
Appendix for “Inference Aided Reinforcement
Learning for Incentive Mechanism Deisgn

in Crowdsourcing"

Zehong Hu
Alibaba Group, Hangzhou, China

HUZE0004@e.ntu.edu.sg

Yitao Liang
University of California, Los Angeles

yliang@cs.ucla.edu

Jie Zhang
Nanyang Technological University

ZhangJ@ntu.edu.sg

Zhao Li
Alibaba Group, Hangzhou, China
lizhao.lz@alibaba-inc.com

Yang Liu
University of California, Santa Cruz/Harvard University

yangliu@ucsc.edu

A Derivation of Posterior Distribution

It is not had to figure out the joint distribution of the collected labels L and the true labels L

P(L,L|θ, τ) =
∏M

j=1

∏
k∈{−1,+1}

{
τk

N∏
i=1

Pδijki (1− Pi)δij(−k)

}ξjk
(12)

where θ = [P1, . . . ,PN] and τ = [τ−1, τ+1]. τ−1 and τ+1 denote the distribution of true label −1
and +1, respectively. Besides, δijk = 1(Li(j) = k) and ξjk = 1(L(j) = k). Then, the joint
distribution of L, L, θ and τ

P(L,L,p, τ) = P(L,L|p, τ) · P(θ, τ)

=
1

B(β)

∏
k∈{−1,+1}

τ
β̂∗
k−1

k ·
N∏
i=1

1

B(α)
p
α̂∗

i1−1
i (1− pi)α̂

∗
i2−1 (13)

where B(x, y) = (x− 1)!(y − 1)!/(x+ y − 1)! denotes the beta function, and

α̂∗i1 =
∑M

j=1

∑K

k=1
δijkξjk + α1

α̂∗i2 =
∑M

j=1

∑K

k=1
δij(3−k)ξjk + α2

β̂∗k =
∑M

j=1
ξjk + βk.

In this case, we can conduct marginalization via integrating the joint distribution P(L,L,p, τ) over
θ and τ as

P (L,L|α,β) =
B(β̂)

B(β)
·
∏N

i=1

B(α̂i)

[B(α)]2
(14)

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

where α̂i = [α̂∗i1 + α1 − 1, α̂∗i2 + α2 − 1] and β̂ = [β̂∗−1 + β−1 − 1, β̂∗+1 + β+1 − 1]. Following
Bayes’ theorem, we can know that

P (L|L) =
P (L,L|α,β)

P (L|α,β)
∝ B(β̂)

N∏
i=1

B(α̂i). (15)

B Proof for Lemma 1

B.1 Basic Lemmas

We firstly present some lemmas for our proof later.
Lemma 2. If x ∼ Bin(n, p), Etx = (1− p+ tp)

n holds for any t > 0, where Bin(·) is the binomial
distribution.
Proof.

tx = ex log t = mx(log t) =
(
1− p+ pelog t

)n
(16)

where mx(·) denotes the moment generating function.
Lemma 3. For given n,m ≥ 0, if 0 ≤ p ≤ 1, we can have∑n

x=0

∑m

w=0
CxnC

w
mp

x+w(1− p)y+z×

B(x+ z + 1 + t, y + w + 1) =∫ 1

0

[(2p− 1)x+ 1− p]n[(1− 2p)x+ p]mxtdx

Proof. By the definition of the beta function [7],

B(x, y) =

∫ +∞

0

ux−1(1 + u)−(x+y)du (17)

we can have ∑
x,w

CxnC
w
mp

x+w(1− p)y+zB(x+ z + 1 + t, y + w + 1)

=

∫ +∞

0

Eux · Euz · ut · (1 + u)−(n+m+2+t)du (18)

where we regard x ∼ Bin(n, p) and z ∼ Bin(m, 1− p). Thus, according to Lemma 2, we can obtain∫ +∞

0

Eux · Euz · ut · (1 + u)−(n+m+3)du

=

∫ +∞

0

[1− p+ up]n · [p+ (1− p)u]m · ut

(1 + u)n+m+2+t
du.

(19)

For the integral operation, substituting u with v − 1 at first and then v with (1 − x)−1, we can
conclude Lemma 3.
Lemma 4.

∑N
n=0 C

n
N · xn = (1 + x)N .

