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Abstract

Ideally, what confuses neural network should be confusing to humans. However,
recent experiments have shown that small, imperceptible perturbations can change
the network prediction. To address this gap in perception, we propose a novel
approach for learning robust classifier. Our main idea is: adversarial examples
for the robust classifier should be indistinguishable from the regular data of the
adversarial target. We formulate a problem of learning robust classifier in the
framework of Generative Adversarial Networks (GAN), where the adversarial
attack on classifier acts as a generator, and the critic network learns to distinguish
between regular and adversarial images. The classifier cost is augmented with
the objective that its adversarial examples should confuse the adversary critic. To
improve the stability of the adversarial mapping, we introduce adversarial cycle-
consistency constraint which ensures that the adversarial mapping of the adversarial
examples is close to the original. In the experiments, we show the effectiveness
of our defense. Our method surpasses in terms of robustness networks trained
with adversarial training. Additionally, we verify in the experiments with human
annotators on MTurk that adversarial examples are indeed visually confusing.

1 Introduction

Deep neural networks are powerful representation learning models which achieve near-human
performance in image [1] and speech [2] recognition tasks. Yet, state-of-the-art networks are sensitive
to small input perturbations. [3] showed that adding adversarial noise to inputs produces images
which are visually similar to the original inputs but which the network misclassifies with high
confidence. In speech recognition, [4] introduced an adversarial attack, which can change any audio
waveform, such that the corrupted signal is over 99.9% similar to the original but transcribes to any
targeted phrase. The existence of adversarial examples puts into question generalization ability of
deep neural networks, reduces model interpretability, and limits applications of deep learning in
safety and security-critical environments [5, 6].

Adversarial training [7, 8, 9] is the most popular approach to improve network robustness. Adversarial
examples are generated online using the latest snapshot of the network parameters. The generated
adversarial examples are used to augment training dataset. Then, the classifier is trained on the
mixture of the original and the adversarial images. In this way, adversarial training smoothens a
decision boundary in the vicinity of the training examples. Adversarial training (AT) is an intuitive
and effective defense, but it has some limitations. AT is based on the assumption that adversarial
noise is label non-changing. If the perturbation is too large, the adversarial noise may change the true
underlying label of the input. Secondly, adversarial training discards the dependency between the
model parameters and the adversarial noise. As a result, the neural network may fail to anticipate
changes in the adversary and overfit the adversary used during training.
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Figure 1: Adversarial examples should be indistinguishable from the regular data of the adversarial
target. The images in the figure above are generated using Carlini and Wagner [10] l2-attack on the
network trained with our defense, such that the confidence of the prediction on the adversarial images
is 95%. The confidence on the original images x1 and x2 is 99%.

Ideally, what confuses neural network should be confusing to humans. So the changes introduced by
the adversarial noise should be associated with removing identifying characteristics of the original
label and adding identifying characteristics of the adversarial label. For example, images that are
adversarial to the classifier should be visually confusing to a human observer. Current techniques [7,
8, 9] improve robustness to input perturbations from a selected uncertainty set. Yet, the model’s
adversarial examples remain semantically meaningless. To address this gap in perception, we propose
a novel approach for learning robust classifier. Our core idea is that adversarial examples for the robust
classifier should be indistinguishable from the regular data of the attack’s target class (see fig. 1).

We formulate the problem of learning robust classifier in the framework of Generative Adversarial
Networks (GAN) [11]. The adversarial attack on the classifier acts as a generator, and the critic
network learns to distinguish between natural and adversarial images. We also introduce a novel
targeted adversarial attack which we use as the generator. The classifier cost is augmented with the
objective that its adversarial images generated by the attack should confuse the adversary critic. The
attack is fully-differentiable and implicitly depends on the classifier parameters. We train the classifier
and the adversary critic jointly with backpropagation. To improve the stability of the adversarial
mapping, we introduce adversarial cycle-consistency constraint which ensures that the adversarial
mapping of the adversarial examples is close to the original. Unlike adversarial training, our method
does not require adversarial noise to be label non-changing. To the contrary, we require that the
changes introduced by adversarial noise should change the “true” label of the input to confuse the
critic. In the experiments, we demonstrate the effectiveness of the proposed approach. Our method
surpasses in terms of robustness networks trained with adversarial training. Additionally, we verify
in the experiments with human annotators that adversarial examples are indeed visually confusing.

