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Abstract

We propose a randomized first order optimization method—SEGA (SkEtched
GrAdient)—which progressively throughout its iterations builds a variance-
reduced estimate of the gradient from random linear measurements (sketches) of
the gradient. In each iteration, SEGA updates the current estimate of the gradi-
ent through a sketch-and-project operation using the information provided by the
latest sketch, and this is subsequently used to compute an unbiased estimate of
the true gradient through a random relaxation procedure. This unbiased estimate
is then used to perform a gradient step. Unlike standard subspace descent meth-
ods, such as coordinate descent, SEGA can be used for optimization problems with
a non-separable proximal term. We provide a general convergence analysis and
prove linear convergence for strongly convex objectives. In the special case of
coordinate sketches, SEGA can be enhanced with various techniques such as im-
portance sampling, minibatching and acceleration, and its rate is up to a small
constant factor identical to the best-known rate of coordinate descent.

1 Introduction

Consider the optimization problem

min F(x) £ f(2) + R(x), (1

where f : R™ — R is smooth and p—strongly convex, and R : R™ — R U {400} is a closed convex
regularizer. In some applications, R is either the indicator function of a convex set or a sparsity
inducing non-smooth penalty such as ¢1-norm. We assume that the proximal operator of R, defined

by prox, 5(z) & argmin, g {R(y) + 5= |ly — 2|} } . is easily computable (e.g., in closed form).
Above we use the weighted Euclidean norm ||z||g &f (x, x>]13/2, where (z,y)B &f (Bz,y) is a
weighted inner product associated with a positive definite weight matrix B > 0. Strong convexity

of f is defined with respect to the same product and nor

1.1 Gradient sketching

In this paper we design proximal gradient-type methods for solving (1) without assuming that the
true gradient of f is available. Instead, we assume that an oracle provides a random linear trans-
formation (i.e., a sketch) of the gradient, which is the information available to drive the iterative

' f is p—strongly convex if f(z) > f(y) + (Vf(y),x —y)B + &|lz — y||B forall z,y € R™.
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process. In particular, given a fixed distribution D over matrices S € R™*? (b > 1 can but does not
need to be fixed), and a query point x € R", our oracle provides us the random linear transformation
of the gradient given by

§(8,2) &
Information of this type is available/used in a variety of scenarios. For instance, randomized coordi-
nate descent (CD) methods use oracle (2) with D corresponding to a distribution over standard basis
vectors. Minibatch/parallel variants of CD methods utilize oracle (2)) with D corresponding to a dis-
tribution over random column submatrices of the identity matrix. If one is prepared to use difference
of function values to approximate directional derivatives, one can apply our oracle model to zeroth-
order optimization [8]]. Indeed, the directional derivative of f in a random direction S = s € R™*!
can be approximated by ((s,z) ~ L(f(z + es) — f(x)), where € > 0 is sufficiently small.

€

STVf(z) e R, S ~D. 2)

We now illustrate this concept using two examples.

Example 1.1 (Sketches). (i) Coordinate sketch. Let D be the uniform distribution over standard
unit basis vectors ey, e, . . ., e, of R™. Then ((e;,x) = e} V f(x), i.e., the i’ partial derivative of f
at x. (i) Gaussian sketch. Let D be the standard Gaussian distribution in R™. Then for s ~ D we
have ((s,z) = sV f(x), i.e., the directional derivative of f at  in direction s.

1.2 Related work

In the last decade, stochastic gradient-type methods for solving problem (1)) have received unprece-
dented attention by theoreticians and practitioners alike. Specific examples of such methods are
stochastic gradient descent (SGD) [43]], variance-reduced variants of SGD such as SAG [44], SAGA [LO],
SVRG [22]], and their accelerated counterparts [26} [1]. While these methods are specifically designed
for objectives formulated as an expectation or a finite sum, we do not assume such a structure.
Moreover, these methods utilize a fundamentally different stochastic gradient information: they
have access to an unbiased gradient estimator. In contrast, we do not assume that is an unbiased
estimator of V f(z). In fact, ¢(S,z) € R® and V f(z) € R" do not even necessarily belong to the
same space. Therefore, our algorithms and results are complementary to the above line of research.

