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Abstract

How humans make repeated choices among options with imperfectly known reward
outcomes is an important problem in psychology and neuroscience. This is often
studied using multi-armed bandits, which is also frequently studied in machine
learning. We present data from a human stationary bandit experiment, in which
we vary the average abundance and variability of reward availability (mean and
variance of the reward rate distribution). Surprisingly, we find subjects significantly
underestimate prior mean of reward rates — based on their self-report on their
reward expectation of non-chosen arms at the end of a game. Previously, human
learning in the bandit task was found to be well captured by a Bayesian ideal
learning model, the Dynamic Belief Model (DBM), albeit under an incorrect
generative assumption of the temporal structure — humans assume reward rates can
change over time even though they are truly fixed. We find that the “pessimism
bias” in the bandit task is well captured by the prior mean of DBM when fitted
to human choices; but it is poorly captured by the prior mean of the Fixed Belief
Model (FBM), an alternative Bayesian model that (correctly) assumes reward
rates to be constants. This pessimism bias is also incompletely captured by a
simple reinforcement learning model (RL) commonly used in neuroscience and
psychology, in terms of fitted initial Q-values. While it seems sub-optimal, and
thus mysterious, that humans have an underestimated prior reward expectation, our
simulations show that an underestimated prior mean helps to maximize long-term
gain, if the observer assumes volatility when reward rates are stable, and utilizes
a softmax decision policy instead of the optimal one (obtainable by dynamic
programming). This raises the intriguing possibility that the brain underestimates
reward rates to compensate for the incorrect non-stationarity assumption in the
generative model and a simplified decision policy.

1 Introduction

Humans and animals frequently have to make choices among options with imperfectly known
outcomes. This is often studied using the multi-armed bandit task [1} 2, 3]], in which the agent
repeatedly chooses among bandit arms with fixed but unknown reward probabilities. In a bandit
setting, only the outcome of the chosen arm is observed in a given trial. The decision-maker learns
how rewarding an arm is by choosing it and observing whether it produces a reward, thus each choice
pits exploitation against exploration since it affects not only the immediate reward outcome but also
the longer-term information gain. Previously, it has been shown that human learning in the bandit
task is well captured by a Bayesian ideal learning model [4], the Dynamic Belief Model (DBM) [5],
which assumes the reward rate distribution to undergo occasional and abrupt changes. While DBM
assumes non-stationarity, an alternative Bayesian model, the Fixed Belief Model (FBM), assumes the
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environmental statistics to be fixed, which is usually consistent with the experimental setting. Previous
studies have shown that DBM predicts trial-wise human behavior better than FBM in a variety of
behavioral tasks (2-alternative forced choice [3]], inhibitory control [6, [7], and visual search [8]]),
including the bandit task [4] — this occurs despite the task statistics being fixed during the task. While
it has been argued that a default assumption of high volatility helps the observer to better adapt to
truly volatile natural environments [5], and computationally true change-points are difficult to discern
given the noisy binary/categorical observations in these tasks [9]], it has nevertheless remained rather
mysterious why humans would persist in making this assumption contrary to observed environmental
statistics. In this work, we tackle this problem using a revised version of the classical bandit task.

In our experiment, we vary average reward abundance and variability to form four different reward
environments. Previous multi-armed bandit studies using binary reward outcomes have typically
utilized a neutral reward environment [3, 4} [10, [11}112], i.e. the mean of the reward rates of all the
options across games/blocks is 0.5. Here, we manipulate and partially inform the participants of the
true generative prior distribution of reward rates in four different environments: high/low abundance,
high/low variance. Notably, the information provided about reward availability is not specific to
the arms in a deterministic way as in some previous studies [[13]], but rather independently affect all
arms within the environment. Our goal is to examine how humans adapt their decision-making to
different reward environments. Particularly, we focus on whether human participants have veridical
prior beliefs about reward rates. To gain greater computational insight into human learning and
decision making, we compare several previously proposed models in their ability to capture the
human trial-by-trial choices as well as self-report data.