2 Related work

Adversarial attacks Szegedy et al. [3] have originally introduced a targeted adversarial attack
which generates adversarial noise by optimizing the likelihood of input for some adversarial target
using a box-constrained L-BFGS method. Fast Gradient Sign method (FGSM) [7] is a one-step
attack which uses a first-order approximation of the likelihood loss. Basic Iterative Method (BIM),
which is also known as Projected Gradient Descent (PGD), [12] iteratively applies the first-order
approximation and projects the perturbation after each step. [6] propose an iterative method which at
each iteration selects a single most salient pixel and perturbs it. DeepFool [13] iteratively generates
adversarial perturbation by taking a step in the direction of the closest decision boundary. The decision
boundary is approximated with first-order Taylor series to avoid complex non-convex optimization.
Then, the geometric margin can be computed in the closed-form. Carlini and Wagner [10] propose
an optimization-based attack on a modified loss function with implicit box-constraints. [14] intro-
duce a black-box adversarial attack based on transferability of adversarial examples. Adversarial
Transformation Networks (ATN) [15] trains a neural network to attack.
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Defenses against adversarial attacks Adversarial training (AT) [7] augments training batch with
adversarial examples which are generated online using Fast Gradient Sign method. Virtual Adversarial
training (VAT) [16] minimizes Kullback-Leibler divergence between the predictive distribution of
clean inputs and adversarial inputs. Notably, adversarial examples can be generated without using
label information and VAT was successfully applied in semi-supervised settings. [17] applies iterative
Projected Gradient Descent (PGD) attack to adversarial training. Stability training [18] minimizes a
task-specific distance between the output on clean and the output on corrupted inputs. However, only
a random noise was used to distort the input. [19, 20] propose to maximize a geometric margin to
improve classifier robustness. Parseval networks [21] are trained with the regularization constraint,
so the weight matrices have a small spectral radius. Most of the existing defenses are based on robust
optimization and improve the robustness to perturbations from a selected uncertainty set.

Detecting adversarial examples is an alternative way to mitigate the problem of adversarial examples at
test time. [22] propose to train a detector network on the hidden layer’s representation of the guarded
model. If the detector finds an adversarial input, an autonomous operation can be stopped and human
intervention can be requested. [23] adopt a Bayesian interpretation of Dropout to extract confidence
intervals during testing. Then, the optimal threshold was selected to distinguish natural images from
adversarial. Nonetheless, Carlini and Wagner [24] have extensively studied and demonstrated the
limitations of the detection-based methods. Using modified adversarial attacks, such defenses can
be broken in both white-box and black-box setups. In our work, the adversary critic is somewhat
similar to the adversary detector. But, unlike adversary-detection methods, we use information from
the adversary critic to improve the robustness of the guarded model during training and do not use
the adversary critic during testing.

Generative Adversarial Networks [11] introduce a generative model where the learning problem
is formulated as an adversarial game between discriminator and generator. The discriminator is
trained to distinguish between real images and generated images. The generator is trained to produce
naturally looking images which confuse the discriminator. A two-player minimax game is solved by
alternatively optimizing two models. Recently several defenses have been proposed which use GAN
framework to improve robustness of neural networks. Defense-GAN [25] use the generator at test
time to project the corrupted input on the manifold of the natural examples. Lee et al. [26] introduce
Generative Adversarial Trainer (GAT) in which the generator is trained to attack the classifier. Like
Adversarial Training [7], GAT requires that adversarial noise does not change the label. Compare
with defenses based on robust optimization, we do not put any prior constraint on the adversarial
attack. To the contrary, we require that adversarial noise for robust classifier should change the “true”
label of the input to confuse the critic. Our formulation has three components (the classifier, the critic,
and the attack) and is also related to Triple-GAN [27]. But, in our work: 1) the generator also fools
the classifier; 2) we use the implicit dependency between the model and the attack to improve the
robustness of the classifier. Also, we use a fixed algorithm to attack the classifier.

