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Abstract

Learning to make decisions from observed data in dynamic environments remains
a problem of fundamental importance in a number of fields, from artificial intelli-
gence and robotics, to medicine and finance. This paper concerns the problem of
learning control policies for unknown linear dynamical systems so as to maximize
a quadratic reward function. We present a method to optimize the expected value
of the reward over the posterior distribution of the unknown system parameters,
given data. The algorithm involves sequential convex programing, and enjoys
reliable local convergence and robust stability guarantees. Numerical simulations
and stabilization of a real-world inverted pendulum are used to demonstrate the
approach, with strong performance and robustness properties observed in both.

1 Introduction

Decision making for dynamical systems in the presence of uncertainty is a problem of great prevalence
and importance, as well as considerable difficulty, especially when knowledge of the dynamics is
available only via limited observations of system behavior. In machine learning, the data-driven
search for a control policy to maximize the expected reward attained by a stochastic dynamic process
is known as reinforcement learning (RL) [45]. Despite remarkable recent success in games [32, 43], a
major obstacle to the deployment RL-based control on physical systems (e.g. robots and self-driving
cars) is the issue of robustness, i.e., guaranteed safe and reliable operation. With the necessity of such
guarantees widely acknowledged [2], so-called ‘safe RL’ remains an active area of research [21].

The problem of robust automatic decision making for uncertain dynamical systems has also been
the subject of intense study in the area of robust control (RC) [57]. In RC, one works with a set
of plausible models and seeks a control policy that is guaranteed to stabilize all models within the
set. In addition, there is also a performance objective to optimize, i.e. a reward to be maximized, or
equivalently, a cost to be minimized. Such cost functions are usually defined with reference to either
a nominal model [20, 25] or the worst-case model [36] in the set. RC has been extremely successful
in a number of engineering applications [38]; however, as has been noted, e.g., [48, 35], robustness
may (understandably) come at the expense of performance, particularly for worst-case design.

The problem we address in this paper lies at the intersection of reinforcement learning and robust
control, and can be summarized as follows: given observations from an unknown dynamical system,
we seek a policy to optimize the expected cost (as in RL), subject to certain robust stability guarantees
(as in RC). Specifically, we focus our attention on control of linear time-invariant dynamical systems,
subject to Gaussian disturbances, with the goal of minimizing a quadratic function penalizing state
deviations and control action. When the system is known, this is the classical linear quadratic
regulator (LQR), a.k.a. H2, optimal control problem [8]. We are interested in the setting in which the
system is unknown, and knowledge of the dynamics must be inferred from observed data.
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Contributions and paper structure The principal contribution of this paper is an algorithm
to optimize the expected value of the linear quadratic regulator reward/cost function, where the
expectation is w.r.t. the posterior distribution of unknown system parameters, given observed
data; cf. Section 3 for a detailed problem formulation. Specifically, we construct a sequence of
convex approximations (upper bounds) to the expected cost, that can be optimized via semidefinite
programing [50]. The algorithm, developed in Section 4, invokes the majorize-minimization (MM)
principle [29], and consequently enjoys reliable convergence to local optima. An important part of
our contribution lies in guarantees on the robust stability properties of the resulting control policies,
cf. Section 4.3. We demonstrate the proposed method via two experimental case studies: i) the
benchmark problem on simulated systems considered in [17, 48], and ii) stabilization of a real-world
inverted pendulum. Strong performance and robustness properties are observed in both. Moving
forward, from a machine learning perspective this work contributes to the growing body of research
concerned with ensuring robustness in RL, cf. Section 2. From a control perspective, this work
appropriates cost functions more commonly found in RL (namely, expected reward) to a RC setting,
with the objective of reducing conservatism of the resulting robust control policies.