Specifically, we consider two Bayesian learning models, DBM and FBM [J]], as well as a simple
reinforcement learning model (RL) — the delta rule [[14]], all coupled with a softmax decision policy.
Because FBM (correctly) assumes the reward structure to remain fixed during a game, it updates
the posterior mean by weighing new observations with decreasing coefficients, as the variance of
the posterior distribution decreases over time. In contrast, by assuming the reward rates to have a
(small) fixed probability of being redrawn from a prior distribution on each trial, DBM continuously
updates the posterior reward rate distribution by exponentially forgetting past observations, and
injecting a fixed prior bias [5, 9]. FBM can be viewed as a special case of DBM, whereby the
probability of redrawing from the prior distribution is zero on each trial. RL has been widely used in
the neuroscience literature [3} 15} [16], and dopamine has been suggested to encode the prediction
error incorporated in the RL model [15}[17]. DBM is related to RL in that the stability parameter
of DBM also controls the exponential weights as the learning rate parameter of RL does, but two
models are not mathematically equivalent. In particularly, RL has no means of injecting a prior
bias on each trial, as DBM does [5} 9]]. For the decision policy, we employ a variant of the softmax
policy, which is popular in psychology and neuroscience, and has been frequently used to model
human behavior in the bandit task [[1} 3} [11} [12} [18] — our variant is polynomial rather than the more
common exponential form, such that a polynomial exponent of one corresponds to exact “matching”
[8l], whereas the exponential form has no setting equivalent to matching.

In the following, we first describe the experiment and some model-free data analyses (Sec. [2), then
present the model and related analyses (Sec. [3)), and finally discuss the implications of our work and
potential future directions (Sec. ).

2 Experiment

Experimental design. We recruited 107 UCSD students to participate in a four-armed, binary
outcomes (success/fail) bandit task, with 200 games in total played by each participant. Each game
contains 15 trials, i.e. 15 decision in sequence choosing among the same four options, where reward
rates are fixed throughout 15 trials. On each trial, a participant is shown four arms along with their
previous choice and reward histories in the game (Fig. 1A); the chosen arm produces a reward or
failure based on its (hidden) reward probability. Thirty-two participants were required to report their
estimate of the reward rates of the never-chosen arms at the end of each game. Participants received
course credits and $0.05 for every point earned in five randomly chosen games (amounts paid ranged
from $1.15 to $4.90, with an average of $1.99).

We separated the 200 games into four consecutive environments (sessions), with 50 games each, and
provided a clear indication that the participant was entering a new environment. Each environment
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Figure 1: Experimental design. (A) Experimental interface. The total number of attempts so far, total
reward, current environment, and the cumulative reward of each option are shown to the subjects on
each trial during the experiment. The four panels correspond to the four options (arms). A green
circle represents a success (1 point), and a red circle represents a failure (0 point). (B) An example of
the fishing report: the numbers represent the total number of fish caught out of 10 attempts at each of
the 20 random locations in the environment.

corresponds to a setting of high/low abundance and high/low variance. For any game within a given
environment, the reward rates of the four arms are identically and independently pre-sampled from
one of four Beta distributions: Beta(4, 2), Beta(2, 4), Beta(30, 15) and Beta(15, 30). These Beta
distributions represent the prior distribution of reward rates, where the high/low mean (0.67/0.33) and
high/low standard deviation (0.18/0.07) of the distributions correspond to high/low abundance and
high/low variability of the environment respectively. The order of the four environments, as well as
the order of the pre-sampled reward rates in each environment, are randomized for each subject.

We portrayed the task as an ice fishing contest, where the four arms represent four fishing holes.
Participants are informed that the different camps (games) they fish from residing on four different
lakes (environments) that vary in (a) overall abundance of fish, and (b) variability of fish abundance
across locations. Each environment is presented along with the lake’s fishing conditions (high/low
abundance, high/low variance) and samples from the reward distribution (a fishing report showing the
number of fish caught out of ten attempts at 20 random locations in the lake (Fig. 1B)).