3 Robust Optimization

We first recall a mathematical formulation for the robust multiclass classification. Let f(x;W) be a
k-class classifier, e.g. neural network, where x ∈ RN is in the input space and W are the classifier
parameters. The prediction rule is k̂(x) = argmax f(x). Robust optimization seeks a solution
robust to the worst-case input perturbations:

min
W

max
ri∈Ui

N∑
i=1

L(f(xi + ri), yi) (1)

where L is a training loss, ri is an arbitrary (even adversarial) perturbation for the input xi, and Ui is
an uncertainty set, e.g. lp-norm ε-ball Ui = {ri : ‖ri‖p ≤ ε}. Prior information about the task can
be used to select a problem-specific uncertainty set U .

Several regularization methods can be shown to be equivalent to the robust optimization, e.g. l1
lasso regression [28] and l2 support vector machine [29]. Adversarial training [7] is a popular
regularization method to improve neural network robustness. AT assumes that adversarial noise is
label non-changing and trains neural network on the mixture of original and adversarial images:

min
W

N∑
i=1

L(f(xi), yi) + λL(f(xi + ri), yi) (2)
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where ri is the adversarial perturbation generated using Fast Gradient Sign method (FGSM). Shaham
et al. [30] show that adversarial training is a form of robust optimization with l∞-norm constraint.
Madry et al. [17] experimentally argue that Projected Gradient Descent (PGD) adversary is inner
maximizer of eq. (1) and, thus, PGD is the optimal first-order attack. Adversarial training with PGD
attack increases the robustness of the regularized models compare to the original defense. Margin
maximization [19] is another regularization method which generalizes SVM objective to deep neural
networks, and, like SVM, it is equivalent to the robust optimization with the margin loss.

Figure 2: Images off-diagonal are cor-
rupted with the adversarial noise generated
by CW [10] l2-norm attack, so the predic-
tion confidence on the adversarial images is
at least 95%. The prediction confidence on
the original images is 99%.

Selecting a good uncertainty set U for robust opti-
mization is crucial. Poorly chosen uncertainty set
may result in an overly conservative robust model.
Most importantly, each perturbation r ∈ U should
leave the “true” class of the original input x un-
changed. To ensure that the changes of the network
prediction are indeed fooling examples, Goodfellow
et al. [7] argue in favor of a max-norm perturbation
constraint for image classification problems. How-
ever, simple disturbance models (e.g. l2- and l∞-
norm ε-ball used in adversarial training) are inade-
quate in practice because the distance to the decision
boundary for different examples may significantly
vary. To adapt uncertainty set to the problem at hand,
several methods have been developed for construct-
ing data-dependent uncertainty sets using statistical
hypothesis tests [31]. In this work, we propose a
novel approach for learning a robust classifier which
is orthogonal to prior robust optimization methods.

Ideally, inputs that are adversarial to the classifier
should be confusing to a human observer. So the
changes introduced by the adversarial noise should
be associated with the removing of identifying char-
acteristics of the original label and adding the identifying characteristics of the adversarial target. For
example, adversarial images in Figure 2 are visually confusing. The digit ‘1’ (second row, eighth col-
umn) after adding the top stroke was classified by the neural network as digit ‘7’. Likewise, the digit
‘7’ (eighth row, second column) after removing the top stroke was classified by the network as digit
‘1’. Similarly for other images in Figure 2, the model’s “mistakes” can be predicted visually. Such
behavior of the classifier is expected and desired for the problems in computer vision. Additionally, it
improves the interpretability of the model. In this work, we study image classification problems, but
our formulation can be extended to the classification tasks in other domains, e.g. audio or text.

