let S be the subset of Ω that appears in the sample.
4: Verify the following conditions: (i) Each i ∈ S appears O(C log n) times; (ii) |S| = Θ(n).
5: if (either of conditions (i) or (ii)) is violated) then return “NO”.
6: Draw m′ = C

√
n/ε2 samples from p.

7: if fewer than half of these samples were in S then return “NO”.
8: Use the first m′/2 of these samples that landed in S to run the standard uniformity tester for

(p|S) with distance ε/C ′ and 1% probability of error.
9: return the answer of the tester in Step 8.

We note that the expected number of samples is O(m + m′) = O(n2/3/ε4/3). It remains to prove
correctness. We begin with the completeness case. If p is uniform over a set of size Θ(n), with high
probability no bin will see more than O(C log(n)) samples, thus (i) is satisfied. Furthermore, we
note that with high probability that Poi(Cn) samples from p will cover more than two thirds of the
bins with high probability and thus (ii) will be satisfied. Additionally, this means that p(S) ≥ 2/3,
so again with high probability, at least half of our m′ samples will lie in S. These first m′/2
samples from S will be independent samples from (p|S), which is uniform, and therefore with 99%
probability will pass the uniformity tester. Therefore, in this case, our algorithm will return “YES”
with probability at least 9/10.

For the soundness case, we note that if any bin has probability more than a sufficiently large multiple
of log(n)/n, we will fail to satisfy (i) with high probability and reject. We would like to claim next
that (p|S) is likely to be far from uniform, and thus that we will fail the final test. Of course, this
may depend on the randomness over our first set of samples, but we claim it with high probability.
In particular, we show (see supplementary material for the proof):

Lemma 2.10. If dTV (p, CU ) ≥ ε and p assigns no more than O(log(n)/n) mass to any single bin,
then with high probability over the Poi(m) samples, we have at least one of the following: (i) |S| is
not Θ(n), (ii) p(S) ≤ 1/3, (iii) dTV ((p|S), CU ) ≥ ε/C ′.
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Algorithm 5 The Full Tester
1: procedure GENERALIZED-UNIFORMITY-TESTER(p, ε)

input: Sample access to arbitrary distribution p on unknown discrete domain Ω and n, ε > 0.
output: “YES” with probability 2/3 if p is uniform on its support, “NO” with probability 2/3 p is

ε-far from any uniform distribution.
2: Let γ̂2 = Rough-Moment-Estimator(p, 2).
3: Let γ̂3 = Rough-Moment-Estimator(p, 3).
4: if γ̂3 is not Θ(γ̂2

4/3) then return “NO”.
5: Let n = γ̂3

−3/2.
6: if ε ≥ n−1/4 then return Large-Eps-Tester(p, n, ε)

7: if n−1/4 ≥ ε then return Small-Eps-Tester(p, n, ε)

2.4 Full Tester

First, we verify correctness. With appropriately high probability, γ̂2 and γ̂3 approximate ‖p‖2 and
‖p‖3 respectively to within constant factors. In this case, p cannot be uniform unless γ̂3 = Θ(γ̂2

4/3).
Assuming this holds, F2(p) = Θ(n−1/2) and F3(p) = Θ(n−2/3), so the assumptions necessary for
our Small/Large-ε testers are satisfied, and they will work with appropriate probability.

For sample complexity, we note that the first two lines take O(1/‖p‖3) samples in expectation. The
remaining lines use an expectedO(n2/3/ε4/3+n1/2/ε2) samples. This isO(1/(ε4/3γ̂3)+1/(ε2γ̂2)).
Our final expected sample bound follows from noting by Lemma 2.2 that the expected values of 1/γ̂3

and 1/γ̂2 are O(1/‖p‖3) and O(1/‖p‖2), respectively. This completes our proof.

3 Sample Complexity Lower Bound

In this section, we sketch a sample size lower bound matching our algorithm in Proposition 2.5. One
part of the lower bound is fairly easy. In particular, it is known [Pan08] that Ω(

√
n/ε2) samples are

required to test uniformity of a distribution with a known support of size n. It is easy to see that the
hard cases for this lower bound still work when ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3).

The other half of the lower bound is somewhat more difficult and we rely on the lower bound
techniques of [DK16]. In particular, for n > 0, and 1/10 > ε > n−1/4 and for N sufficiently large,
we produce a pair of distributions D and D′ over positive measures on [N ], so that: 1. A random
sample from D or D′ has total mass Θ(1) with high probability. 2. A random sample from D or
D′ has ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3) with high probability. 3. A sample from µ ∈ D
has µ/‖µ‖1 the uniform distribution over some subset of [N ] with probability 1. 4. A sample from
µ ∈ D′ has µ/||µ‖1 at least Ω(ε)-far from any uniform distribution with high probability. 5. Given a
measure µ taking randomly from either D or D′, no algorithm given the output of a Poisson process
with intensity kµ for k = o(min(n2/3/ε4/3, n)) can reliably distinguish between a µ taken from D
and µ taken from D′.
Before we exhibit these families, we first discuss why the above is sufficient. This Poissonization
technique has been used previously in various settings [VV14, DK16, WY16, DGPP17], so we only
provide a sketch here. In particular, suppose that we have such families D and D′, but that there is
also an algorithm A that distinguishes between a distribution p being uniform and being ε-far from
uniform when ‖p‖2 = Θ(n−1/2) and ‖p‖3 = Θ(n−2/3) in m = o(n2/3/ε4/3) samples. We show
that we can use algorithm A to violate property 5 above. In particular, letting p = µ/‖µ‖1 for µ a
random measure taken from either D or D′, we note that with high probability ‖p‖2 = Θ(n−1/2)
and ‖p‖3 = Θ(n−2/3). Therefore, m′ = o(n2/3/ε4/3) samples are sufficient to distinguish between
p being uniform and being Ω(ε) far from uniform. However, by properties 3 and 4, this is equivalent
to distinguish between µ being taken from D and being taken from D′. On the other hand, given the
output of a Poisson process with intensity Cm′µ, for C a sufficiently large constant, a random m′

of these samples (note that there are at least m′ total samples with high probability) are distributed
identically to m′ samples from p. Thus, applying A to these samples distinguishes between µ taken
from D and µ taken from D′, thus contradicting property 5. Due to space constraints, the technical
details are deferred to the supplementary material.
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4 Conclusions

In this paper, we gave tight upper and lower bounds on the sample complexity of generalized
uniformity testing – a natural non-trivial generalization of uniformity testing, recently introduced
in [BC17]. The obvious research question is to understand the sample complexity of testing more
general symmetric properties (e.g., closeness, independence, etc.) for the regime where the domain
of the underlying distributions is discrete but unknown (of unknown size). Is it possible to obtain
sub-learning sample complexities for these problems? And what is the optimal sample complexity
for each of these tasks?
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