Results. The reported reward rates of the never-chosen arms are shown in Fig. 2A. Human subjects
reported estimates of reward rate significantly lower than the true generative prior mean (p < .001),
except in low abundance and low variance environment (p = 0.2973). The average reported estimates
across the four reward environments are not significantly different (F'(3,91) = 1.78,p = 0.1570),
nor across different mean, variance or the interaction (mean: F'(1,91) = 2.93, p = 0.0902, variance:
F(1,91) = 0.23,p = 0.6316, interaction: F'(1,91) = 1.77, p = 0.1870). This result indicates that
humans do not alter their prior belief about the reward rates even when provided with both explicit
(verbal) and implicit (sampled) information about the reward statistics of the current environment.
In spite of systematically underestimating expected rewards, our participants appear to perform
relatively well in the task. The actual total reward accrued by the subjects are only slightly lower than
the optimal algorithm utilizing the correct Bayesian inference and the dynamic-programming-based
optimal decision policy (Fig. 2B); humans also perform significantly better than the chance level
attained by a random policy (p < .001, see Fig. 2B), which is equal to the generative prior mean of
the reward rates. Thus, participants experience empirical reward rates higher than the generative prior
mean (since they eared more than the random policy); nevertheless, they significantly underestimate
the mean reward rates.

3 Models

How do humans achieve relatively good performance with an “irrationally” low expectation of reward
rates? We attempt to gain some insight into human learning and decision-making processes in bandit
task via computational modeling. We consider three learning models, DBM, FBM, and RL, coupled
with softmax decision policy. In the following, we first formally describe the models (Sec. [3.1)), then
compare their ability to explain/predict the data (Sec. [3.2)), and finally present simulation results
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Figure 2: Error bars: s.e.m. across participants or validation runs. (+M, -V) denotes high mean
(abundance), low variance, and so on. (A) Reported reward rate estimates by human subjects (orange),
and fitted prior mean of DBM (blue), FBM (purple), and RL (green). Dotted lines: the true generative
prior mean (0.67/0.33 for high/low abundance environments). (B) Reward rates earned by human
subjects (orange), and expected reward rate of the optimal policy (brown) and a random choice policy
(gray). (C) Averaged per-trial likelihood of 10-fold cross validation of three learning models. Dotted
line: the chance level (0.25). (D) Fitted softmax b and DBM ~ parameters.

to gain additional insights into what our experimental findings may imply about human cognition

(Sec. 331 [3:4).

3.1 Model description

We denote the reward rate of arm k at time ¢ as 6}, k € {1,2,3,4}, 1 < ¢t < 15, and 6" =
6%, 0%, 0%, 0%]. We denote the reward outcome at time tas R; € {0,1}, and R* = [Ry, Ra, ..., Ry].
We denote the decision at time tas Dy, D; € {1,2,3,4}, and D! = [Dy, D>, ..., Dy].

Dynamic belief model (DBM). As with the actual experimental design, DBM assumes that the
binary reward (1: reward, O: no reward) distribution of the chosen arm is Bernoulli. Unlike the actual
experimental design, where reward rates of a game are fixed, DBM assumes that the reward rate
(Bernoulli rate parameter) for each arm undergoes discrete, un-signaled changes independently with a
per-trial probability of 1 —~, 0 < < 1. The reward rate at time ¢ remains the same with probability
7, and is re-sampled from the prior distribution p®(¢) with probability 1 — ~. The observed data has
the distribution, P(R; = 1|0*,D; = k) = 6}.
The hidden variable dynamics of DBM is
p(0; = 0163 = 73(6; " = 0) + (1 —7)p°(6), ()

where §(z) is the Dirac delta function, and p°(6) is the assumed prior distribution.
The posterior reward rate distribution given the reward outcomes up to time ¢ can be computed
iteratively via Bayes’ rule as

p(0; IR, D") o p(R.|0})p(0}, /R, D), if D, = k. 2)
Only the posterior distribution of the chosen arm is updated with the new observation, while the

posterior distribution of the other arms are the same as the predictive reward rate distribution (see
below), i.e. p(0%|R?, D) = p(6% | R*~1, D!=1),if D; # k.

