
A Additional Background

A.1 Additional Examples

We list some examples of popular submodular functions in Table 1.

Problem Submodular function, S ✓ E (unless speci-
fied)

n experts (simplex), E = {1, . . . , n} f(S) = 1
k out of n experts (k-simplex), E = {1, . . . , n} f(S) = min{|S|, k}
Permutations over E = {1, . . . , n} f(S) =

P|S|
s=1(n+ 1� s)

k-truncated permutations over E = {1, . . . , n} f(S) = (n�k)|S| for |S|  k, f(S) = k(n�
k) +

P|S|
s=k+1(n+ 1� s) if |S| � k

Spanning trees on G = (V,E) f(S) = |V (S)|� (S), (S) is the number of
connected components of S

Matroids over ground set E: M =
(E, (I)), (I) ✓ 2E

f(S) = rM (S), the rank function of the ma-
troid

Coverage of T: given T1, . . . , Tn ✓ T f(S) = |
S

i2S Ti|, E = {1, . . . , n}
Cut functions on a directed graph D = (V,E),
c : E ! R+

f(S) = c(�out(S)), S ✓ V

Flows into a sink vertex t, given a directed graph
D = (V,E) and costs c : E ! R+

f(S) = max flow from S ✓ V \ {t} into t

Maximal elements in E, h : E ! R f(S) = maxe2S h(e), f(;) = mine2E h(e)
Entropy H of random variables X1, . . . , Xn f(S) = H(

S
i2S Xi), E = {1, . . . , n}

Table 1: Problems and the submodular functions (on ground set of elements E) that give rise to them.

A.2 Strong Convexity and Smoothness

We say a function g : Rn ! R is ↵-strongly convex if g(x)� ↵/2kxk2 is convex, where ↵ > 0. It is easy to
see that the sum of a stronly convex function and a piecewise linear function is still strongly convex, and we have
Lemma 3. When g : Rn ! R is a strongly convex function, then

minimize g(x) + maxw2 conv(V) w
>
x (PV )

has a unique optimal solution x
? for all V ✓ Rn.

On the other hand, we say a function g : Rn ! R is �-smooth if there exists � > 0 such that g(x)� �/2kxk2
is concave. We have[21]:
Lemma 4. When a function g is ↵-strongly convex, its Fenchel conjugate g

⇤ is 1
↵ - smooth.

Lemma 5. When a function g is �-smooth, its Fenchel conjugate g
⇤ is 1

� -strongly convex.

B The Original Simplicial Method (Section 3)

We present the Original Simplicial Method (OSM) in Algorithm 3.

C Limited Memory Kelley’s Method (Section 3)

In this section, we provide proofs of some of the results in Section 3.

Proof of Theorem 1.

Proof. We prove this by induction. The claim is true for i = 0 since V(0) has only one element. Suppose
that the claim is true for i < i0. When � > ✏, we have v

(i0)>x(i0) = f(x(i0)) > f(i0)(x
(i0)). From

A(i0) ✓ {w 2 Rn | w>
x
(i0) = f(i0)(x

(i0))} we have v
(i0) /2 a�ne(A(i0)). Otherwise when �(i)  ✏, the

algorithm terminates in the i0th iteration.

Since vectors in V(i) are affinely independent, we have |V(i)|  n+ 1 for all i since V(i) ✓ Rn.

Before proving Lemma 1, we first present a lemma that is used in the proof of Lemma 1:
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Algorithm 3 OSM: The Original Simplicial Method for (P )
Require: strongly convex function g : Rn ! R, submodular function F : 2n ! R, tolerance ✏ > 0
Ensure: ✏-suboptimal solution x

]

1: initialize: choose x
(0) 2 Rn, set V(0) = ;

2: for i = 1, 2, . . . do
3: Convex subproblem. Define approximation f(i)(x) = max{w>

x : w2V(i�1)} and solve

x
(i) = argmin g(x) + f(i)(x).

4: Submodular subproblem. Compute value and subgradient of f at x(i)

f(x(i)) = max
w2B(F )

w
>
x
(i)
, v

(i) 2 @f(x(i)) = argmax
w2B(F )

w
>
x
(i)
.

5: Stopping condition. Break if duality gap p
(i) � d

(i)  ✏, where

p
(i) = g(x(i)) + f(x(i)), d

(i) = g(x(i)) + f(i)(x
(i)).