2 Related work

Incorporating various notions of ‘robustness’ into RL has long been an area of active research [21].
In so-called ‘safe RL’, one seeks to respect certain safety constraints during exploration and/or policy
optimization, for example, avoiding undesirable regions of the state-action space [22, 1]. A related
problem is addressed in ‘risk-sensitive RL’, in which the search for a policy takes both the expected
value and variance of the reward into account [31, 19]. Recently, there has been an increased interest
in notions of robustness more commonly considered in control theory, chiefly stability [35, 3]. Of
particular relevance is the work of [4], which employs Lyapunov theory [27] to verify stability of
learned policies. Like the present paper, [4] adopts a Bayesian framework; however, [4] makes use
of Gaussian processes [39] to model the uncertain nonlinear dynamics, which are assumed to be
deterministic. A major difference between [4] and our work is the cost function; in the former the
policy is selected by optimizing for worst-case performance, whereas we optimize the expected cost.

Robustness of data-driven control has also been the focus of a recently developed family of methods
referred to as ‘coarse-ID control’, cf. [47, 17, 7, 44], in which finite-data bounds on the accuracy
of the least squares estimator are combined with modern robust control tools, such as system level

synthesis [55]. Coarse-ID builds upon so-called ‘H1 identification’ methods for learning models
of dynamical systems, along with error bounds that are compatible with robust synthesis methods
[26, 14, 13]. H1 identification assumes an adversarial (i.e. worst-case) disturbance model, whereas
Coarse-ID is applicable to probabilistic models, such as those considered in the present paper. Of
particular relevance to the present paper is [17], which provides sample complexity bounds on the
performance of robust control synthesis for the infinite horizon LQR problem, when the true system
is not known. Such bounds necessarily consider the worst-case model, given the observed data, where
as we are concerned with expected cost over the posterior distribution of models.

This approach of controller synthesis w.r.t. distributions over models has much in common with
the field of probabilistic robust control [11, 46]. Early work in this area applied statistical learning
theory [53] to randomized algorithms for feasibility analysis and policy design, cf. e.g., [51, 52]. Of
particular relevance to the present paper is the so-called ‘scenario approach’ to control: robustness
requirements lead to semi-infinite convex programs, which are approximated by sampling a finite
number of constraints, cf. e.g., [9, 10]. A key focus of the scenario approach is bounding sample
complexity (i.e., the number of sampled constraints required to ensure some probability of feasibility),
without resorting to statistical learning theory, so as to reduce conservatism.

In closing, we briefly mention the so-called ‘Riemann-Stieltjes’ class of optimal control problems,
for uncertain continuous-time dynamical systems, cf. e.g., [41, 40]. Such problems often arise in
aerospace applications (e.g. satellite control) where the objective is to design an open-loop control
signal (e.g. for an orbital maneuver) rather than a feedback policy.
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3 Problem formulation

In this section we describe in detail the specific problem that we address in this paper. The following
notation is used: Sn denotes the set of n ⇥ n symmetric matrices; Sn+ (Sn++) denotes the cone of
positive semdefinite (positive definite) matrices. A ⌫ B denotes A�B 2 Sn+, similarly for � and
Sn++. The trace of A is denoted tr A. The transpose of A is denoted A

0. |a|2Q is shorthand for a0Qa.
The convex hull of set ⇥ is denoted conv⇥. The set of Schur stable matrices is denoted S .

Dynamics, reward function and policies We are concerned with control of discrete linear time-
invariant dynamical systems of the form

xt+1 = Axt +But + wt, wt ⇠ N (0,⇧), (1)
where xt 2 Rnx , ut 2 Rnu , and wt 2 Rnw denote the state, input, and unobserved exogenous
disturbance at time t, respectively. Let ✓ := {A,B,⇧}. Our objective is to design a feedback control
policy ut = �(xt) that minimizes the cost function limT!1

1
T

PT
t=0 E [x0

tQxt + u
0
tRut], where

xt evolves according to (1), and Q ⌫ 0 and R � 0 are user defined weight matrices. A number of
different parametrizations of the policy � have been considered in the literature, from neural networks
(popular in RL, e.g., [4]) to causal (typically linear) dynamical systems (common in RC, e.g., [36]).
In this paper, we will restrict our attention to static-gain policies of the form ut = Kxt, where
K 2 Rnu⇥nx is constant. As noted in [17], controller synthesis and implementation, is simpler (and
more computationally efficient) for such policies. When the parameters of the true system, denoted
✓tr := {Atr, Btr,⇧tr}, are known this is the infinite horizon LQR problem, the optimal solution of
which is well-known [5]. We assume that ✓tr is unknown; rather, our knowledge of the dynamics
must be inferred from observed sequences of inputs and states.