Lemma 5.
∑N
n=0 C

n
N · n · xn = N · x · (1 + x)N−1.

Lemma 6.
∑N
n=0 C

n
N · n · xN−n = N · (1 + x)N−1.

Lemma 7.
∑N
n=0 C

n
N · n2 · xn = Nx(1 +Nx)(1 + x)N−2.

Lemma 8.
∑N
n=0 C

n
N · n2 · xN−n = N(x+N)(1 + x)N−2.

Lemma 9. If 0 < x < 1, we can have
bN/2c∑
n=0

CnN · xn ≥
(
1− e−cN

)
· (1 + x)N

N∑
n=bN/2c+1

CnN · xN−n ≥
(
1− e−cN

)
· (1 + x)N .

2

where c = 0.5(1− x)2(1 + x)−2.
Proof. To prove the lemmas above, we firstly define

Ft(x) =

N∑
n=0

CnNn
txn (20)

Then, Lemma 4 can be obtained by expanding (1 + x)N . Lemma 5 can be proved as follows

F1(x) =

N∑
n=0

CnN (n+ 1)xn − (1 + x)N

N∑
n=0

CnN (n+ 1)xn =
d

dx
[xF0(x)]

= Nx(1 + x)N−1 + (1 + x)N .

(21)

Lemma 6 can be obtained as follows
N∑
n=0

CnNnx
N−n = xN

N∑
n=0

CnNn

(
1

x

)n
= xN ·N · 1

x
·
(

1 +
1

x

)N−1

.

(22)

For Lemma 7, we can have

F2(x) =

N∑
n=0

CnN (n+ 2)(n+ 1)xn − 3F1(x)− 2F0(x)

=
[
x2F0(x)

]′ − 3F1(x)− 2F0(x) (23)

Thus, we can have
F2(x) = Nx(1 +Nx)(1 + x)N−2 (24)

which concludes Lemma 7. Then, Lemma 8 can be obtained by considering Eqn. (25).
N∑
n=0

CnNn
2xN−n = xN

N∑
n=0

CnNn
2

(
1

x

)n
. (25)

For Lemma 9, we can have
bN/2c∑
n=0

CnNx
n = (1 + x)N

bN/2c∑
n=0

CnNp
n(1− p)N−n (26)

where p = x(1 + x)−1. Let X ∼ Bin(N, p), we can have
bN/2c∑
n=0

CnNp
n(1− p)N−n ≥ 1− P (X ≥ N/2) . (27)

Since x < 1, p < 0.5 and Np < N/2. Considering Hoeffding’s inequality, we can get

P (X ≥ N/2) ≤ exp

[
−N(1− x)2

2(1 + x)2

]
(28)

which concludes the first inequality in Lemma 9. Similarly, for the second inequality, we can have
N∑

n=K

CnNx
N−n = (1 + x)N

N∑
n=K

CnN (1− p)npN−n (29)

where K = bN/2c+ 1. Suppose Y ∼ Bin(N, 1− p), we can have
N∑

n=K

CnN (1− p)npN−n ≥ 1− P (Y ≤ N/2) . (30)

3

Considering Hoeffding’s inequality, we can also get

P (Y ≤ N/2) ≤ exp

[
−N(1− x)2

2(1 + x)2

]
(31)

which concludes the second inequality in Lemma 9.

Lemma 10. For any x, y ≥ 0, we can have

(1 + x)y ≤ exy.

Proof. Firstly, we can know (1 + x)y = ey log(1+x). Let f(x) = x − log(x). Then, we can have
f(0) = 0 and f ′(x) ≥ 0. Thus, x ≥ log(1 + x) and we can conclude Lemma 10 by taking this
inequality into the equality.

Lemma 11.
g(x) =

ex

ex + 1

is a concave function when x ∈ [0,+∞).
Proof. g′(x) = (2 + t(x))−1, where t(x) = ex + e−x. t′(x) = ex − e−x ≥ 0 when x ∈ [0,+∞).
Thus, g′(x) is monotonically decreasing when x ∈ [0,+∞), which concludes Lemma 11.

Lemma 12. For x ∈ (−∞,+∞),

h(x) =
1

e|x| + 1

satisfies
h(x) < ex and h(x) < e−x.