Based on the above intuition, we develop a novel formulation for learning a robust classifier. Classifier
is robust if its adversarial examples are indistinguishable from the regular data of the adversarial
target (see fig. 1). So, we formulate the following mathematical problem:

min

N∑
i=1

L(f(xi), yi) + λD [pdata (x, y) , padv (x, y)] (3)

where pdata (x, y) and padv (x, y) is the distribution of the natural and the adversarial for f examples
and the parameter λ controls the trade-off between accuracy and robustness. Note that the distribution
padv (x, y) is constructed by transforming natural samples (x, y) ∼ pdata (x, y) with y 6= yadv, so that
adversarial example xadv = Af (x; yadv) is classified by f as the attack’s target yadv.

The first loss in eq. (3), e.g. NLL, fits the model predictive distribution to the data distribution. The
second term measures the probabilistic distance between the distribution of the regular and adversarial
images and constrains the classifier, so its adversarial examples are indistinguishable from the regular
inputs. It is important to note that we minimize a probabilistic distance between joint distributions
because the distance between marginal distributions pdata(x) and padv(x) is trivially minimized when
r ∼ 0. Compare with adversarial training, the proposed formulation does not impose the assumption
that adversarial noise is label non-changing. To the contrary, we require that adversarial noise for the
robust classifier should be visually confusing and, thus, it should change the underlying label of the
input. Next, we will describe the implementation details of the proposed defense.
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4 Robust Learning with Adversary Critic

As we have argued in the previous section, adversarial examples for the robust classifier should be
indistinguishable from the regular data of the adversarial target. Minimizing the statistical distance
between pdata (x, y) and padv (x, y) in eq. (3) requires probability density estimation which in itself
is a difficult problem. Instead, we adopt the framework of Generative Adversarial Networks [11].
We rely on a discriminator, or an adversary critic, to estimate a measure of difference between
two distributions. The discriminator given an input-label pair (x, y) classifies it as either natural
or adversarial. For the k-class classifier f , we implement the adversary critic as a k-output neural
network (see fig. 3). The objective for the k-th output of the discriminatorD is to correctly distinguish
between natural and adversarial examples of the class yk:

L(f∗, Dk) = min
Dk

Ex∼pdata(x|yk) [logDk (x)] + Ey:y 6=yk
Ex∼pdata(x|y) [log (1−Dk (Af∗(x; yk)))]

(4)
where Af (x, yk) is the targeted adversarial attack on the classifier f which transforms the input x
to the adversarial target yk. An example of such attack is Projected Gradient Descent [12] which
iteratively takes a step in the direction of the target yk. Note that the second term in eq. (4) is
computed by transforming the regular inputs (x, y) ∼ pdata (x, y) with the original label y different
from the adversarial target yk.

Our architecture for the discriminator in Figure 3 is slightly different from the previous work on
joint distribution matching [27] where the label information was added as the input to each layer
of the discriminator. We use class label only in the final classification layer of the discriminator.
In the experiments, we observe that with the proposed architecture: 1) the discriminator is more
stable during training; 2) the classifier f converges faster and is more robust. We also regularize
the adversary critic with a gradient norm penalty [32]. For the gradient norm penalty, we do not
interpolate between clean and adversarial images but simply compute the penalty at the real and
adversarial data separately. Interestingly, regularizing the gradient of the binary classifier has the
interpretation of maximizing the geometric margin [19].

