
Appendix: Optimization over Continuous and
Multi-dimensional Decisions with Observational Data

A Proofs

To begin, we prove the following lemma.

Lemma 1. Suppose assumptions 1-5 hold. If (x, z) and (x, z′) are in the same partition of
X × Z, as specified by assumption 3, then

|Ψ(z, δ)−Ψ(z′, δ)| ≤
(
α(LD + 1 +

√
2λmax ln 1/δ) + L(

√
2 ln 1/δ + 3)

)
||z − z′||,

where Ψ(z, δ) = µ(x, z)− µ̂(x, z)− 2
3γn

ln(1/δ)−
√

2V (x, z) ln(1/δ)− L ·B(x, z).

Proof. We first note |µ(x, z)− µ(x, z′)| ≤ L||z − z′|| by the Lipschitz assumption on c(z; y).
Next, since (x, z) and (x, z′) are contained in the same partition,

|µ̂(x, z)− µ̂(x, z′)| =

∣∣∣∣∣∑
i

wi(x, z)c(z;Yi)− wi(x, z′)c(z′;Yi)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i

wi(x, z)c(z;Yi)− wi(x, z)c(z′;Yi)

∣∣∣∣∣
+

∣∣∣∣∣∑
i

wi(x, z)c(z
′;Yi)− wi(x, z′)c(z′;Yi)

∣∣∣∣∣
≤ L||z − z′||+ ||w(x, z)− w(x, z′)||1
≤ (L+ α)||z − z′||,

where we have used Holder’s inequality, the uniform bound on c, and Assumption 3.
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Similarly, for the bias term,

|LB(x, z)− LB(x, z′)| = L

∣∣∣∣∣∑
i

wi(x, z)||(Xi, Zi)− (x, z)|| − wi(x, z′)||(Xi, Zi)− (x, z′)||

∣∣∣∣∣
≤ L

∣∣∣∣∣∑
i

wi(x, z)||(Xi, Zi)− (x, z)|| − wi(x, z)||(Xi, Zi)− (x, z′)||

∣∣∣∣∣
+ L

∣∣∣∣∣∑
i

wi(x, z)||(Xi, Zi)− (x, z′)|| − wi(x, z′)||(Xi, Zi)− (x, z′)||

∣∣∣∣∣
≤ L

∑
i

wi(x, z) |||(Xi, Zi)− (x, z)|| − ||(Xi, Zi)− (x, z′)|||

+ L||w(x, z)− w(x, z′)||1 sup
i
||(Xi, Zi)− (x, z)||

≤ (L+ LαD)||z − z′||.

Next, we consider variance term. We let Σ(z) denote the diagonal matrix with Var(c(z;Yi)|Xi, Zi)
for i = 1, . . . , n as entries. As before,

|
√
V (x, z)−

√
V (x, z′)| =

∣∣∣∣∣∣
√∑

i

w2
i (x, z)Var(c(z;Yi)|Xi, Zi)−

√∑
i

w2
i (x, z

′)Var(c(z′;Yi)|Xi, Zi)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
√∑

i

w2
i (x, z)Var(c(z;Yi)|Xi, Zi)−

√∑
i

w2
i (x, z)Var(c(z′;Yi)|Xi, Zi)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
√∑

i

w2
i (x, z)Var(c(z′;Yi)|Xi, Zi)−

√∑
i

w2
i (x, z

′)Var(c(z′;Yi)|Xi, Zi)

∣∣∣∣∣∣
=
∣∣∣√w(x, z)TΣ(z)w(x, z)−

√
w(x, z)TΣ(z′)w(x, z)

∣∣∣
+
∣∣||w(x, z)||Σ(z′) − ||w(x, z′)||Σ(z′)

∣∣ ,
where ||v||Σ =

√
vTΣv. One can verify that, because Σ is positive semidefinite, || · ||Σ is

seminorm that satisfies the triangle inequality. Therefore, we can upper bound the latter
term by √

(w(x, z)− w(x, z′))TΣ(w(x, z)− w(x, z′)) ≤ ||w(x, z)− w(x, z′)||
≤ ||w(x, z)− w(x, z′)||1
≤ α||z − z′||,

where we have used the assumption that |c(z; y)| ≤ 1.
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The former term can again be upper bounded by the triangle inequality.∣∣∣∣∣∣
√∑

i

w2
i (x, z)Var(c(z;Yi)|Xi, Zi)−

√∑
i

w2
i (x, z)Var(c(z′;Yi)|Xi, Zi)