Proof. When x ≥ 0, we can have

h(x) <
1

ex
= e−x ≤ ex. (32)

When x ≤ 0, we can have

h(x) =
ex

ex + 1
< ex ≤ e−x. (33)

Lemma 13. If λ = p/(1− p) and 0.5 < p < 1, then∑N

n=bN/2c
CnNλ

m−npn(1− p)m ≤ [4p(1− p)]N/2

∑bN/2c

n=0
CnNλ

n−mpn(1− p)m ≤ [4p(1− p)]N/2

where m = N − n.
Proof. For the first inequality, we can have

N∑
n=bN/2c

CnNλ
m−npn(1− p)m (34)

=

N∑
n=bN/2c

CnNp
m(1− p)n ≤

bN/2c∑
m=0

CmN p
m(1− p)n

According to the inequality in [1], we can have

bN/2c∑
m=0

CmN p
m(1− p)n ≤ exp(−ND) (35)

where D = −0.5 log(2p)− 0.5 log(2(p− 1)), which concludes the first inequality in Lemma 13.

4

For the second inequality, we can have
bN/2c∑
n=0

CnNλ
n−mpn(1− p)m

=
1

[p(1− p)]N

bN/2c∑
n=0

CnN [p3]n[(1− p)3]m

=
[p3 + (1− p)3]N

[p(1− p)]N

bN/2c∑
n=0

CnNx
n(1− x)m

(36)

where x = p3/[p3 + (1− p)3]. By using Eqn. (35), we can have

bN/2c∑
n=0

CnNλ
n−mpn(1− p)m

≤ [p3 + (1− p)3]N

[p(1− p)]N
[x(1− x)]N/2

= [4p(1− p)]N/2

(37)

which concludes the second inequality of Lemma 13.

B.2 Main Proof

To prove Lemma 1, we need to analyze the posterior distribution of L which satisfies

P(L|L) = B(β̂)
∏N

i=1
B(α̂i)/[Cp · P(L)] (38)

where Cp is the nomalization constant. This is because the samples are generated based on this
distribution. However, both the numerator and denominator in Eqn. (38) are changing withL, making
the distribution difficult to analyze. Thus, we derive a proper approximation for the denominator
of Eqn. (38) at first. Denote the labels generated by N workers for task j as vector L(j). The
distribution of L(j) satisfies

Pθ̂[L(j)] =
∑

k∈{−1,+1}
τk
∏N

i=1
Pδijki (1− Pi)δij(−k) (39)

where θ̂ = [τ−1,P1, . . . ,PN] denotes all the parameters and δijk = 1(Li(j) = k). Then, we can
have
Lemma 14. When M →∞,

P(L)→ CL(M) ·
∏

L(j)

{
Pθ̂[L(j)]

}M ·Pθ̂ [L(j)]

where CL(M) denotes a constant that depends on M .
Proof. Denote the prior distribution of θ by π. Then,

P (L|α,β) =
∏M

j=1
Pθ(xj)

∫
e[−M ·dKL]dπ(θ̂) (40)

dKL =
1

M

M∑
j=1

log
Pθ(xj)

Pθ̂(xj)
→ KL[Pθ(x), Pθ̂(x)] (41)

where xj denotes the labels generated for task j. The KL divergence KL[·, ·], which denotes
the expectation of the log-ratio between two probability distributions, is a constant for the given
θ and θ̂. Thus,

∫
e[−M ·dKL]dπ(θ̂) = CL(M). In addition, when M → ∞, we can also have∑

1(xj = x)→M · Pθ(x), which concludes Lemma 14.

Then, we move our focus back to the samples. To quantify the effects of the collected labels, we
introduce a set of variables to describe the real true labels and the collected labels. Among the n tasks
of which the posterior true label is correct,

5

• x0 and y0 denote the number of tasks of which the real true label is −1 and +1, respectively.
• xi and yi denote the number of tasks of which worker i’s label is correct and wrong,

respectively.

Also, among the remaining m = M − n tasks,

• w0 and z0 denote the number of tasks of which the real true label is−1 and +1, respectively.
• wi and zi denote the number of tasks of which worker i’s label is correct and wrong,

respectively.