Observed data We adopt the data-driven setup used in [17], and assume that D := {x
r
0:T , u

r
0:T }

N
r=1

where x
r
0:T = {x

r
t}

T
t=0 is the observed state sequence attained by evolving the true system for T

time steps, starting from an arbitrary x
r
0 and driven by arbitrary input ur

0:T = {u
r
t}

T
t=0. Each of

these N independent experiments is referred to as a rollout. We perform parameter inference in the
offline/batch setting; i.e., all data D is assumed to be available at the time of controller synthesis.

Optimization objective Given observed data and, possibly, prior knowledge of the system, we
then have the posterior distribution over the model parameters denoted ⇡(✓) := p(A,B,⇧|D), in
place of the true parameters ✓tr. The function that we seek to minimize is the expected cost w.r.t. the
posterior distribution, i.e.,

lim
T!1

1

T

TX

t=0

E [x0
tQxt + u

0
tRut | xt+1 = Axt +But + wt, wt ⇠ N (0,⇧) , {A,B,⇧} ⇠ ⇡(✓)] .

(2)
In practice, the support of ⇡ almost surely contains {A,B} that are unstabilizable, which implies
that (2) is infinite. Consequently, we shall consider averages over confidence regions w.r.t. ⇡. For
convenience, let us denote the infinite horizon LQR cost, for given system parameters ✓, by

J(K|✓) := lim
t!1

E [x0
t(Q+K

0
RK)xt | xt+1 = (A+BK)xt + wt, w ⇠ N (0,⇧)] (3a)

=

⇢
tr X⇧ with X = (A+BK)0X(A+BK) +Q+K

0
RK, A+BK 2 S

1, otherwise,
(3b)

where the second equality follows from standard Gramian calculations, and S denotes the set of
Schur stable matrices. As an alternative to (2) we may consider a cost function like J

c(K) :=R
⇥c J(K|✓)⇡(✓)d✓, where ⇥c denotes a c % confidence region of the parameter space w.r.t. the

posterior ⇡. Though better suited to optimization than (2), which is almost surely infinite, this integral
cannot be evaluated in closed form, due to the complexity of J(·|✓) w.r.t. ✓. Furthermore, there is
still no guarantee that ⇥c contain only stabilizable models. To circumvent both of these issues, we
propose the following Monte Carlo (MC) approximation of Jc(K),

J
c
M (K) :=

1

M

XM

i=1
J(K|✓i), ✓i ⇠ ⇥c

\M, i = 1, . . . ,M, (4)

where M is the number of samples used, and M denotes the set of stabilizable {A,B}. Note that (4)
is not a true MC approximation of Jc(K) as only stabilizable samples {Ai, Bi} 2M are used.
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Posterior distribution Given data D, the parameter posterior distribution is given by Bayes’ rule:

⇡(✓) := p(✓|D) =
1

p(D)
p(D|✓)p(✓) / p(✓)

YN

r=1

YT

t=1
p(xr

t |x
r
t�1, u

r
t�1, ✓) =: ⇡̄(✓), (5)

where p(✓) denotes our prior belief on ✓, p(xr
t |x

r
t�1, u

r
t�1, ✓) = N

�
Ax

r
t�1 +Bu

r
t�1,⇧

�
, and

⇡̄ = p(D)⇡ denotes the unnormalized posterior. To sample from ⇡, we can distinguish between two
different cases. First, consider the case when ⇧tr is known or can be reliably estimated independently
of {A,B}. This is the setting in, e.g., [17]. In this case, the likelihood can be equivalently expressed as
a Gaussian distribution over {A,B}. Then, when the prior p(A,B) is uniform (i.e. non-informative)
or Gaussian (self-conjugate), the posterior p(A,B|⇧tr,D) is also Gaussian, cf. Appendix A.1.1.
Second, consider the general case in which ⇧tr, along with {A,B}, is unknown. In this setting, one
can select from a number of methods adapted for Bayesian inference in dynamical systems, such as
Metropolis-Hastings [33], Hamiltonian Monte Carlo [15], and Gibbs sampling [16, 56]. When one
places a non-informative prior on ⇧ (e.g., p(⇧) / det(⇧)�

nx+1
2 ), each iteration of a Gibbs sampler

targeting ⇡ requires sampling from either a Gaussian or an inverse Wishart distribution, for which
reliable numerical methods exist; cf. Appendix A.1.2. In both of these cases we can sample from
⇡ and evaluate ⇡̄ point-wise. To draw ✓i ⇠ ⇥c

\M, as in (4), we can first draw a large number of
samples from ⇡, discard the (100�c)% of samples with the lowest unnormalized posterior values,
and then further discard any samples that happen to be unstabilizable. For convenience, we define
⇥̃c

M := {{✓i}
M
i=1 : ✓i ⇠ ⇥c

\M, i = 1, . . . ,M}, which should be interpreted as a set of M
realizations of this procedure for sampling ✓i ⇠ ⇥c

\M.

Summary We seek the solution of the optimization problem minK J
c
M (K) for K 2 Rnu⇥nx .

4 Solution via semidefinite programing

In this section we present the principal contribution of this paper: a method for solving minK J
c
M (K)

via convex (semidefinite) programing (SDP). It is convenient to consider an equivalent representation

min
K, {Xi}M

i=12Snx
++

1

M

XM

i=1
tr Xi⇧i, (6a)

s.t. Xi ⌫ (Ai +BiK)0Xi(Ai +BiK) +Q+K
0
RK, {Ai, Bi,⇧i} 2 ⇥̃c

M , (6b)

where the Comparison Lemma [34, Lecture 2] has been used to replace the equality in (3b) with the
inequality in (6b). We introduce the notation Sn✏ := {S 2 Sn : S ⌫ ✏I, S � µI}, where ✏ and µ are
arbitrarily small and large positive constants, respectively. Sn✏ serves as a compact approximation of
Sn++, suitable for use with SDP solvers, i.e., S 2 Sn✏ =) S 2 Sn++.

4.1 Common Lyapunov relaxation

The principal challenge in solving (6) is that the constraint (6b) is not jointly convex in K and X
i.

The usual approach to circumventing this nonconvexity is to first apply the Schur complement to
(6b), and then conjugate by the matrix diag(X�1

i , I, I, I), which leads to the equivalent constraint
2

664

X
�1
i X

�1
i (Ai +BiK)0 X

�1
i Q

1/2
X

�1
i K

0

(Ai +BiK)X�1
i X

�1
i 0

Q
1/2

X
�1
i 0 I 0

KX
�1
i 0 0 R

�1

3

775 ⌫ 0. (7)

With the change of variables Yi = X
�1
i and Li = KX

�1
i , (7) becomes an linear matrix inequality

(LMI), in Yi and Li. This approach is effective when M = 1 (i.e. we have a single nominal system,
as in standard LQR). However, when M > 1 we cannot introduce a new Yi for each X

�1
i , as we lose

uniqueness of the controller K in Li = KX
�1
i , i.e., in general LiY

�1
i 6= LjY

�1
j for i 6= j. One

strategy (prevalent in robust control, e.g., [17, §C]) is to employ a ‘common Lyapunov function’,
i.e., Y = X

�1
i for all i = 1, . . . ,M . This gives the following convex relaxation (upper bound) of
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problem (6),

min
K, Y 2Snx

✏ , {Zi}M
i=12Snx

tr Zi, (8a)

s.t.


Z
i

Gi

G
0
i Y

�
⌫ 0,

2

664

Y Y A
0
i + L

0
B

0
i Y Q

1/2
L
0

AiY +BiL Y 0
Q

1/2
Y 0 I 0

L 0 0 R
�1

3

775 ⌫ 0, ✓i 2 ⇥̃c
M , (8b)

where Gi denotes the Cholesky factorization of ⇧i, i.e., ⇧i = GiG
0
i, and {Z

i
}
M
i=1 are slack variables

used to encode the cost (6a) with the change of variables, i.e.,

min
Y

tr Y �1⇧i 
�
min
Y,Zi

tr Zi s.t. Zi ⌫ G
0
iY

�1
Gi

 
() min

Y,Zi

tr Zi s.t.