The objective for the classifier f is to minimize the number of mistakes subject to that its adversarial
examples generated by the attack Af fool the adversary critic D:

L(f,D∗) = min
f

Ex,y∼pdata(x,y)L(f(x), y) + λ
∑
yk

Ey:y 6=yk
Ex∼pdata(x|y) [logD

∗
k (Af (x; yk))] (5)

where L is a standard supervised loss such as negative log-likelihood (NLL) and the parameter λ
controls the trade-off between test accuracy and classifier robustness. To improve stability of the
adversarial mapping during training, we introduce adversarial cycle-consistency constraint which
ensures that adversarial mapping Af of the adversarial examples should be close to the original:

Lcycle(ys, yt) = Ex∼pdata(x|ys)

[
‖Af (Af (x, yt), ys)− x‖2

]
∀ys 6= yt (6)

Xreal

Af

Xadv

D

adv1

real1
. . .

advk

realk

Figure 3: Multiclass Adversary Critic.

Algorithm 1 High-Confidence Attack Af

1: Input: Image x, target y, network f , confidence C.
2: Output: Adversarial image x̂.
3: x̂← x
4: while py(x̂) < C do
5: f ← logC − log py(x̂)
6: w ← ∇ log py(x̂)

7: r ← f
‖w‖22

w

8: x̂← x̂+ r
9: end while
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where ys is the original label of the input and yt is the adversarial target. Adversarial cycle-consistency
constraint is similar to cycle-consistency constraint which was introduced for image-to-image transla-
tion [33]. But, we introduce it to constraint the adversarial mappingAf and it improves the robustness
of the classifier f . Next, we discuss implementation of our targeted adversarial attack Af .

Our defense requires that the adversarial attack Af is differentiable. Additionally, adversarial
examples generated by the attack Af should be misclassified by the network f with high confidence.
Adversarial examples which are close to the decision boundary are likely to retain some identifying
characteristics of the original class. An attack which optimizes for the mistakes, e.g. DeepFool [13],
guarantees the confidence of 1

k for k-way classifier. To generate high-confidence adversarial examples,
we propose a novel adversarial attack which iteratively maximizes the confidence of the adversarial
target. The confidence of the target k after adding perturbation r is pk(x+ r). The goal of the attack
is to find the perturbation, so the adversarial input is misclassified as k with the confidence at least C:

min ‖r‖
s. t. pk(x+ r) ≥ C

We apply a first-order approximation to the constraint inequality:
min ‖r‖
s. t. pk(x) + r∇xpk(x) ≥ C

Softmax in the final classification layer saturates quickly and shatters the gradient. To avoid small
gradients, we use log-likelihood instead. Finally, the l2-norm minimal perturbation can be computed
using a method of Lagrange multipliers as follows:

rk =
logC − log pk(x)

‖∇x log pk(x)‖2
(7)

Because we use the approximation of the non-convex decision boundary, we iteratively update
perturbation r for Nmax steps using eq. (7) until the adversarial input xadv is misclassified as the
target k with the confidence C. Our attack can be equivalently written as xadv = x+

∏Nmax

i=1 I(p(x+∑i
j=1 rj) ≤ C)ri where I is an indicator function. The discrete stopping condition introduces a

non-differentiable path in the computational graph. We replace the gradient of the indicator function
I with sigmoid-adjusted straight-through estimator during backpropagation [34]. This is a biased
estimator but it has low variance and performs well in the experiments.

The proposed attack is similar to Basic Iterative Method (BIM) [12]. BIM takes a fixed ε-norm step
in the direction of the attack target while our method uses an adaptive step γ =

|logC−log py(x̂)|
‖∇x log py(x̂)‖ . The

difference is important for our defense:
1. BIM introduces an additional parameter ε. If ε is too large, then the attack will not be

accurate. If ε is too small, then the attack will require many iterations to converge.
2. Both attacks are differentiable. However, for BIM attack during backpropagation, all

the gradients ∂ri

∂w have an equal weight ε. For our attack, the gradients will be weighted
adaptively depending on the distance γ to the attack’s target. The step γ for our attack is
also fully-differentiable.

Full listing of our attack is shown in algorithm 1. Next, we discuss how we select the adversarial
target yt and the attack’s target confidence C during training.