While the gradient sketch (S, ) does not immediatey lead to an unbiased estimator of the gradient,
SEGA uses the information provided in the sketch to construct an unbiased estimator of the gradient
via a sketch-and-project process. Sketch-and-project iterations were introduced in [15]] in the contex
of linear feasibility problems. A dual view uncovering a direct relationship with stochastic subspace
ascent methods was developed in [[L6]. The latest and most in-depth treatment of sketch-and-project
for linear feasibility is based on the idea of stochastic reformulations [42]]. Sketch-and-project can
be combined with Polyak [29, 28] and Nesterov momentum [[14,47], extended to convex feasibility
problems [30]], matrix inversion [18 17, [14]], and empirical risk minimization [13}|19].

The line of work most closely related to our setup is that on randomized coordinate/subspace de-
scent methods [34} [16]]. Indeed, the information available to these methods is compatible with our
oracle for specific distributions D. However, the main disadvantage of these methods is that they
can not handle non-separable regularizers R. In contrast, the algorithm we propose—SEGA—works
for any regularizer R. In particular, SEGA can handle non-separable constraints even with coordinate
sketches, which is out of range of current CD methods. Hence, our work could be understood as
extending the reach of coordinate and subspace descent methods from separable to arbitrary regular-
izers, which allows for a plethora of new applications. Our method is able to work with an arbitrary
regularizer due to its ability to build an unbiased variance-reduced estimate of the gradient of f
throughout the iterative process from the random sketches provided by the oracle. Moreover, and
unlike coordinate descent, SEGA allows for general sketches from essentially any distribution D.



Another stream of work on designing gradient-type methods without assuming perfect access to the
gradient is represented by the inexact gradient descent methods [9} 11}, 45]. However, these methods
deal with deterministic estimates of the gradient and are not based on linear transformations of the
gradient. Therefore, this second line of research is also significantly different from what we do here.

1.3 Outline

We describe SEGA in Section Convergence results for general sketches are described in Sec-
tion [3] Refined results for coordinate sketches are presented in Section @ where we also describe
and analyze an accelerated variant of SEGA. Experimental results can be found in Section[5] Con-
clusions are drawn and potential extensions outlined in Appendix[A] Proofs of the main results can
be found in Appendices[B]and|C] An aggressive subspace variant of SEGA is described and analyzed
in Appendix [D. A simplified analysis of SEGA in the case of coordinate sketches and for R = 0 is
developed in Appendix[E (under standard assumptions as in the main paper) and [F|(under alternative
assumptions). Extra experiments for additional insights are included in Appendix |G,

Notation. We introduce notation where needed. We also provide a notation table in Appendix [H.

2 The SEGA Algorithm

In this section we introduce a learning process for estimating the gradient from the sketched infor-
mation provided by (2); this will be used as a subroutine of SEGA.

Let 2 be the current iterate, and let h* be the current estimate of the gradient of f. The oracle
queried, and we receive new information in the form of the sketched gradient . Then, we would
like to update h* based on the new information. We do this using a sketch-and-project process [15}
16, 42]: we set h**+1 to be the closest vector to h* (in a certain Euclidean norm) satisfying (2):

R = arg }m%@n |h — K% subjectto S} h =S, Vf(z"). 3)
L ER™

The closed-form solution of (3)) is
R = pk - BT1Z (WF — Vf(2")) = 1 — B71Z,)h* + B71Z,V f(zF), (4)

where Z;, def Sk (S;B’lsk)T SZ. Notice that h**+1 is a biased estimator of V f(x*). In order to
obtain an unbiased gradient estimator, we introduce a random variabl 0 = 0(Sy) for which

Ep [0kZi] = B. (5)
If 6y, satisfies (3)), it is straightforward to see that the random vector
¢ (1= 9k + 9 h T B gk 4 9, BT1Zy (VF(2F) — hF) ©)
is an unbiased estimator of the gradient:

Ep[¢f] O€ vi@h). %

Finally, we use ¢g* instead of the true gradient, and perform a proximal step with respect to R. This
leads to a new optimization method, which we call SkEtched GrAdient Method (SEGA) and describe
in Algorithm[I] We stress again that the method does not need the access to the full gradient.

2Such a random variable may not exist. Some sufficient conditions are provided later.