Zi Gi

G
0
i Y

�
⌫ 0.

The approximation in (8) is highly conservative, which motivates the iterative local optimization
method presented in Section 4.2. Nevertheless, (8) provides a principled way (i.e., a one-shot convex
program) to initialize the iterative search method derived in Section 4.2.

4.2 Iterative improvement by sequential semidefinite programing

To develop this iterative search method first consider an equivalent representation of J(K|✓i),

J(K|✓i) = min
Xi2Snx

✏

tr Xi⇧i (9a)

s.t.

2

4
Xi �Q (Ai +BiK)0 K

0

Ai +BiK X
�1
i 0

K 0 R
�1

3

5 ⌫ 0, recall: ✓i = {Ai, Bi,⇧i}. (9b)

This representation highlights the nonconvexity of J(K|✓i) due to the X�1
i term, which was addressed

(in the usual way) by a change of variables in Section 4.1. In this section, we will instead replace X�1
i

with a linear approximation and prove that this leads to a tight convex upper bound. Given S 2 Sn++,
let T (S, S0) denote the first order (i.e. linear) Taylor series approximation of S

�1 about some
nominal S0 2 Sn++, i.e., T (S, S0) := S

�1
0 + @S�1

@S

���
S=S0

(S � S0) = S
�1
0 � S

�1
0 (S � S0)S

�1
0 .

We now define the function

Ĵ(K, K̄|✓i) := min
Xi2Snx

✏

tr Xi⇧i (10a)

s.t.

2

4
Xi �Q (Ai +BiK)0 K

0

Ai +BiK T (Xi, X̄i) 0
K 0 R

�1

3

5 ⌫ 0, (10b)

where X̄i is any Xi 2 Snx
✏ that achieves the minimum in (9), with K = K̄ for some nominal K̄, i.e.,

J(K̄|✓i) = tr X̄i⇧i. Analogously to (4), we define

Ĵ
c
M (K, K̄) :=

1

M

X
✓i2⇥̃c

M

Ĵ(K, K̄|✓i). (11)

We now show that Ĵc
M (K, K̄) is a convex upper bound on J

c
M (K), which is tight at K = K̄. The

proof is given in A.2.2 and makes use of the following technical lemma (cf. A.2.1 for proof),
Lemma 4.1. T (S, S0) � S

�1
for all S, S0 2 Sn++, where T (S, S0) denotes the first-order Taylor

series expansion of S
�1

about S0 .

Theorem 4.1. Let Ĵ
c
M (K, K̄) be defined as in (11), with K̄ such that J

c
M (K̄) is finite. Then

Ĵ
c
M (K, K̄) is a convex upper bound on J

c
M (K), i.e., Ĵ

c
M (K, K̄) � J

c
M (K) 8K. Furthermore, the

bound is ‘tight’ at K̄, i.e., Ĵ
c
M (K̄, K̄) = J

c
M (K̄).

Iterative algorithm To improve upon the common Lyapunov solution given by (8), we can solve
a sequence of convex optimization problems: K(k+1) = argminK Ĵ

c
M (K,K

(k)), cf. Algorithm 1
for details. This procedure of optimizing tight surrogate functions in lieu of the actual objective
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function is an example of the ‘majorize-minimization (MM) principle’, a.k.a. optimization transfer
[29]. MM algorithms enjoy good numerical robustness, and (with the exception of some pathological
cases) reliable convergence to local minima [49]. Indeed, it is readily verified that Jc

M (K(k)) =
Ĵ
c
M (K(k)

,K
(k)) � Ĵ

c
M (K(k+1)

,K
(k)) � J

c
M (K(k+1)), where equality follows from tightness of

the bound, and the second inequality is due to the fact that Ĵc
M (K,K

(k)) is an upper bound. This
implies that {Jc

M (K(k))}1k=1 is a converging sequence.