∣∣∣∣∣∣
≤
√∑

i

w2
i (x, z)(

√
Var(c(z;Yi)|Xi, Zi)−

√
Var(c(z′;Yi)|Xi, Zi))2 (1)

Noting that
√

Var(c(z;Yi)) = ||c(z;Yi)−E[c(z;Yi)]||L2 (dropping conditioning for notational
convenience), we can apply the triangle inequality to the L2 norm:

(||c(z;Yi)− E[c(z;Yi)]||L2 − ||c(z′;Yi)− E[c(z′;Yi)]||L2)
2

≤ ||c(z;Yi)− c(z′;Yi)− E[c(z;Yi)− c(z′;Yi)]||2L2

≤ E[(c(z;Yi)− c(z′;Yi))2]

≤ L2||z − z′||2.
Therefore, we can upperbound (1) by√∑

i

w2
i (x, z)L

2||z − z′||2

≤
∑
i

wi(x, z)L||z − z′|| = L||z − z′||,

where we have used the concavity of the square root function. Therefore,

|
√
V (x, z)−

√
V (x, z′)| ≤ (α + L)||z − z′||.

Combining the three results with the triangle inequality yields the desired result.

Proof of Theorem 1. To derive a regret bound, we first restrict our attention to the fixed de-
sign setting. Here, we condition on X1, Z1, . . . , Xn, Zn and bound µ̂(x, z) around its expecta-
tion. To simplify notation, we write X to denote (X1, . . . , Xn) and Z to denote (Z1, . . . , Zn).
Note that by the honesty assumption, in this setting, µ̂ is a simple sum of independent
random variables. Applying Bernstein’s inequality (see, for example, Boucheron et al. [1]),
we have, for δ ∈ (0, 1),

P

(
E[µ̂(x, z) | X,Z]− µ̂(x, z) ≤ 2

3γn
ln(1/δ) +

√
2V (x, z) ln(1/δ)

∣∣∣∣X,Z) ≥ 1− δ.

Next, we need to bound the difference between E[µ̂(x, z)|X,Z] and µ(x, z). By the honesty
assumption, Jensen’s inequality, and the Lipschitz assumption, we have

|E[µ̂(x, z) | X,Z]− µ(x, z)| =

∣∣∣∣∣∑
i

wi(x, z)(µ(Xi, Zi)− µ(x, z))

∣∣∣∣∣
≤
∑
i

wi(x, z)|µ(Xi, Zi)− µ(x, z)|

≤ L
∑
i

wi(x, z)||(Xi, Zi)− (x, z)||

= L ·B(x, z).
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Combining this with the previous result, we have, with probability at least 1−δ (conditioned
on X and Z),

µ(x, z)− µ̂(x, z) ≤ 2

3γn
ln(1/δ) +

√
2V (x, z) ln(1/δ) + L ·B(x, z) (2)

Next, we extend this result to hold uniformly over all z ∈ Z. To do so, we partition
X ×Z into Γn regions as in Assumption 3. For each region, we construct a ν-net. Therefore,
we have a set {ẑ1, . . . , ẑKn} such that for any z ∈ Z, there exists a ẑk such that (x, z)
and (x, ẑk) are contained in the same region with ||z − ẑk|| ≤ ν. For ease of notation, let
k : Z → {1, . . . , Kn} return an index that satisfies these criteria. By assumption, Z ⊂ Rp has
finite diameter, D, so we can construct this set with Kn ≤ Γn(3D/ν)p (e.g., Shalev-Shwartz
and Ben-David [3, pg. 337]).

By Lemma 1 (and using the notation therein), we have

Ψ(z, δ) ≤ Ψ(ẑk(z), δ) + ν
(
α(LD + 1 +

√
2 ln 1/δ) + L(

√
2 ln 1/δ + 3)

)
.

Taking the supremum over z of both sides, we get

sup
z

Ψ(z, δ) ≤ max
k

Ψ(ẑk, δ) + ν
(
α(LD + 1 +

√
2 ln 1/δ) + L(

√
2 ln 1/δ + 3)

)
.