~» SEGA
Algorithm 1: SEGA: SkEtched GrAdient Method = CD |

1 Initialize: 2°, h° € R™; B > 0; distribution D;
stepsize a > 0
2 fork=1,2,... do
3 Sample S, ~ D
4 g" = hF + 0, B 1Z(Vf(2F) — hF)
: %
6

okt = prox, p(zF — agh)
WA = Bk £ B1Z (V () — hP)

Figure 1: Iterates of SEGA and CD

2.1 SEGA as a variance-reduced method

As we shall show, both A* and g* become better at approximating V f(z*) as the iterates z*
approach the optimum. Hence, the variance of g* as an estimator of the gradient tends to zero,
which means that SEGA is a variance-reduced algorithm. The structure of SEGA is inspired by the
JackSketch algorithm introduced in [19]. However, as JackSketch is aimed at solving a finite-
sum optimization problem with many components, it does not make much sense to apply it to (I).
Indeed, when applied to (1)) (with R = 0, since JackSketch was analyzed for smooth optimization
only), JackSketch reduces to gradient descent. While JackSketch performs Jacobian sketching
(i.e., multiplying the Jacobian by a random matrix from the right, effectively sampling a subset of the
gradients forming the finite sum), SEGA multiplies the Jacobian by a random matrix from the left.
In doing so, SEGA becomes oblivious to the finite-sum structure and transforms into the gradient
sketching mechanism described in (2)).

2.2 SEGA versus coordinate descent

We now illustrate the above general setup on the simple example when D corresponds to a distribu-
tion over standard unit basis vectors in R™.

Example 2.1. Let B = Diag(by,...,by,) = 0 and let D be defined as follows. We choose Sj, = e;
with probability p; > 0, where ey, es, . . ., e, are the unit basis vectors in R™. Then

Rt & pk o T (T f£(aF) — hE)e, (8)
which can equivalently be written as hf“ =e, Vf(z*) and hf“ = hf for j # i. Note that h¥+1

does not depend on B. If we choose 0, = 0(Sy) = 1/p;, then

n n oot
Ep [0kZy] = Zpiéei(ez—Bflei)*le? = Z i =B
=1 i=1

which means that 0y, is a bias-correcting random variable. We then get
" Bnk 4 Ll (Vi) — hh)es. 9)

In the setup of Example both SEGA and CD obtain new gradient information in the form of a
random partial derivative of f. However, the two methods perform a different update: (i) SEGA
allows for arbitrary proximal term, CD allows for separable one only [46, 27, [12]; (ii) While SEGA
updates all coordinates in every iteration, CD updates a single coordinate only; (iii) If we force
h* = 0 in SEGA and use coordinate sketches, the method transforms into CD.

Based on the above observations, we conclude that SEGA can be applied in more general settings for
the price of potentially more expensive iteration For intuition-building illustration of how SEGA

3Forming vector g and computing the prox.



works, Figure [[|shows the evolution of iterates of both SEGA and CD applied to minimizing a simple
quadratic function in 2 dimensions. For more figures of this type, including the composite case
where CD does not work, see Appendix[G.1]

In Section |4{ we show that SEGA enjoys, up to a small constant factor, the same theoretical iteration
complexity as CD. This remains true when comparing state-of-the-art variants of CD with importance
sampling, parallelism/mini-batching and acceleration with the corresponding variants of SEGA.

Remark 2.2. Nontrivial sketches S and metric B might, in some applications, bring a substantial
speedup against the baseline choices mentioned in Example[2.1) Appendix|D provides one example:
there are problems where the gradient of f always lies in a particular d-dimensional subspace of
R™. In such a case, suitable choice of S and B leads to O (%)—times faster convergence compared
to the setup of Example In Section[5.3|we numerically demonstrate this claim.

3 Convergence of SEGA for General Sketches

In this section we state a linear convergence result for SEGA (Algorithm [I]) for general sketch distri-
butions D under smoothness and strong convexity assumptions.

3.1 Smoothness assumptions

We will use the following general version of smoothness.
Assumption 3.1 (Q-smoothness). Function f is Q-smooth with respect to B, where Q > 0 and
B > 0. That is, for all x,y, the following inequality is satisfied:

F@) =) = (Vi@ 2 —y)s = 5|V (@) - VWG, (10)

Assumptionis not standard in the literature. However, as Lemma E.l states, in the special case
of B =Tand Q = M, it reduces to M-smoothness (see Assumption [3.2), which is a common
assumption in modern analysis of CD methods.