Thus, we can have xi + yi = n and wi + zi = m. Besides, we use ξi to denote the combination
(xi, yi, wi, zi).

To compute the expectation ofm/M , we need to analyze the probability distribution ofm. According
to Eqn. (15), we can know that P(m) satisfies

P(m) ≈ CmM
Z

∑
ξ0,...,ξN

N∏
i=0

P(ξi|m)B(β̂)

N∏
i=1

B(α̂i) (42)

where Z = CpCL
∏
x[Pθ(x)]M ·Pθ(x) is independent of ξi and m. Meanwhile, β̂−1 = x0 + z0 + 1,

β̂+1 = y0 +w0 +1, α̂i1 = xi+zi+2 and α̂i2 = xi+zi+1. When them tasks of which the posterior
true label is wrong are given, we can know that xi ∼ Bin(n,Pi) and wi ∼ Bin(m,Pi), where Bin(·)
denotes the binomial distribution. In addition, xi and yi are independent of wi, zi and ξk 6=i. Also, wi
and zi are independent of xi and yi and ξk 6=i. Thus, we can further obtain P(m) ≈ Ẑ−1 · CmMY (m),
where

Y (m) = elogH(m,P0;M,0)+
∑N

i=1 logH(m,Pi;M,1)

H(m, p;M, t) =
∑n

x=0

∑m

w=0
2M+1CxnC

w
m×

px+w(1− p)y+zB(x+ z + 1 + t, y + w + 1)

(43)

and Ẑ = 2−(N+1)(M+1)Z. Considering
∑M
m=1 P(m) = 1, we can know that Ẑ ≈

∑M
m=1C

m
MY (m).

Note that, we use P0 to denote the probability of true label 1, namely τ1.

The biggest challenge of our proof exists in analyzing function H(m, p;M, t) which we put in the
next subsection (Section C.3). Here, we directly use the obtained lower and upper bounds depicted in
Lemmas 19 and 20 and can have{

eC−Klm . Y (m) . eC−Kum 2m ≤M
eC+δ−Kln . Y (m) . eC+δ−Kun 2m > M

(44)

where C = H(0,P0;M, 0) +
∑N
i=1H(0,Pi;M, 1) and

Kl =
∑N

i=0
log λ̂i , Ku = 2

∑N

i=0
log
(

2P̂i
)

δ = ∆ · log(M) +
∑N

i=1
(−1)1(Pi>0.5)φ(P̂i)

λ̂i = max

{
Pi

P̄i + 1
M

,
P̄i

Pi + 1
M

}
, φ(p) = log

2P− 1

P

∆ =
∑N

i=1
[1(Pi < 0.5)− 1(Pi > 0.5)].

Here, P̄ = 1− P, P̂ = max{P, P̄} and P0 = τ−1. Besides, we set a convention that φ(p) = 0 when
p = 0.5. Thereby, the expectations of m and m2 satisfy

E[m] .

∑M
m=0me

−Kum +
∑M
m=0me

δ−Kun∑k
m=0 e

−Klm +
∑M
m=k+1 e

δ−Kln
(45)

E[m2] .

∑M
m=0m

2e−Kum +
∑M
m=0m

2eδ−Kun∑k
m=0 e

−Klm +
∑M
m=k+1 e

δ−Kln
(46)

6

where k = bM/2c. By using Lemmas 5, 6, 7 and 8, we can know the upper bounds of the numerator
in Eqn. (45) and (46) are M(ε+ eδ)(1 + ε)M−1 and [M2ε2 +Mε+ eδ(M2 +Mε)](1 + ε)M−2,
respectively, where ε = e−Ku . On the other hand, by using Lemma 9, we can obtain the lower
bound of the denominator as (1 + eδ)[1 − e−c(ω)M](1 + ω)M , where ω = e−Kl and c(ω) =
0.5(1 − ω)2(1 + ω)−2. Considering M � 1, we can make the approximation that e−c(ω)M ≈ 0
and (1 + eδ)ε/M ≈ 0. Besides, (1 + ω)M ≥ 1 holds because ω ≥ 0. In this case, Lemma 1 can be
concluded by combining the upper bound of the numerator and the lower bound of the denominator.