The predictive reward rate distribution at time ¢ given the reward outcomes up to time ¢ — 1 is a
weighted sum of the posterior probability and the prior probability:

p(0), = OR"" D) = p(6; " = R, D' 1) + (1 — 4)p°(6), forall k. A3)

The expected (mean predicted) reward rate of arm k at trial ¢ is 6%, = E[f%|R!~", D*~!]. DBM can
be well approximated by an exponential filter [5]], thus - is also related to the length of the integration
window as well as the exponential decay rate.

Fixed belief model (FBM). FBM assumes that the statistical environment remains fixed throughout
the game, e.g. the reward outcomes are Bernoulli samples generated from a fixed rate parameter 6. It
can be viewed as a special case of DBM with v = 1.

Reinforcement learning (RL). The update rule of a simple and commonly used reinforcement
learning model is
0f =07 +e(R, — 0,71, if Dy = k. “)



with an initial value 92 =0% and0 < e < 1. eis the learning parameter that controls the exponential
decay of the coefficients associated with the previous observations. In the multi-armed bandit task,

only the chosen arm is updated, while the other arms remain the same, i.e. 6t = éz_l, if Dy # k.

Softmax decision policy. We use a version of the softmax decision policy that assumes the choice
probabilities among the options to be normalized polynomial functions of the estimated expected
reward rates [8]], with a parameter b:

p(Dy = k) =

(6L)"
5)
(

~ b
DACHE
where K is the total number of options (K = 4), b > 0. When b = 0, the choice is at random, i.e.
p(D: = k) = 1/K for all options. When b = 1, it is exact matching [8]]. When b — oo, the most
rewarding option is always chosen. By varying the b parameter, the softmax policy is able to capture
more or less “noisy” choice behavior. However, we note that softmax ascribes unexplained variance
in choice behavior entirely to “noise”, when subject may indeed employ a much more strategic policy
whose learning and decision components are poorly captured by the model(s) under consideration.
Thus, smaller fitted b does not imply subjects are necessarily more noisy or care about rewards less; it
may simply mean that the model is less good at capturing subjects’ internal processes.

Optimal policy. The multi-armed bandit problem can be viewed as a Markov decision process,
where the state variable is the posterior belief after making each observation. The optimal solution to
the problem considered here can be computed numerically via dynamic programming [4} [19], where
the optimal learning model is FBM with the correct prior distribution. Previously, it has been shown
that human behavior does not follow the optimal policy [4]; nevertheless, it is a useful model to
consider in order to assess the performance of human subjects and the various other models in terms
of maximal expected total reward.

3.2 Model comparison

Here, we compare the three learning models to human behavior, in order to identify the best (of those
considered) formal description of the underlying psychological processes.

We first evaluate how well the three learning models fit human data. We perform 10-fold cross-
validation to avoid overfitting for comparison, since the models have different numbers of free
parameters. We use per-trial likelihood as the evaluation metric, calculated as exp(log £/N), where
L is the maximum likelihood of the data, and NN is the total data points. The pre-trial likelihood
can also be interpreted as the trial-by-trial predictive accuracy (i.e., on average, how likely is it
that the model will choose the same arm the human participant chose), so we will also refer to this
measurement as predictive accuracy. We fit prior weight (a 4 f3, related to precision) at the group
level. We fit prior mean («/ (o + 3)), DBM +, RL ¢, and softmax b parameters at the individual level,
and separately for the four reward environments. This fitting strategy predicts subjects’ choices better
than other variants that fit a shared parameter across participants or environments based on 10-fold
cross-validation, comparing per-condition fitting and common-parameter fitting. The cross-validation
mitigates against the over-fitting issue. Moreover, when the DBM ~ and softmax b are held fixed
across the four conditions for each participant, we find the same pattern of results as when those
parameters are allowed to vary across conditions (results not shown).

Fig. 2C shows the held-out per-trial likelihood for DBM, FBM, and RL, averaged across ten runs of
cross-validation. DBM achieves significantly higher per-trial likelihood than FBM (p < .001) and RL
(p < .001) based on paired t-test, i.e., predicting human behavior better than the other two models.
The predictive accuracy of three fitted models on the whole dataset are 0.4182 (DBM), 0.4038 (RL),
and 0.3856 (FBM). DBM also achieves lower BIC and AIC values than RL or FBM, in spite of
incurring a penalty for the additional parameter. This result corroborates previous findings [4] that
humans assume non-stationarity by default in the multi-armed bandit task, even though the reward
structure is truly stationary.