If we let ν = 1
3γn

(
α(LD + 1 +

√
2) + L(

√
2 + 3)

)−1
, we have

P (sup
z

Ψ(z, δ) > 0|X,Z)

≤ P

(
max
k

Ψ(ẑk, δ) + ν
(
α(LD + 1 +

√
2 ln 1/δ) + L(

√
2 ln 1/δ + 3)

)
> 0

∣∣∣∣X,Z)
≤ P

(
max
k

Ψ(ẑk, δ) + ν
(
α(LD + 1 +

√
2) + L(

√
2 + 3)

)
ln 1/δ > 0

∣∣∣∣X,Z)
≤
∑
k

P

(
Ψ(ẑk, δ) +

ln 1/δ

3γn
> 0

∣∣∣∣X,Z)
≤
∑
k

P

(
Ψ(ẑk,

√
δ) > 0

∣∣∣∣X,Z)
≤ Kn

√
δ,

where we have used the union bound and (2). Replacing δ with δ2/K2
n and integrating both

sides to remove the conditioning completes the proof.

Proof of Theorem 2. By Theorem 1, with probability at least 1− δ/2,

µ(x, ẑ) ≤ µ̂(x, ẑ) +
4

3γn
ln(2Kn/δ) + λ1

√
V (x, ẑ) + λ2B(x, ẑ)

≤ µ̂(x, z∗) +
4

3γn
ln(2Kn/δ) + λ1

√
V (x, z∗) + λ2B(x, z∗),
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where the second inequality follows from the definition of ẑ. Using the same argument we
used to derive (2), since z∗ is not a random quantity, we have, with probability at least
1− δ/2,

µ̂(x, z∗)− µ(x, z∗) ≤ 2

3γn
ln(2/δ) +

√
2V (x, z∗) ln(2/δ) + L ·B(x, z∗)

≤ 2

3γn
ln(2Kn/δ) + λ1

√
V (x, z∗) + λ2B(x, z∗).

Combining the two inequalities with the union bound yields the desired result.

Proof of Corollary 1. We show µ(x, ẑ)− 2LB(x, z∗)→p µ(x, z∗). The desired result follows
from the assumption regarding B(x, z∗) and Slutsky’s theorem. First, we note, due to the
assumption |c(z; y)| ≤ 1,

V (x, z∗) =
∑
i

wi(x, z
∗)Var(c(z∗;Yi)|Xi, Zi) ≤

1

γn

∑
i

wi(x, z
∗) =

1

γn
.

We have, for any ε > 0,

P (|µ(x, ẑ)− 2LB(x, z∗)− µ(x, z∗)| > ε)

≤ P (µ(x, ẑ)− 2LB(x, z∗)− µ(x, z∗) > ε/2)

+ P (µ(x, z∗)− µ(x, ẑ) + 2LB(x, z∗) > ε/2).

By Theorem 2, for large enough n, the first term is upper bounded by

2Kn exp

(
− ε2

4(2/γn + 4
√
V (x, z∗))2

)

≤ 2Kn exp

(
− ε2

4(2/
√
γn + 4/

√
γn)2

)
= 2Γn

(
9Dγn

(
α(LD + 1 +

√
2) + L(

√
2 + 3)

))p
exp

(
−γnε

2

144

)
≤ C1n

1+β exp(−C2n
β)→ 0.

Because µ(x, z∗) ≤ µ(x, ẑ), the latter term is upper bounded by

P (B(x, z∗) > ε/4L)→ 0.

Proof of Example 1. First we consider the case that the zero variance action has cost 0, and
the other actions have cost 1 (call this event A). Because the cost of the optimal action is
0 and the cost of a suboptimal action is 1, the expected regret in this problem equals the
probability of the algorithm selecting a suboptimal action. Noting that µ̂(j) ∼ N (1, 1/m)
for j = 1, . . . ,m, we can express the expected regret of the predicted cost minimization
algorithm as

E[RPCM |A] = P (µ̂(j) < 0 for some j ∈ {1, . . . ,m}|A) = P

(
max
j
Wj >

√
m

)
,
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where W1, . . . ,Wm are i.i.d. standard normal random variables. Similarly, the expected
regret of the uncertainty penalized algorithm can be expressed as