6: Update memory. Update memory V(i):

V(i) = V(i�1) [ {v(i)}.

7: return x
(i)

Lemma 6. Given a submodular function F : 2V ! R, let W ✓ vert(B(F )) be a subset of the vertices of its
base polytope. For the piecewise linear function

f̃(x) = max
w2 conv(W)

w
>
x,

let A(x)
�
= {w? 2 W | w?>

x = f̃(x)} be the points in W that are active at x. Then given any x̄ 2 Rn, there
exists ✏ > 0 such that

f̃(x) = max
w? 2 conv(A(x̄))

w
?>

x

for all x 2 B(x̄, ✏).

Proof. Since W is finite, we have f̃(x̄) � maxw̃2W\A(x̄) w̃
>
x̄ + ✏, where ✏ > 0. Let L = maxw2W kwk,

then for all x 2 B(x̄, ✏/(3L)), w? 2 A(x̄) and w̃ 2 W \A(x̄), we have

w
?>

x� w̃
>
x = (w? � w̃)>x̄+ w

?>(x� x̄) + w̃
>(x̄� x)

� ✏� L
✏

3L
� L

✏

3L

=
✏

3
.

(6)

Hence f̃(x) > w̃
>
x for all x 2 B(x̄, ✏/(3L)) and w̃ 2 W \ A(x̄), which is equivalent to f̃(x) =

maxw? 2 conv(A(x̄)) w
?>

x for all x 2 B(x̄, ✏/(3L)).

Proof of Lemma 1.

Proof. Let P(i)(x)
�
= min g(x) + maxw2 conv(V(i�1)) w

>
x = g(x) + f(i)(x) and eP(i)

�
= minx2Rn g(x) +

maxw2 conv(A(i)) w
>
x. There exists at least one w

? 2 V(i�1) such that f(i)(x(i)) = w
?T

x
(i). Therefore,

P(i)(x
(i)) = g(x(i)) + w

?T
x
(i) = g(x(i)) + maxw2conv(A(i)) w

>
x
(i) = eP(i)(x

(i)), where the last equality
follows from the definition of A(i). Next, if we can show local optimality of x(i) for eP(i), this would imply
global optimality of x(i) for eP(i) due to convexity of eP(i), thus P(i) and eP(i) will have the same optimal value.
By the definition of A(i) and Lemma 6, we have f(x) = maxw2conv(A(x(i))) = f(i)(x

(i)) in B(x(i)
, ✏) for

some ✏ > 0. Thus P(i)(x
(i)) = g(x) + f(x) = g(x) + f(i)(x) = eP(i)(x) for x 2 B(x(i)

, ✏). Hence x(i) is an
local optimal solution to eP(i), and the lemma is proved. By Lemma 3, x(i) is the unique solution to both P(i)

and eP(i).

Proof of Corollary 1.
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Proof. For any i � 1, by Lemma 3, there exists an x
(i) 2 Rn that minimizes g(x) + f(i)(x). Thus we have

d
(i) = g(x(i)) + f(i)(x

(i))

= g(x(i)) + max
w2conv(V(i�1))

w
>
x
(i)

� g(x(i)) + max
w2conv(A(i�1))

w
>
x
(i)

. A(i�1) ✓ V(i�1) (7)

> g(x(i�1)) + max
w2conv(A(i�1))

w
>
x
(i�1)

. optimality and uniqueness of x(i�1)

= d
(i�1)

.

On the other hand, by V(i�1) ✓ vert(B(F )), we have

d
(i) = min

x2Rn
{g(x) + max

w2conv(V(i�1))
w

>
x}

 min
x2Rn

{g(x) + max
w2B(F )

w
>
x}

= min
x2Rn

g(x) + f(x)

(8)

for all i � 0.

Proof of Corollary 2.

Proof. Note that each V(i) determines a unique d
(i). Suppose for contradiction that there exists i1 6= i2 but

V(i1) = V(i2), then we will have d
(i1) = d

(i2), which contradicts the fact that {d(i)} strictly increases.

Proof of Theorem 2

Proof. Since vert(B(F )) has finitely many vertices, there are only finitely many choices of V(i) ✓ vert(B(F )).
Thus by Corollary 2, Algorithm 1 terminates within finitely many steps.