Assumption 3.2 (M-smoothness). Function f is M-smooth for some matrix M ~ 0. That is, for
all x,y, the following inequality is satisfied:
f@) < fly) + (VEW),z =) + 3z — ylla- (1D

Assumption is fairly standard in the CD literature. It appears naturally in various application
such as empirical risk minimization with linear predictors and is a baseline in the development of
minibatch CD methods [41}, 138} 136, [39]. We will adopt this notion in Section E], when comparing
SEGA to coordinate descent. Until then, let us consider the more general Assumption

3.2 Main result

Now we present one of the key theorems of the paper, stating a linear convergence of SEGA.

Theorem 3.3. Assume that f is Q—smooth with respect to B, and ji—strongly convex. Fix z°, h0 €
dom(F) and let 2%, h* be the random iterates produced by SEGA. Choose stepsize o > 0 and
Lyapunov parameter o > 0 so that

a(2(C—-B)+ouB) <oEp[Z], aC<;(Q-0Epl[Z)), (12)

where C d:efIED [02Zy]. Then E [®F] < (1 — ap)*®° for Lyapunov function ®* & 2% — x* |5 +
oa||hf — V f(x*)||%, where x* is a solution of (T).




\ CcD \ SEGA \

Nonaccelerated method Trace(M) log 1 [34] g.55 . Trace(M) log 1
importance sampling, b = 1 m € ' H €

Nonaccelerated method

(maxi Vi ) log% [41]] 8.55 - (maxi v, ) log%

arbitrary sampling Pik Pilt
. Accelerated method 162 porpviven log 1 [3] 05 /M og 1
importance sampling, b = 1 VE € Vi <

Accelerated method 162 fmas 7 log E 201 | 0.8+ fmax, - log !
arbitrary sampling Pik € PiK €

Table 1: Complexity results for coordinate descent (CD) and our sketched gradient method (SEGA), specialized
to coordinate sketching, for M—smooth and p—strongly convex functions.

Note that ®* — 0 implies h* — V f(z*). Therefore SEGA is variance reduced, in contrast to CD in
the non-separable proximal setup, which does not converge to the solution. If ¢ is small enough so
that Q — ocEp [Z] > 0, one can always choose stepsize « satisfying

: )\min(]E [Z]) )‘min(Q_U]E [Z])
a < mln{AI,,aX(2g—1(3—B)+MB)’ zx,,,ax(cg } (13)

and inequalities will hold. Therefore, we get the next corollary.

Corollary 34. Ifo < A)\TE(B[)Z]) a satisfies (13) and k > - log 2% then E [||la% — 2*|3] < e

As Theorem [3.3]is rather general, we also provide a simplified version thereof, complete with a
simplified analysis (Theorem [E.T]in Appendix [E). In the simplified version we remove the proximal
setting (i.e., we set R = 0), assume L—smoothnesﬂ and only consider coordinate sketches with
uniform probabilities. The result is provided as Corollary

Corollary 3.5. Let B = I and choose D to be the uniform distribution over unit basis vectors in
R™. If the stepsize satisfies 0 < o < min{(1 — Lo/n)/(2Ln),n"* (un+ 2(n —1)/0) "'}, then
Ep [®*F!] < (1 — ap)®¥, and therefore the iteration complexity is O(nL/ ).

Remark 3.6. In the fully general case, one might choose « to be bigger than bound (13), which
depends on eigen properties of Ep [Z] ,C, Q, B, leading to a better overall complexity. However,
in the simple case with B =1, Q = 1 and Sy, = e;, with uniform probabilities, bound is tight.

4 Convergence of SEGA for Coordinate Sketches

In this section we compare SEGA with coordinate descent. We demonstrate that, specialized to a par-
ticular choice of the distribution D (where S is a random column submatrix of the identity matrix),
which makes SEGA use the same random gradient information as that used in modern randomized
CD methods, SEGA attains, up to a small constant factor, the same convergence rate as CD methods.