Before proceeding, let us comment briefly on the computational complexity of the approach, which
will be dominated by the convex program minK Ĵ

c
M (K, K̄) in (11). The complexity of each iteration

of an interior point method for solving this problem is O(max{m3
,Mmn

3
,Mm

2
n
2
}), cf. e.g. [30,

§2], where m = nxnu +Mnx(nx + 1)/2 denotes the dimensionality of the decision variable, and
n = 2nx + nu denotes the dimension of the LMI in (10b). It has been observed that the number of
iterations required for convergence grows slowly with problem dimension [50]. For computation
times on numerical examples, refer to Table 2.

Algorithm 1 Optimization of Jc
M (K) via semidefinite programing

1: Input: observed data D, confidence c, LQR cost matrices Q and R, number of particles in Monte
Carlo approximation M , convergence tolerance ✏.

2: Generate M samples from ⇥c
\M, i.e., ⇥̃c

M , using the appropriate Bayesian inference method
from Section 3.

3: Solve (8). Let Kcl denote the optimal solution of (8). Set K(0)
 1, K(1)

 Kcl and k  1.
4: while |J

c
M (K(k))� J

c
M (K(k�1))| > ✏ do

5: Solve K
⇤ = argminK Ĵ

c
M (K,K

(k)). Set K(k+1)
 K

⇤ and k  k + 1.
6: end while

7: return K
(k) as the control policy.

Remark 4.1. This sequential SDP approach can be applied in other robust control settings, e.g.,

mixed H2/H1 [20], to improve on the common Lyapunov solution, cf. Section5.1 for an illustration.

4.3 Robustness

Hitherto, we have considered the performance component of the robust control problem, namely
minimization of the expected cost; we now address the robust stability requirement. It is desirable for
the learned policy to stabilize every model in the confidence region ⇥c; in fact, this is necessary for
the cost Jc(K) to be finite. Algorithm 1 ensures stability of each of the M sampled systems from
⇥̃c

M , which implies that � stabilizes the entire region as M ! 1. However, we would like to be
able to say something about robustness for finite M . To this end, we make two remarks. First, if
closed-loop stability of each sampled model is verified with a common Lyapunov function, then the
policy stabilizes the convex hull of the sampled systems:

Theorem 4.2. Suppose there exists K 2 Rnx⇥nu such that (Ai+BiK)0X(Ai+BiK)�X � 0 for

X � 0 and all ⇥ = {Ai, Bi}
N
i=1. Then (A+BK)0X(A+BK)�X � 0 for all {A,B} 2 conv⇥,

where conv⇥ denotes the convex hull of ⇥.

The proof of Theorem 4.2 is given in A.2.3. The conditions of Theorem 4.2 hold for the common
Lyapunov approach in (8), and can be made to hold for Algorithm 1 by introducing an additional
Lyapunov stability constraint (with common Lyapunov function) for each sampled system, at the
expense of some conservatism. Second, we observe empirically that Algorithm 1 returns policies
that very nearly stabilize the entire region ⇥c, despite a very modest number of samples M relative
to the dimension of the parameter space, cf. Section5.1, in particular Figure 2. In principle, results
from probabilistic robust control could be used to bound the number of samples required for such
robustness properties, cf. e.g., [9, Theorem 1], however, at least for the examples in this paper, such
bounds appear to be quite conservative. Furthermore, a number of recent papers have investigated
sampling (or grid) based approaches to stability verification of control policies, e.g., [54, 4, 6].
Understanding why policies from Algorithm 1 generalize effectively to the entire region ⇥c, as well
as clarifying connections to probabilistic robust control, are interesting topics for future research.
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5 Experimental results