Next, we examine how well the learning models can recover the underestimation effect observed
in human participants. The reported estimation is on the arm(s) that they never chose at the end of
each game, which is their belief of the mean reward rate before any observation, i.e., mathematically
equivalent to the prior mean (DBM & FBM) or the initial value (RL). For simplicity, we will refer to
them all as the prior mean. Fig. 2A shows the average fitted prior mean of the models. FBM recovers



Table 1: Inferred RL learning rates

Model (+M, +V) +M, -V) (-M, +V) -M, -V)
RL 0.35 (SD=0.02) 0.39 (SD=0.02) 0.22 (SD=0.02) 0.25 (SD=0.02)

Table 2: Inferred softmax b

Model  (+M, +V) (+M, -V) (-M, +V) (M, -V)

RL 6.94 (SD=0.54)  5.41(SD=0.48)  5.72(SD=0.51) 5.07 (SD=0.51)
FBM 1228 (SD=0.58) 10.52 (SD=0.54) 6.25 (SD=0.42) 5.68 (SD=0.37)

prior mean values that are well correlated with the true generative prior means (r = +.96,p < 0.05),
and significantly different in the four environments (F'(3,424) = 13.47,p < .001). The recovered
prior means for RL are also significantly different in the four environments (F'(3,424) = 4.21,p <
0.01). In contrast, the recovered prior means for DBM are not significantly different in the four
environments (F'(3,424) = 0.91,p = 0.4350), just like human estimates (Fig. 2A). DBM also
recovers prior mean values in low abundance and high variance environment slightly lower than in
other environments, similar to human reports. In summary, DBM allows for better recovery of human
internal prior beliefs of reward expectation than FBM or RL.

Taking DBM as the best model for learning, we can then examine the other fitted learning and
decision-making parameters. A higher softmax b corresponds to a more myopic, less exploratory, and
less stochastic choice behavior. A lower DBM + corresponds to a higher change rate and a shorter
integration window of the exponential weights [5]]. The prior weight of DBM is fitted to six, which is
equivalent to six pseudo-observations before the task; it is also the same as the true prior weight in the
experimental design for the high variance environments. Fig. 3D shows the fitted DBM + and softmax
b in four reward environments. In high abundance environments, softmax b is fitted to larger values,
while DBM 7 is fitted to lower values, than the low abundance environments (four paired t-test,
p < .01 for all). They do not vary significantly across low- and high-variance environments (four
paired t-test, p > .05 for all). The fitted DBM + values imply that human participants behave as if they
believe the reward rates change on average approximately once every three trials in high-abundance
environments, and once every four trials in low-abundance environments (mean change interval is

1/(1-7)).

3.3 Simulation results: shift rate facing an unexpected loss

We simulated the models under the same reward rates as in the human experiment with the parameters
fitted to human data, averaged across participants. The fitted DBM ~ and the fitted softmax b for
DBM are shown in Figure. 2D. The fitted learning rate of RL is shown in Table 1, and the fitted
softmax b for FBM and RL are shown in Table 2.

To gain some insight into how DBM behaves differently than FBM and RL, and thus what it
implies about human psychological processes, we consider the empirical/simulated probability of the
participants/model switching away from a “winning” arm after it suddenly produces a loss (Fig. 3A).
Since DBM assumes reward rates can change any time, a string of wins followed by a loss indicates a
high probability of the arm switching to a low reward rate, especially with a low abundance prior
belief, where a switch is likely to result in a new reward rate that is also low. On the other hand, since
FBM assumes reward rates to be stable, it depends more on long-term statistics to estimate an arm’s
reward rate. Give observations of many wins, which leads to a relatively high reward rate estimate as
well as a relatively low uncertainty, a single loss should still induce in FBM a high probability of
sticking with the same arm. RL can adjust its reward estimate according to unexpected observations,
but is much slower than DBM in doing so since it has a constant learning rate that is not increased
when there is high posterior probability of a recent change point (as when a string of wins is followed
by a loss); RL also cannot persistently encode prior information about overall reward abundance in
the environment when a change occurs (e.g. with a low-abundance belief, the new reward rate after a
change point is likely to be low). We would thus expect RL to also shift less frequently than DBM in
this scenario. Fig. 3A shows that the simulated shift rate of the three models (probability of a model
to shift away from the previously chosen arm) exactly follow the pattern of behavior described above.
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Figure 3: (A) Probability of shifting to other arms after a failure preceded by three consecutive
successes on the same arm. Error bar shows the s.e.m. across participants/simulation runs. (B)
Reward rates achieved in high variance environment with low abundance and with (C) high abundance
by different models: DBM (blue), FBM (purple), RL (green) and optimal policy (brown). The
diamond symbols represent the actual reward per trial earned by human subjects (y-axis) vs. the fitted
prior mean (x-axis) of the three models. Vertical dotted lines: true generative prior mean.