Firstly, in Section f.2] we develop SEGA with in a general setup known as arbitrary sampling [41}
40, 37,1381 [6] (Theorem[4.2). Then, in Section we develop an accelerated variant of SEGA (see
Theorem [C.5) for arbitrary sampling as well. Lastly, Corollary .3] and Corollary {.4] provide us
with importance sampling for both nonaccelerated and accelerated method, which matches up to
a constant factor cutting-edge CD rates [41} 3] under the same oracle and assumption Table
summarizes the results of this section. We provide all proofs for this section in Appendix

“The standard L—-smoothness assumption is a special case of M—smoothness for M = LI, and hence is
less general than both M—smoothness and Q-smoothness with respect to B.

>There was recently introduced a notion of importance minibatch sampling for coordinate descent [20]. We
state, without a proof, that SEGA allows for the same importance sampling as developed in the mentioned paper.



We now describe the setup and technical assumptions for this section. In order to facilitate a direct
comparison with CD (which does not work with non-separable regularizer R), for simplicity we
consider problem in the simplified setting with R = 0. Further, function f is assumed to be
M-smooth (Assumption[3.2)) and p—strongly convex.

4.1 Defining D: samplings

In order to draw a direct comparison with general variants of CD methods (i.e., with those analyzed
in the arbitrary sampling paradigm), we consider sketches in that are column submatrices of
the identity matrix: S = Ig, where S is a random subset (aka sampling) of [n] &t {1,2,...,n}.
Note that the columns of Ig are the standard basis vectors e; for ¢ € S and hence Range (S) =
Range (e; : i € S). So, distribution D from which we draw matrices is uniquely determined by
the distribution of sampling S. Given a sampling S, define p = (p1,...,p,) € R™ to be the
vector satisfying p;, = P (e; € Range (S)) = P (i € S), and P to be the matrix for which P;; =
P({i,j} € S). Note that p and P are the probability vector and probability matrix of sampling S,
respectively [38]]. We assume throughout the paper that .S is proper, i.e., we assume that p; > 0 for
all 7. State-of-the-art minibatch CD methods (including the ones we compare against [41,20]]) utilize
large stepsizes related to the so-called ESO Expected Separable Overapproximation (ESO) [38]
parameters v = (v1, ..., v,). ESO parameters play a key role in SEGA as well, and are defined next.

Assumption 4.1 (ESO). There exists a vector v satisfying the following inequality
P o M =< Diag(p)Diag(v), (14)

where o denotes the Hadamard (i.e., element-wise) product of matrices.

In case of single coordinate sketches, parameters v are equal to coordinate-wise smoothness con-
stants of f. An extensive study on how to choose them in general was performed in [38]. For

notational brevity, let us set P &f Diag(p) and V &f Diag(v) throughout this section.

4.2 Non-accelerated method

We now state the convergence rate of (non-accelerated) SEGA for coordinate sketches with arbitrary
sampling of subsets of coordinates. The corresponding CD method was developed in [41].

Theorem 4.2. Assume that [ is M—smooth and p—strongly convex. Denote U* & (k) — fla*)+
UHth%A. Choose o, > 0 such that

ol —a?(VP™L = M) = yuoP ™1, (15)
where v Yo maxi{%} — 0. Then the iterates of SEGA satisfy B [U*] < (1 — ypu)F w0,

We now give an importance sampling result for a coordinate version of SEGA. We recover, up to
a constant factor, the same convergence rate as standard CD [34]. The probabilities we chose are
optimal in our analysis and are proportional to the diagonal elements of matrix M.

Corollary 4.3. Assume that [ is M—smooth and u—strongly convex. Suppose that D is such that
at each iteration standard unit basis vector e; is sampled with probability p; o< M;;. If we choose

k
_ _ 0.232 __ _ 0.061 k 0.117, 0
o= Trace(M)?’ 0= Trace(M)’ then & [‘II ] < (1 - T‘race(l(L/[)) v

The iteration complexities from Theorem[#.2]and Corollary [4.3]are summarized in Table[I] We also
state that o, « can be chosen so that holds, and the rate from Theorem coincides with the
rate from Table[I} Theorem4.2]and Corollary {.3]hold even under a non-convex relaxation of strong
convexity — Polyak-Lojasiewicz inequality: 1i(f(z) — f(z*)) < ||V f(2)||3. Thus, SEGA works for
a certain class of non-convex problems. For an overview on relaxations of strong convexity, see [23].