5.1 Numerical simulations using synthetic systems

In this section, we study the infinite horizon LQR problem specified by

Atr = toeplitz(a, a0), a = [1.01, 0.01, 0, . . . , 0] 2 Rnx , Btr = I, ⇧tr = I, Q = 10�3
I, R = I,

where toeplitz(r, c) denotes the Toeplitz matrix with first row r and first colum c. This is the same
problem studied in [17, §6] (for nx = 3), where it is noted that such dynamics naturally arise in
consensus and distributed averaging problems. To obtain problem data D, each rollout involves
simulating (1), with the true parameters, for T = 6 time steps, excited by ut ⇠ N (0, I) with x0 = 0.
Note: to facilitate comparison with [17], we too shall assume that ⇧tr is known. Furthermore, for all
experiments ⇥c will denote a 95% confidence region, as in [17]. We compare the following methods
of control synthesis: existing methods: (i) nominal: standard LQR using the nominal model from
the least squares, i.e., {Als, Bls} := argminA,B

PN
r=1

PT
t=1|x

r
t �Ax

r
t�1�Bu

r
t�1|

2; (ii) worst-case:
optimize for worst-case model (95% confidence) s.t. robust stability constraints, i.e., the method
of [17, §5.2]; (iii) H2/H1: enforce stability constraint from [17, §5.2], but optimize performance
for the nominal model {Als, Bls}; proposed method(s): (iv) CL: the common Lyapunov relaxation
of 8; (v) proposed: the method proposed in this paper, i.e., Algorithm 1; additional new methods:

(vi) alternate-r: initialize with the H2/H1 solution, and apply the iterative optimization method
proposed in Section 4.2, cf. Remark 4.1; (vii) alternate-s: optimize for the nominal model {Als, Bls},
enforce stability for the sampled systems in ⇥̃c

M . Before proceeding, we wish to emphasize that
the different control synthesis methods have different objectives; a lower cost does not mean that
the associated method is ‘better’. This is particularly true for worst-case which seeks to optimize
performance for the worst possible model so as to bound the cost on the true system.

To evaluate performance, we compare the cost of applying a learned policy K to the true system
✓tr = {Atr, Btr}, to the optimal cost achieved by the optimal controller Klqr (designed using ✓tr),
i.e., J(K|✓tr)/J(Klqr|✓tr). We refer to this as ‘LQR suboptimality.’ In Figure 1 we plot LQR
suboptimality is shown as a function of the number of rollouts N , for nx = 3. We make the following
observations. Foremost, the methods that enforce stability ‘stochastically’ (i.e. point-wise), namely
proposed and alternate-s, attain significantly lower costs than the methods that enforce stability
‘robustly’. Furthermore, in situations with very little data, e.g. N = 5, the robust control methods are
usually unable to find a stabilizing controller, yet the proposed method finds a stabilizing controller
in the majority of trials. Finally, we note that the iterative procedure in proposed (and alternate-s)
significantly improves on the common-Lyapunov relaxation CL; similarly, alternate-r consistently
improves upon H2/H1 (as expected).
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Figure 1: LQR suboptimality as a function of the number of rollouts (i.e. amount of training data).
1 suboptimality denotes cases in which the method was unable to find a stabilizing controller for
the true system (including infeasibility of the optimization problem for policy synthesis), and the %
denotes the frequency with which this occurred for the 50 experimental trials conducted.
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Table 1: Median % of unstable closed-loop models, with open-loop models sampled from a 95%
confidence region of the posterior, for system of varying dimension nx; cf. Section 5.1 for details. 50
experiments were conducted, with N = 50. The policy synthesis optimization problems were always
feasible, except for the worst-case method, which was infeasible in 46% of trials when nx = 12.
H2/H1 and alternate-r have the same robustness guarantees as worst-case, and are omitted.

nx optimal nominal worst-case CL proposed alternate-s

3 61.6 28.75 0 0 0.10 1.35
6 95.37 58.41 0 0 0.18 1.76
9 99.6 81.9 0 0 0.24 1.40
12 100 94.28 0 0 0.27 1.27

Table 2: Mean computation times in seconds for control synthesis for system of varying dimension
nx; cf. Section 5.1 for details. 50 experiments were conducted, with N = 50.

nx worst-case H2/H1 CL proposed alternate-s

3 1.91 0.159 0.605 20.3 4.56
6 2.05 0.173 0.962 28.9 13.4
9 2.51 0.208 1.79 48.1 27.1
12 3.72 0.329 3.90 96.8 62.9