The classifier f approximately characterizes a conditional distribution p (y |x). If the classifier f∗ is
optimal and robust, its adversarial examples generated by the attack Af should fool the adversary
critic D. Therefore, the attack Af to fool the critic D should generate adversarial examples with the
confidence C equal to the confidence of the classifier f on the regular examples. During training,
we maintain a running mean of the confidence score for each class on the regular data. The attack
target yt for the input x with the label ys can be sampled from the masked uniform distribution.
Alternatively, the class with the closest decision boundary [13] can be selected. The latter formulation
resulted in more robust classifier f and we used it in all our experiments. This is similar to support
vector machine formulation which maximizes the minimum margin.

Finally, we train the classifier f and the adversary critic D jointly using stochastic gradient descent
by alternating minimization of Equations (4) and (5). Our formulation has three components (the
classifier f , the critic D, and the attack Af ) and it is similar to Triple-GAN [27] but the generator in
our formulation also fools the classifier.
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5 Experiments

Adversarial training [7] discards the dependency between the model parameters and the adversarial
noise. In this work, it is necessary to retain the implicit dependency between the classifier f and the
adversarial noise, so we can backpropagate through the adversarial attack Af . For these reasons,
all experiments were conducted using Tensorflow [35] which supports symbolic differentiation and
computation on GPU. Backpropagation through our attack requires second-order gradients ∂2f(x;w)

∂x∂w
which increases computational complexity of our defense. At the same time, this allows the model to
anticipate the changes in the adversary and, as we show, significantly improves the model robustness
both numerically and perceptually.

We perform experiments on MNIST dataset. While MNIST is a simple classification task, it remains
unsolved in the context of robust learning. We evaluate robustness of the models against l2 attacks.
Minimal adversarial perturbation r is estimated using DeepFool [13], Carlini and Wagner [10], and
the proposed attack. To improve the accuracy of DeepFool and our attack during testing, we clip the
l2-norm of perturbation at each iteration to 0.1. Note that our attack with the fixed step is equivalent
to Basic Iterative Method [12]. We set the maximum number of iterations for DeepFool and our
attack to 500. The target confidence C for our attack is set to the prediction confidence on the original
input x. DeepFool and our attack do not handle domain constraints explicitly, so we project the
perturbation after each update. For Carlini and Wagner [10], we use implementation provided by the
authors with default settings for the attack but we reduce the number of optimization iterations from
10000 to 1000. As suggested in [13], we measure the robustness of the model as follows:

ρadv(Af ) =
1

|D|
∑
x∈D

‖r(x)‖2
‖x‖2

(8)

where Af is the attack on the classifier f and D is the test set.

We compare our defense with reference (no defense), Adversarial Training [7, 8] (ε = 0.1), Virtual
Adversarial Training (VAT) [16] (ε = 2.0), and l2-norm Margin Maximization [19] (λ = 0.1) defense.
We study the robustness of two networks with rectified activation: 1) a fully-connected neural network
with three hidden layers of size 1200 units each; 2) Lenet-5 convolutional neural network. We train
both networks using Adam optimizer [36] with batch size 100 for 100 epochs. Next, we will describe
the training details for our defense.

Our critic has two layers with 1200 units each and leaky rectified activation. We also add Gaussian
noise to the input of each layer. We train both the classifier and the critic using Adam [36] with the
momentum β1 = 0.5. The starting learning rate is set to 5 · 10−4 and 10−3 for the classifier and the
discriminator respectively. We train our defense for 100 epochs and the learning rate is halved every
40 epochs. We set λ = 0.5 for fully-connected network and λ = 0.1 for Lenet-5 network which we
selected using validation dataset. Both networks are trained with λrec = 10−2 for the adversarial
cycle-consistency loss and λgrad = 10.0 for the gradient norm penalty. The number of iterations for
our attack Af is set to 5. The attack confidence C is set to the running mean class confidence of the
classifier on natural images. We pretrain the classifier f for 1 epoch without any regularization to get
an initial estimate of the class confidence scores.