4.3 Accelerated method

In this section, we propose an accelerated (in the sense of Nesterov’s method [31} 32]) version of
SEGA, which we call ASEGA. The analogous accelerated CD method, in which a single coordinate is
sampled in every iteration, was developed and analyzed in [3]. The general variant utilizing arbitrary
sampling was developed and analyzed in [20].

Algorithm 2: ASEGA: Accelerated SEGA

1 Initialize: 2° = 30 = 20 € R"; h® € R™; S; parameters o, 3,7, it > 0

2 fork=1,2,... do

3 k= (1- T)yl‘z’1 + 72kl

Sample Sy, = I, , where S ~ S, and compute g*, h**+1 according to (4), (6)
JF = gk — qP-lgk

2k = 1+15N (Zk + ﬁﬂxk - ng)

A s

The method and analysis is inspired by [2]]. Due to space limitations and technicality of the content,
we state the main theorem of this section in Appendix [C.4. Here, we provide Corollary which
shows that Algorithm [2] with single coordinate sampling enjoys, up to a constant factor, the same
convergence rate as state-of-the-art accelerated coordinate descent method NUACDM [3]].

Corollary 4.4. Let the sampling be defined as follows: S = {i} w. p. p; < /My, fori € [n]. Then
there exist acceleration parameters and a Lyapunov function Y* such that f(y*) — f(z*) < T* and

B (Y4 < (1- D40 = (1- 0 (Vi) T, V) 1.

The iteration complexity provided by Theorem|C.5 and Corollary 4.4 are summarized in Table

5 Experiments

In this section we perform numerical experiments to illustrate the potential of SEGA. Firstly, in Sec-
tion[5.1] we compare it to projected gradient descent (PGD) algorithm. Then in Section[5.2] we study
the performance of zeroth-order SEGA (when sketched gradients are being estimated through func-
tion value evaluations) and compare it to the analogous zeroth-order method. Lastly, in Section 5.3
we verify the claim from Remark [3.6]that in some applications, particular sketches and metric might
lead to a significantly faster convergence. In the experiments where theory-supported stepsizes were
used, we obtained them by precomputing strong convexity and smoothness measures.

5.1 Comparison to projected gradient

In this experiment, we show the potential superiority of our method to PGD. We consider the {5
ball constrained problem (R is the indicator function of the unit ball) with the oracle providing the
sketched gradient in the random Gaussian direction. As we mentioned, a method moving in the
gradient direction (analogue of CD), will not converge due as R is not separable. Therefore, we can
only compare against the projected gradient. In order to obtain the full gradient for PGD, one needs to
gather n sketched gradients and solve a corresponding linear system. As for f, we choose 4 different
quadratics, see Table [2] (appendix). We stress that these are synthetic problems generated for the
purpose of illustrating the potential of our method against a natural baseline. Figure [2] compares
SEGA and PGD under various relative cost scenarios of solving the linear system compared to the cost
of the oracle calls. The results show that SEGA significantly outperforms PGD as soon as solving the
linear system is expensive, and is as fast as PGD even if solving the linear system comes for free.
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Figure 2: Convergence of SEGA and PGD on synthetic problems with n = 500. The indicator “Xn” in the label
indicates the setting where the cost of solving linear system is Xn times higher comparing to the oracle call.
Recall that a linear system is solved after each n oracle calls. Stepsizes 1/Amax(IM) and 1/(nAmax(IM)) were
used for PGD and SEGA, respectively.
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Figure 3: Comparison of SEGA and randomized direct search for various problems. Theory supported stepsizes
were chosen for both methods. 500 dimensional problem.

5.2 Comparison to zeroth-order optimization methods

In this section, we compare SEGA to the random direct search (RDS) method [3]] under a zeroth-
order oracle and R = 0. For SEGA, we estimate the sketched gradient using finite differences. Note
that RDS is a randomized version of the classical direct search method [21] 24}, [25]]. At iteration k,
RDS moves to argmin (f(z¥ + a¥s¥), f(a* — a¥s*), f(z*)) for a random direction s* ~ D and a
suitable stepszie o*. For illustration, we choose f to be a quadratic problem based on Table [2 and
compare both Gaussian and coordinate sketches. Figure [3]shows that SEGA outperforms RDS.