It is natural to ask whether the reduction in cost exhibited by proposed (and alternate-s) come at
the expense of robustness, namely, the ability to stabilize a large region of the parameter space.
Empirical results suggest that this is not the case. To investigate this we sample 5000 fresh (i.e. not
used for learning) models from ⇥c

\M and check closed-loop stability of each; this is repeated for
50 independent experiments with varying nx and N = 50. The median percentage of models that
were unstable in closed-loop is recorded in Table 1. We make two observations: (i) the proposed

method exhibits strong robustness. Even for nx = 12 (i.e., 288-dim parameter space), it stabilizes
more than 99% of samples from the confidence region, with only M = 100 MC samples. (ii) when
the robust methods (worst-case, H2/H1, alternate-r) are feasible, the resulting policies were found
to stabilize 100% of samples; however, for nx = 12, the methods were infeasible almost half the
time, whereas proposed always returned a policy. Further evidence is provided in Figure 2, which
plots robustness and performance as a function of the number of MC samples, M . For nx = 3
and M � 800, the entire confidence region is stabilized with very high probability, suggesting that
M !1 is not required for robust stability in practice.
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Figure 2: (left) Median % of unstable closed-loop models, with open-loop models sampled from
a 95% confidence region of the posterior, for nx = 3 and N = 15, as a function of the number of
samples M used in the MC approximation (4). (right) LQR suboptimality as a function of M . 50
experiments were conducted, cf. Section5.1 for details. Shaded regions cover the interquartile range.
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Figure 3: (a) (Median) LQR cost on real-world pendulum experiment, as a function of the number
of rollouts. 1 cost denotes controllers that resulted in instability during testing. n/a denotes cases
in which the synthesis problem was infeasible. Five trials were conducted to evaluate the cost of
each policy. The shaded region spans from the minimum to maximum cost. Note: for this particular
experiment, the nominal models from least squares happened to yield stabilizing controllers that
offered good performance. Such behavior is not to be expected in general, cf. Figure 1. (b) pendulum
angle and control signal recorded after 10 rollouts.

5.2 Real-world experiments on a rotary inverted pendulum

We now apply the proposed algorithm to the classic problem of stabilizing a (rotary) inverted
pendulum, on real (i.e. physical) hardware (Quanser QUBE 2), cf. A.3 for details. To generate
training data, the superposition of a non-stabilizing control signal and a sinusoid of random frequency
is applied to the rotary arm motor while the pendulum is inverted. The arm and pendulum angles
(along with velocities) are sampled at 100Hz until the pendulum angle exceeds 20�, which takes
no more than 5 seconds. This constitutes one rollout. We applied the worst-case, H2/H1, and
proposed methods to optimize the LQ cost with Q = I and R = 1. To generate bounds ✏A �

kAls � Atrk2 and ✏B � kBls � Btrk2 for worst-case and H2/H1, we sample {Ai, Bi}
5000
i=1 from a

95% confidence region of the posterior, using Gibbs sampling, and take ✏A = maxi kAls � Aik2

and ✏B = maxi kBls �Bik2. The proposed method used 100 such samples for synthesis. We also
applied the least squares policy iteration method [28], but none of the policies could stabilize the
pendulum given the amount of training data. Results are presented in Figure 3, from which we make
the following remarks. First, as in Section5.1, the proposed method achieves high performance
(low cost), especially in the low data regime where the magnitude of system uncertainty renders the
other synthesis methods infeasible. Insight into this performance is offered by Figure 3(b), which
indicates that policies from the proposed method stabilize the pendulum with control signals of
smaller magnitude. Second, performance of the proposed method converges after very few rollouts.
Data-inefficiency is a well-known limitation of RL; understanding and mitigating this inefficiency is
the subject of considerable research [17, 48, 18, 42, 23, 24]. Investigating the role that a Bayesian
approach to uncertainty quantification plays in the apparent sample-efficiency of the proposed method
is an interesting topic for further inquiry.
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