Our results for 10 independent runs are summarized in Table 1, where the second column shows the
test error on the clean images, and the subsequent columns compare the robustness ρ to DeepFool [13],
Carlini and Wagner [10], and our attacks. Our defense significantly increases the robustness of the

Defense % [13] [10] Our
Reference 1.46 0.131 0.124 0.173
[7] 0.90 0.228 0.210 0.299
[16] 0.84 0.244 0.215 0.355
[19] 0.84 0.262 0.230 0.453
Our 1.18 0.290 0.272 0.575

(a)

Defense % [13] [10] Our
Reference 0.64 0.157 0.148 0.207
[7] 0.55 0.215 0.191 0.286
[16] 0.60 0.225 0.195 0.330
[19] 0.54 0.248 0.225 0.470
Our 0.93 0.288 0.278 0.590

(b)

Table 1: Results on MNIST dataset for fully-connected network in table 1a and for Lenet-5 convolu-
tional network in table 1b. Column 1: test error on original images. Column 3-5: robustness ρ under
DeepFool [13], Carlini and Wagner [10], and the proposed attack.
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(a) (b) (c)

Figure 4: Figure 4a shows a random subset of test images (average confidence 97%). Figure 4b
shows adversarial examples at the class decision boundary (average confidence 34%). Figure 4c
shows high-confidence adversarial images (average confidence 98%).

Defense % Change % No change
Reference 0.57 98.74
[7] 19.02 77.21
[16] 35.08 59.68
[19] 60.47 34.52
Our 87.99 9.86

(a)

Defense % Change % No change
Reference 2.54 96.53
[7] 19.1 75.94
[16] 26.8 67.73
[19] 81.77 13.15
Our 92.29 6.51

(b)

Table 2: Results of Amazon Mechanical Turk experiment for fully-connected network in table 2a and
for Lenet-5 convolutional network in fig. 4c. Column 2: shows percent of adversarial images which
human annotator label with its adversarial target, so adversarial noise changed the “true” label of
the input. Column 3: shows percent of the adversarial images which human annotator label with its
original label, so adversarial noise did not change the underlying label of the input.

model to adversarial examples. Some adversarial images for the neural network trained with our
defense are shown in Figure 4. Adversarial examples are generated using Carlini and Wagner
[10] attack with default parameters. As we can observe, adversarial examples at the decision
boundary in Figure 4b are visually confusing. At the same time, high-confidence adversarial examples
in Figure 4c closely resemble natural images of the adversarial target. We propose to investigate and
compare various defenses based on how many of its adversarial “mistakes” are actual mistakes.

We conduct an experiment with human annotators on MTurk. We asked the workers to label
adversarial examples. Adversarial examples were generated from the test set using the proposed
attack. The attack’s target was set to class closest to the decision boundary and the target confidence
was set to the model’s confidence on the original examples. We split 10000 test images into 400
assignments. Each assignment was completed by one unique annotator. We report the results for four
defenses in Table 2. For the model trained without any defense, adversarial noise does not change the
label of the input. When the model is trained with our defense, the high-confidence adversarial noise
actually changes the label of the input.

6 Conclusion

In this paper, we introduce a novel approach for learning a robust classifier. Our defense is based
on the intuition that adversarial examples for the robust classifier should be indistinguishable from
the regular data of the adversarial target. We formulate a problem of learning robust classifier in the
framework of Generative Adversarial Networks. Unlike prior work based on robust optimization, our
method does not put any prior constraints on adversarial noise. Our method surpasses in terms of
robustness networks trained with adversarial training. In experiments with human annotators, we also
show that adversarial examples for our defense are indeed visually confusing. In the future work, we
plan to scale our defense to more complex datasets and apply it to the classification tasks in other
domains, such as audio or text.
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