Human subjects’ shift rates are closest to what DBM predicts, which is what we would already expect
from the fact that overall DBM has already been found to fit human data the best.

3.4 Simulation results: understanding human reward underestimation

Finally, we try to understand why humans might exhibit a “pessimism bias” in their reward rate
expectation. Fig. 3B,C shows the simulated average earned reward per trial, of the various models as
a function of the assumed prior mean. DBM, FBM, RL are simulated with the average parameters
that are fitted to human data, except we allow the prior mean parameter to vary in each case. The
optimal policy is computed with different prior means and the correct prior variance. The per-trial
earned reward rates are calculated from the simulation of models/optimal policy under the same
reward rates of the human experiment. We focus on the high variance environments, since the model
performance is relatively insensitive to the assumed prior mean in low variance environments (not
shown).

Firstly, consider the diamond symbols in Fig. 3B;C: the combination of human subjects’ actual
average per-trial earned reward (y-axis) and the fitted prior mean for each of the three models (x-axis,
color-coded) is very close to DBM’s joint predictions of the two quantities (blue lines), but very far
away from FBM (purple line) and RL (green line)’s joint predictions of the two quantities. This result
provides additional evidence that DBM can predict and capture human performance better than the
other two models.

More interestingly, while the optimal policy (brown) achieves the highest earned reward when it
assumes the correct prior (as expected), FBM coupled with softmax achieves its maximum reward at
a prior mean much lower than the true generative mean. Given that FBM is the correct generative
model, this implies that one way to compensate for using the sub-optimal softmax policy, instead of
the optimal (dynamic programming-derived) policy, is to somewhat underestimate the prior mean. In
addition, DBM achieves maximal earned reward with an assumed prior mean even lower than FBM,
implying that even more prior reward rate underestimation is needed to compensate for assuming
environmental volatility (when the environment is truly stable). We note that human participants do
not assume a prior mean that optimizes the earning of reward (blue diamonds are far from the peak
of the blue lines) — this may reflect a compromise between optimizing reward earned and truthfully
representing environmental statistics.

4 Discussion

Our results show that humans underestimate the expected reward rates (a pessimism bias), and this
underestimation is only recoverable by the prior mean of DBM. DBM is also found to be better than
FBM or RL at predicting human behavior in terms of trial-by-trial choice and actual rewards earned.
Our results provide further evidence that humans underestimate the stability of the environment,
i.e. assuming the environment to be non-stationary when the real setting is stationary. This default



non-stationarity belief might be beneficial in real world scenarios in the long run, where the behavioral
environment can be volatile [5]. It is worth noting that the best earned per-trial reward rates achievable
by DBM and FBM are quite close. In other words, as long as a softmax policy is being used, there is
no disadvantage to incorrectly assuming environmental volatility as long as the assumed prior mean
parameter is appropriately tuned. Participants’ actual assumed prior mean (if DBM is correct) is not
at the mode of the simulated performance curve, which underestimates prior mean even more than
subjects do. This may reflect a tension to accurately internalize environmental statistics and assume a
statistical prior that achieves better outcomes.