Suppose for contradiction that when the algorithm terminates at i = i0, p(i0) � d
(i0) > ✏ � 0. Let A(i0) �

=

{w 2 V(i0�1) : w
>
x
(i0) �

= f(i0)(x
(i0)) and v

(i0) 2 V(x(i0)). Define V(i0) �
= A(i0) [ {v(i0)} and

f(i0+1)(x) = max{w>
x : w2V(i0)}, then let x(i0+1) = argminx2Rn g(x) + f(i0+1)(x). By the proof

of Corollary 1, we have d
(i0+1) = g(x(i0+1)) + f(i0+1)(x

(i0+1)) > d
i0 , so V(i0) is different to any V

(i)

where i  i0, and L-KM should not have terminated at i = i0. Thus L-KM would never terminate when
p
(i) � d

(i)
> ✏ � 0.

D Duality (Section 4)

To prove the strong duality between (PV ) and (DV ), we first verify the weak duality:
Theorem 9 (Weak Duality). The optimal value of primal problem (PV ) is greater than or equal to the optimal
value of the dual problem (DV ).

Proof. We first have

min
x2Rn

{g(x) + max
w2 conv(V)

w
>
x} = min

x2Rn
max

w2 conv(V)
g(x) + w

>
x. (9)

For any given w̃ 2 conv(V), we also have

min
x2Rn

max
w2 conv(V)

g(x) + w̃
>
x � min

x2Rn
g(x) + w̃

>
x. (10)

Thus by the definition of g⇤, we can see that

min
x2Rn

max
w2 conv(V)

g(x) + w
>
x� max

w2 conv(V)
min
x2Rn

g(x) + w
>
x

= max
w2 conv(V)

� max
x2Rn

(�w)>x� g(x)

= max
w2 conv(V)

�g
⇤(�w).

(11)

Combine (9) and (11), and the theorem follows.
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Proof of Theorem 3

Proof. By Lemma 3, we know (PV ) has a unique solution x̄. Since g is convex, we have @g(x) 6= ;. By the
optimality of x̄, we also have 0 2 @g(x̄) + @f(x̄). Let w̄ 2 �@g(x̄) \ @f(x̄), then

g
⇤(�w̄) = (�w̄)>x̄� g(x̄) (12)

by Eq. (4). Note that w̄ 2 @f(x̄), we also have f(x̄) = w̄
>
x̄ by Equation (2). Thus

f(x̄) + g(x̄) = g
⇤(w̄), (13)

w̄ is an optimal solution to (DV ) and we have (PV ) and (DV ) via weak duality.

E Primal-from-dual algorithm (Section 5)

Now consider the Primal-from-dual algorithm presented in Section 5.

Formally, assume g is ↵-strongly convex. Suppose we obtain w 2 B(F ) with

kw � w
?k  ✏

via some dual algorithm (e.g., L-FCFW). Define x = rw(�g
⇤(�w)) = argminx g(x) + w

>
x. Since g

⇤ is
1/↵ smooth, we have

kx� x
?k  1/↵kw � w

?k  ✏/↵

Hence if the dual iterates converge linearly, so do the primal iterates.

The remaining difficulty is how to solve the L-FCFW subproblems. One possibility is to use the values and
gradients of (a FIRST ORDER ORACLE for) h = g

⇤. To implement a first order oracle for h = g
⇤, we need only

solve an unconstrained minimization problem:

g
⇤(y) = max

x2Rn
y
>
x� g(x), rg

⇤(y) = argmax
x2Rn

y
>
x� g(x).

This problem is straightforward to solve since g is smooth and strongly convex. However, it is not clear how
solving these subproblems approximately affects the convergence of L-FCFW. Morever, we will see in the next
section that L-KM achieves exactly the same sequence of iterates as the above (rather unwieldly) proposal.

F Duality between L-KM and L-FCFW (Section 6)

Lemma 7. Only vertices in A(i) can have positive convex multipliers in the convex decomposition of w(i),
i.e., if we write w

(i) =
P

v2V(i�1) �
(i)
v v such that 0  �v  1 for any v 2 V(i�1), then �

(i)
v = 0 for any

v 2 V(i�1) \ A(i).

Proof. By the definition of A(i), we have

conv(A(i)) = conv({v 2 V(i�1) | v>x(i) = w
(i)>

x
(i)})

= conv({v 2 V(i�1) | v>x(i) = max
w2 conv(V(i�1))

w
>
x
(i)}) (14)

= argmaxw2 conv(V(i�1))w
>
x
(i)
.