E[RUP |A] = P

(
µ̂(j) < −λ

√
lnm√
m

for some j ∈ {1, . . . ,m}
∣∣∣∣A
)

= P

(
max
j
Wj >

√
m+ λ

√
lnm

)
We can construct an upper bound on ERUP with the union bound and a concentration
inequality (as in the proof of Theorem 1). Applying the Gaussian tail inequality (see, for
example, Vershynin [5, Proposition 2.1.2]), we have

E[RUP |A] ≤ mP (W1 >
√
m+ λ

√
lnm)

≤
√
m√
2π

exp

(
−1

2
(
√
m+ λ

√
lnm)2

)
=

√
m

mλ2/2
√

2π
exp(−m/2) exp(−λ

√
m lnm)

≤ 1
√
m
√

2π
e−m/2,

where we have used the assumption λ ≥
√

2.
To lower bound the expected regret of the predicted cost minimization algorithm, we can

use a similar Gaussian tail inequality.

E[RPCM |A] = 1−
[
1− P (W1 >

√
m)
]m

≥ 1−
[
1−

(
1− 1

m

)
1

√
m
√

2π
e−m/2

]m
≥ 1−

[
1− 1

2
√
m
√

2π
e−m/2

]m

≥ 1−

[[
1− 1

2
√
m
√

2π
e−m/2

]2
√

2πm exp(m/2)
]√m exp(−m/2)/2

√
2π

,

where the second inequality is valid for all m ≥ 2. One can verify that (1 − 1/n)n is a
monotonically increasing function that converges to e−1. Therefore, for all m ≥ 2,

E[RPCM |A] ≥ 1− exp

(
−
√
m

2
√

2π
exp(−m/2)

)
.

Next, we use these bounds to compute the ratio E[RUP |A]/E[RPCM |A] in the limit as m→
∞.

E[RUP |A]

E[RPCM |A]
≤

1√
m
√

2π
e−m/2

1− exp
(
−
√
m

2
√

2π
exp(−m/2)

) .
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Applying L’Hopital’s rule, the limit of the right hand side is equal to the limit of

2(2π)−1/2
(
−m−3/2e−m/2 −m−1/2e−m/2

)
(2π)−1/2 [m−1/2e−m/2 −m1/2e−m/2] exp

(
−
√
m

2
√

2π
e−m/2

)
= 2
−1−m
m−m2

· exp

( √
m

2
√

2π
e−m/2

)
→ 0.

Next, we consider the case that the zero variance action has cost 1, and the other actions
have cost 0. The expected regret equals the probability that the zero variance action is
selected. For sufficiently large m,

E[RUP |Ac] = P

(
µ̂(j) > 1− λ

√
lnm√
m

∀j ∈ {1, . . . ,m}
∣∣∣∣Ac
)

≤ P (W1 >
√
m− λ

√
lnm)m

≤ P (W1 >
√
m/2)m

≤
(

2√
2π
e−m/8

)m
≤ e−m

2/8 = o(E[RUP |A]).

Therefore, for sufficiently large m and some constant C,

E[RUP ]

E[RPCM ]
=

E[RUP |A] + E[RUP |Ac]
E[RPCM |A] + E[RPCM |Ac]

≤ E[RUP |A] + E[RUP |Ac]
E[RPCM |A]

≤ (1 + C)
E[RUP |A]

E[RPCM |A]
→ 0.

B Optimization with Linear Predictive Models

Here, we detail the optimization of (2) with linear predictive models. We focus on the case
that c(z;Y ) = Y for simplicity. For these models, we posit the outcome is a linear function
of the auxiliary covariates and decision. That is there exists a β such that, given X = x,
Y (z) = (x, z)Tβ + ε, where ε is a mean 0 subgaussian noise term with variance σ2. If we let
A denote the design matrix for the problem, a matrix with rows consisting of (Xi, Zi) for
i = 1, . . . , n, then the ordinary least squares (OLS) estimator for β is given by

β̂OLS = (ATA)−1ATY.