5.3 Subspace SEGA: a more aggressive approach

As mentioned in Remark [3.6| well designed sketches are capable of exploiting structure of f and
lead to a better rate. We address this in detail in Appendix [D where we develop and analyze a
subspace variant of SEGA. To illustrate this phenomenon in a simple setting, we perform experiments
for problem (1)) with f(z) = |Az — b||?, where b € R? and A € R%*™ has orthogonal rows, and
with R being the indicator function of the unit ball in R™. We assume that n > d. We compare
two methods: naiveSEGA, which uses coordinate sketches, and subspaceSEGA, where sketches are
chosen as rows of A. Figure 4|indicates that subspaceSEGA outperforms naiveSEGA roughly by
the factor 7, as claimed in Appendix E

d/n=05 dmn=02 d/n =0.05 d/n =0.01
—@— naiveSEGA 10t —@— naiveSEGA o ~@— naiveSEGA 10 @ naiveSEGA
w —¥— subspaceSEGA —¥— subspaceSEGA —¥— subspaceSEGA ~¥— subspaceSEGA

oo o o

x 100 x x x \
= = = 0090 0090 o 0o - -
s 1w T v T .

100 % . 107

107 — H—'_'T w0+ \1‘
Ly vy vV I v 0 X
———9—9— -y 10 v A
—v v v v

© 200 00 1000 ] 200 00 1000 © 200 00 1000 ] 200 60 1000

e %0 o0 o L 600 %0 o
# oracle calls # oracle calls # oracle calls # oracle calls

Figure 4: Comparison of SEGA with sketches from a correct subspace versus coordinate sketches naiveSEGA.
Stepsize chosen according to theory. 1000 dimensional problem.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1200-1205. ACM, 2017.

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient
and mirror descent. In Innovations in Theoretical Computer Science, 2017.

Zeyuan Allen-Zhu, Zheng Qu, Peter Richtérik, and Yang Yuan. Even faster accelerated coor-
dinate descent using non-uniform sampling. In Proceedings of The 33rd International Confer-

ence on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1110-1119, 2016.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

El Houcine Bergou, Peter Richtarik, and Eduard Gorbunov. Random direct search method for
minimizing nonconvex, convex and strongly convex functions. Manuscript, 2018.

Antonin Chambolle, Matthias J Ehrhardt, Peter Richtarik, and Carola-Bibiane Schoenlieb.
Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging appli-
cations. SIAM Journal on Optimization, 28(4):27832808, 2018.

Chih-Chung Chang and Chih-Jen Lin. LibSVM: A library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):27, 2011.

Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free opti-
mization, volume 8. Siam, 2009.

Alexandre d’ Aspremont. Smooth optimization with approximate gradient. SIAM Journal on
Optimization, 19(3):1171-1183, 2008.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646-1654, 2014.

Olivier Devolder, Frangois Glineur, and Yurii Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146(1-2):37-75, 2014.

Olivier Fercoq and Peter Richtarik. Accelerated, parallel and proximal coordinate descent.
SIAM Journal on Optimization, (25):1997-2023, 2015.

Robert M Gower, Donald Goldfarb, and Peter Richtarik. Stochastic block BFGS: squeezing
more curvature out of data. In 33rd International Conference on Machine Learning, pages
1869-1878, 2016.

Robert M Gower, Filip Hanzely, Peter Richtérik, and Sebastian Stich. Accelerated stochastic
matrix inversion: general theory and speeding up BFGS rules for faster second-order optimiza-
tion. arXiv:1802.04079, 2018.

Robert M Gower and Peter Richtarik. Randomized iterative methods for linear systems. SIAM
Journal on Matrix Analysis and Applications, 36(4):1660-1690, 2015.

10



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Robert M Gower and Peter Richtarik. Stochastic dual ascent for solving linear systems. arXiv
preprint arXiv:1512.06890, 2015.

Robert M Gower and Peter Richtarik. Linearly convergent randomized iterative methods for
computing the pseudoinverse. arXiv:1612.06255, 2016.