Then

0 = (w(i) � w
(i))>x(i)

= (w(i) �
X

v2V(i�1)

�
(i)
v v) (15)

=
X

v2V(i�1)\Ai

�
(i)
v [(w(i))>x(i) � v

>
x
(i)]. . v

>
x
(i) = w

(i)>
x
(i)
, 8 v 2 A(i)

Using (14), we have v
>
x
(i) � w

(i)
x
(i)

< 0 for any v 2 V(i�1) \ A(i). Thus �
(i)
v = 0 for any v 2

V(i�1) \ A(i).

Proof of Theorem 6.
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Proof. We prove by induction. When i = 1, V(0) will naturally refer to the same set of points in L-KM and
L-FCFW. By Lemma 3, we have x

(1) is the unique solution to g + f(1). Note g
⇤ is strongly convex given

g is smooth (Lemma 5), we have w
(1) is the unique solution to maxw2 conv(V(0)) �g

⇤(�w). Let V = V(0)

in Theorem 4, we have that x(1) = �rg
⇤(�w

(1)) is the unique minimizer of g + f(1). So x
(1) in the two

algorithms match. Also note that w(1) solves maxw2 conv(V(0)) �g
⇤(�w), we have w

(1) maximizes w>
x
(1)

for all w 2 conv(V(i�1)) by the first order optimality condition, which gives w(i)>
x
(i) = f(i)(x

(i)). Thus
A(1), V(1) match consequently. By strong duality in Theorem 3, we have d

(1) matches in the two algorithms.
Note g

⇤ is strongly convex, which gives the uniqueness of w(1). By Theorem 4, rg(w(1)) solves the primal
subproblem, so x

(1) match in the two algorithms by the uniqueness of x(1).

Suppose that the theorem holds for i = i0, in particular, the V(i0) match in the two algorithms. Then for
i = i0 + 1, we can use the same argument as in the previous paragraph by substituting 0 with i0 and 1 with
i0 + 1, and show that all the statements hold for i = i0 + 1. Note that by Lemma 7, A(i) satisfies the condition
in Line 6 of L-FCFW. Thus this theorem is valid.

G Duality between OSM and L-FCFW (Section 6)

Theorem 10. If g is smooth and strongly convex and in Algorithm 2 we choose B(i) = V(i�1), then

1. The primal iterates x(i) of Algorithm 3 and Algorithm 2 match.

2. The set V(i) used at each iteration of Algorithm 3 and Algorithm 2 match.

3. The upper and lower bounds p(i) and d
(i) of Algorithm 3 and Algorithm 2 match.

The proof of Theorem 10 is similar to the proof of Theorem 6.

H Definition of Diameter and Pyramid Width

Diameter. The diameter of a set P ✓ Rn is defined as

Diam(P)
�
= max

v, w2P
kv � wk2. (16)

Directional Width. Given a direction x 2 Rn, the directional width of a set P ✓ Rn with respect to x is
defined as

dirW(P, x)
�
= max

v, w2P
(v � w)>

x

kxk2
. (17)

Pyramid directional width and pyramid width are defined by Lacoste-Julien and Jaggi in [15] for a finite sets of
vectors V ✓ Rn. Here we extend the definition of pyramid width to a polytope P = conv(V ), and it should be
easy to see that the two definitions are essentially the same.

Pyramid Directional Width. Let V ✓ Rn be a finite set of vectors in Rn. The pyramid directional width of V
with respect to a direction x and a base point w 2 conv(V) is defined as

PdirW(V, x, w)
�
= min

A2A(w)
dirW(A [ {v(V, x)}, x), (18)

where A(w)
�
= {A ✓ V | the convex multipliers are non-zero for all v 2 A in the decomposition of w}

and v(V, x) is a vector in argmaxv2V v
>
x. The pyramid directional width got its name because the set

A [ {v(V, x)} has the shape of a pyramid with A being the base and v(V, x) being the summit.

Pyramid Width. The pyramid width of P is defined as

PWidth(P)
�
= min

K2 face(P)
min

x2 cone(K�w)\{0}, w2K
PdirW(K \ vert(P), x, w), (19)

where face(P) stands for the faces of P and cone(K�w) is equivalent to the set of vectors pointing inwards K.
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