Humans often have mis-specified beliefs, even though most theories predict optimal behavior when
environmentally statistics are correctly internalized. Humans have been found to overestimate their
abilities and underestimate the probabilities of the negative events from the environment [20]. Our
result might seem to contradict these earlier findings; however, having a lower prior expectation is
not necessarily in conflict with an otherwise optimistic bias. We find that human participants earn
relatively high reward rate while reporting low expectation on the unchosen arm(s). It is possible that
they are optimistic about their ability to succeed in an overall hostile environment (even though they
over-estimate the hostility).

Several previous studies [13}[21} [22] found a human tendency to sometimes under-estimate and some-
times over-estimate environmental reward availability in various behavioral tasks. Major differences
in task design complicate direct comparisons among the studies. However, our empirical finding
of human reward under-estimation is broadly consistent with the notion that humans do not always
veridically represent reward statistics. More importantly, we propose a novel mechanism/principle
for why this is the case: a compensatory measure for assuming volatility, which is useful for coping
with non-stationary environments and utilizing a cheap decision policy such as softmax. Separately,
our work implies that systematic errors may creep into investigators’ estimation of subjects’ reward
expectation when an incorrect learning model is assumed (e.g. assuming subjects believe the reward
statistics to be stationary when they actually assume volatility). For future work, it would be inter-
esting to also include an individual measure of trait optimism (e.g. LOT-R), to see if the form of
pessimism we observe correlates with optimism scores.

One of the limitations of this study is that human reports might be unreliable, or biased by the
experimental design. For example, one might object to our “pessimism bias” interpretation of lower
expected reward rates for unchosen alternatives, by attributing it to a confirmation bias [23]] or a
sampling bias [24]]. That is, subjects may report especially low reward estimates for unchosen
options, either because they retroactively view discarded options as more undesirable (confirmation
bias), or because they failed to choose the unchosen options precisely as they decided these were
less valuable to begin with for some reason (regardless of the reason, this scenario introduces a
sampling bias of the unchosen arms). However, both of these explanations fail to account for the
larger reward under-estimation effect observed in high-abundance environments compared to low-
abundance environments, which is also predicted by DBM. Moreover, DBM predicts human choice
better than the other models on a trial-by-trial basis, lending us further evidence that the reward
under-estimation effect is real.

Another modeling limitation is that we only include softmax as the decision policy. A previous study
found that Knowledge Gradient (KG), which approximates the relative action values of exploiting
and exploring to deterministically choose the best option on each trial [25], is the best model among
several decision policies [4] (not including softmax). However, in a later study, softmax was found to
explain human data better than KG [11]]. This is not entirely surprising, because even though KG is
simpler than the optimal policy, it is still significantly more complicated than softmax. Moreover,
even if humans use a model similar to KG, they may not give the optimal weight to the exploratory
knowledge gain on each trial, or use a deterministically decision policy. We therefore also conceive a
“soft-KG” policy, that adds a weighted knowledge gain to the immediate reward rates in the softmax
policy. Based on ten-fold cross-validation, the held-out average per-trial likelihood of softmax and
soft-KG, in explaining human data, are not significantly different (p = 0.0693), and the likelihoods
are on average 0.4248 and 0.4250 respectively. 44 subjects have higher, 44 subjects have lower, and
19 subjects have equal held-out likelihood for soft-KG, compared to softmax. Besides KG, there is a
rich literature on the decision-making component [26, [27]], as opposed to the learning component that
we focus on here. For simplicity, we only included the softmax policy. Future studies with greater
statistical power may be able to discriminate between softmax and soft-KG, or other decision policies,
but this is beyond the scope and intention of this work.



While this study is primarily focused on modeling human behavior in the bandit task, it may have
interesting implications for the study of bandit problems in machine learning as well. For example,
our study suggests that human learning and decision making are sub-optimal in various ways:
assuming an incorrect prior mean, assuming environmental statistics to be non-stationary when they
are stable; however, our analyses also show that these sub-optimalities may potentially be combined
to achieve better performance than one might expect, as they somehow compensate for each other.
Given that these sub-optimal assumptions have certain computational advantages, e.g., softmax
is computationally much simpler than optimal policy, DBM can handle a much broader range of
temporal statistics than FBM, understanding how these algorithms fit together in humans may, in the
future, yield better algorithms for machine learning applications as well.
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