Robert M Gower and Peter Richtarik. Randomized quasi-Newton updates are linearly con-
vergent matrix inversion algorithms. SIAM Journal on Matrix Analysis and Applications,
38(4):1380-1409, 2017.

Robert M Gower, Peter Richtarik, and Francis Bach. Stochastic quasi-gradient methods: Vari-
ance reduction via Jacobian sketching. arXiv preprint arXiv:1805.02632, 2018.

Filip Hanzely and Peter Richtarik. Accelerated coordinate descent with arbitrary sampling and
best rates for minibatches. arXiv preprint arXiv:1809.09354, 2018.

Robert Hooke and Terry A Jeeves. “Direct search” solution of numerical and statistical prob-
lems. Journal of the ACM (JACM), 8(2):212-229, 1961.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in Neural Information Processing Systems, pages 315-323, 2013.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the Polyak-Lojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795-811. Springer, 2016.

Tamara G Kolda, Robert M Lewis, and Virginia Torczon. Optimization by direct search: New
perspectives on some classical and modern methods. SIAM Review, 45(3):385-482, 2003.

Jakub Konec¢ny and Peter Richtdrik. Simple complexity analysis of simplified direct search.
arXiv preprint arXiv:1410.0390, 2014.

Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order opti-
mization. In Advances in Neural Information Processing Systems, pages 3384-3392, 2015.

Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method.
In Advances in Neural Information Processing Systems, pages 3059-3067, 2014.

Nicolas Loizou and Peter Richtarik. Linearly convergent stochastic heavy ball method for
minimizing generalization error. In NIPS Workshop on Optimization for Machine Learning,
2017.

Nicolas Loizou and Peter Richtarik. Momentum and stochastic momentum for stochastic gra-
dient, Newton, proximal point and subspace descent methods. arXiv:1712.09677,2017.

Ion Necoara, Peter Richtarik, and Andrei Patrascu. Randomized projection methods for convex
feasibility problems: conditioning and convergence rates. arXiv:1801.04873,2018.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). Soviet Mathematics Doklady, 27(2):372-376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Aca-
demic Publishers, 2004.

11



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Yurii Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127-152, 2005.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341-362, 2012.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Taka¢. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In Proceedings of the 34th In-
ternational Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 2613-2621. PMLR, 2017.

Zheng Qu and Peter Richtérik. Coordinate descent with arbitrary sampling I: Algorithms and
complexity. Optimization Methods and Software, 31(5):829-857, 2016.

Zheng Qu and Peter Richtarik. Coordinate descent with arbitrary sampling I: Algorithms and
complexity. Optimization Methods and Software, 31(5):829-857, 2016.

Zheng Qu and Peter Richtarik. Coordinate descent with arbitrary sampling II: Expected sepa-
rable overapproximation. Optimization Methods and Software, 31(5):858-884, 2016.

Zheng Qu, Peter Richtdrik, Martin Tak4¢, and Olivier Fercoq. SDNA: Stochastic dual Newton
ascent for empirical risk minimization. In Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages 1823—
1832. PMLR, 2016.

Zheng Qu, Peter Richtérik, and Tong Zhang. Quartz: Randomized dual coordinate ascent with
arbitrary sampling. In Advances in Neural Information Processing Systems, pages 865—-873,
2015.

Peter Richtédrik and Martin Tak4€. On optimal probabilities in stochastic coordinate descent
methods. Optimization Letters, 10(6):1233-1243, 2016.

Peter Richtdrik and Martin Takac. Stochastic reformulations of linear systems: algorithms and
convergence theory. arXiv:1706.01108, 2017.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathe-
matical Statistics, 22:400-407, 1951.

Nicolas Le Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with an
exponential convergence rate for finite training sets. In Advances in Neural Information Pro-
cessing Systems, pages 2663-2671, 2012.

Mark Schmidt, Nicolas Le Roux, and Francis R Bach. Convergence rates of inexact proximal-

gradient methods for convex optimization. In Advances in Neural Information Processing
Systems, pages 1458—1466, 2011.

Shai Shalev-Shwartz and Tong Zhang. Proximal stochastic dual coordinate ascent. arXiv
preprint arXiv:1211.2717, 2012.

Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, and
Benjamin Recht. Breaking locality accelerates block Gauss-Seidel. In Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3482-3491. PMLR, 2017.

12