The ordinary least squares estimator is unbiased, so when solving (2), we set λ2 = 0. The
variance of (x, z)T β̂OLS is given by σ2(x, z)T (ATA)−1(x, z). (ATA)−1 is a positive semidefinite
matrix, so

√
V (x, z) is convex. Therefore, (2) becomes

min
z∈Z

(x, z)T β̂OLS + λ1σ
√

(x, z)T (ATA)−1(x, z),
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which is a second order conic optimization problem if Z is polyhedral and can be solved
efficiently by commercial solvers. Even if Z is a mixed integer set, commercial solvers such
as Gurobi [2] can still solve the problem for sizes of practical interest.

For regularized linear models such as ridge and lasso regression, we use a similar approach.
Although these estimators are biased, we set λ2 = 0 for computational reasons. The ridge
estimator for β has a similar form to the OLS estimator:

β̂Ridge = (ATA+ αI)−1ATY,

for some α ≥ 0. The resulting optimization problem is essentially the same as with the OLS
estimator. The lasso estimator does not have a closed form solution, but we can approximate
it as in Tibshirani [4]:

Pβ̂Lasso ≈ (PATAP T + αPW )−1PATY,

where W = diag(1/|β∗1 |, . . . , 1/|β∗d+p|), β∗ is the true lasso solution, and P is a projection
matrix that projects to the nonzero components of β∗. (The zero components of β∗ are still 0
in the approximation.) With this approximation, the resulting optimization takes the same
form as those for the OLS and ridge estimators.

C Data Generation

C.1 Pricing

For our synthetic pricing example, we consider a store offering 5 products. We generate
auxiliary covariates, Xi, from a N (10, 1) distribution. We generate historical prices,Zi, from
a Gaussian distribution,

N

XT
i


1 0
1 0
0 1
0 1

0.5 0.5

 , 100I

 .

We compute the expected demand for each product as:

µ =


500− (Z1

i )2/10−X1
i · Z1

i /10− (X1
i )2/10− Z2

i

500− (Z2
i )2/10−X1

i · Z2
i /10− (X1

i )2/10− Z1
i

500− (Z3
i )2/10−X2

i · Z3
i /10− (X2

i )2/10 + Z1
i + Z2

i

500− (Z4
i )2/10−X2

i · Z4
i /10− (X2

i )2/10 + Z1
i + Z2

i

500− (Z5
i )2/10−X2

i · Z5
i /20−X1

i · Z5
i /20− (X2

i )2/10

 ,

and generate Yi from a N (µ, 2500I) distribution. This example serves to simulate the situ-
ation in which some products are complements and some are substitutes.
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C.2 Warfarin Dosing

To simulate how physicians might assign Warfarin doses to patients, we compute a nor-
malized BMI for each patient (i.e. body mass divided by height squared, normalized by
the population standard deviation of BMI). For each patient, we then sample a dose (in
mg/week), Zi, from

Zi ∼ N (30 + 15 · BMIi, 64).

If Zi is negative, we assign a dose drawn uniformly from [0, 20]. If the data dose not contain
the patients height and/or weight, we assign a dose drawn uniformly from [10, 50], a standard
range for Warfarin doses.

To simulate the response that a physician observes for a particular patient, we compute
the difference between the the assigned dose and the true optimal dose for that patient, Z∗i ,
and add noise. We then cap the response so it is less than or equal to 40 in absolute value.
The reasoning behind this construction is that the INR measurement gives the physician
some idea of whether the assigned dose is too high or too low and whether it is close to
the optimal dose. However, if the dose is very far from optimal, then the information INR
provides is not very useful in determining the optimal dose (it is purely directional). The
response of patient i is given by

Yi =


−40, Ri < −40

Ri, −40 ≤ Ri ≤ 40

40, Ri > 40

,

where Ri ∼ N (Zi − Z∗i , 400).

D Sensitivity to Selection of Tuning Parameters

To test the sensitivity of the method to the selection of tuning parameters, we conduct
an experiment on the Warfarin example with the random forest as the base learner. We
compute the out-of-sample error for many combinations of λ1 and λ2. From Figure ??, we
see that the out-of-sample performance is not too sensitive to the selection of parameters.
All of the selected parameter combinations out-perform the unpenalized method with the
exception of (λ1 = 100, λ2 = 0), which is an extreme choice. This demonstrates that the
tuning parameter selection does not have to be extremely precise to improve performance.
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