B.3 H function analysis

Here, we present our analysis on the H function defined in Eqn. (43). Firstly, we can have:
Lemma 15. H(m, 0.5;M, t) = 2(t+ 1)−1.
Lemma 16. H(m, p;M, t) = H(n, p̄;M, t).
Lemma 17. As a function of m, H(m, p;M, t) is logarithmically convex.
Proof. Lemma 15 can be proved by integrating 2xt on [0, 1]. Lemma 16 can be proved by showing
that H(n, p̄;M, t) has the same expression as H(m, p;M, t). Thus, in the following proof, we focus
on Lemma 17. Fixing p, M and t, we denote log(H) by f(m). Then, we compute the first-order
derivative as

H(m)f ′(m) = 2M+1

∫ 1

0

λun(1− u)mxtdx (47)

where u = (2p − 1)x + 1 − p and λ = log(1 − u) − log(u). Furthermore, we can solve the
second-order derivative as

2−2(M+1)H2(m)f ′′(m) =∫ 1

0

g2(x)dx

∫ 1

0

h2(x)dx−
(∫ 1

0

g(x)h(x)dx

)2 (48)

where the functions g, h : (0, 1)→ R are defined by

g = λ
√
un(1− u)m , h =

√
un(1− u)m. (49)

By the Cauchy-Schwarz inequality,∫ 1

0

g2(x)dx

∫ 1

0

h2(x)dx ≥
(∫ 1

0

g(x)h(x)dx

)2

(50)

we can know that f ′′(m) ≥ 0 always holds, which concludes that f is convex andH is logarithmically
convex.

Then, for the case that t = 1 and M � 1, we can further derive the following three lemmas for
H(m, p;M, 1):
Lemma 18. The ratio between two ends satisfies

log
H(0, p;M, 1)

H(M,p;M, 1)
≈

{
log(M) + ε(p) p > 0.5

0 p = 0.5
− log(M)− ε(p̄) p < 0.5

where ε(p) = log(2p− 1)− log(p) and ε(p) = 0 if p = 0.5.
Lemma 19. The lower bound can be calculated as

logH(m, p) &

{
H(0, p)− kl ·m 2m ≤M
H(M,p)− kl · n 2m > M

where kl = log
(
max

{
p/(p̄+M−1), p̄/(p+M−1)

})
.

Lemma 20. The upper bound can be calculated as

logH(m, p) .

{
H(0, p)− ku ·m 2m ≤M
H(M,p)− ku · n 2m > M

where n = M −m and ku = 2 log (2 ·max {p, p̄}).

7

Proof. By Lemma 15, logH(m, 0.5;M, 1) ≡ 0, which proves the above three lemmas for the case
that p = 0.5. Considering the symmetry ensured by Lemma 16, we thus focus on the case that
p > 0.5 in the following proof and transform H(m, p) into the following formulation

H(m, p) = ω(p) ·
∫ p

p̄

xn(1− x)m(x− 1 + p)dx (51)

where ω(p) = 2M+1/(2p− 1)2. Then, we can solve H(0, p) and H(M,p) as

H(0, p) = ω(p)

∫ p

p̄

xM (x− p̄)dx

=
(2p)M+1

(2p− 1)(M + 1)
−O

(
(2p)M+1

M2

) (52)

H(M,p) = ω(p)

∫ p

p̄

(1− x)M (x− p̄)dx

=
p(2p)M+1

(2p− 1)2(M + 1)(M + 2)
−O

(
(2p̄)M+1

M + 2

)
.

(53)

Using the Taylor expansion of function log(x), we can calculate the ratio in Lemma 18 as

log
H(0, p)

H(M,p)
= log(M) + log

2p− 1

p
+O

(
1

M

)
(54)

which concludes Lemma 18 when M � 1.

Furthermore, we can solve H(1, p) as

H(1, p) = ω(p)

∫ p

p̄

xM−1(x− p̄)dx−H(0, p)

=
(2p̄+M−1)(2p)M

(2p− 1)(M + 1)
−O

(
(2p)M+1

M2

) (55)

The value ratio between m = 0 and m = 1 then satisfies

log
H(1, p)

H(0, p)
= log

p

p̄+M−1
+O

(
1

M

)
. (56)

By Rolle’s theorem, there exists a c ∈ [m,m+ 1] satisfying

logH(1, p)− logH(0, p) = f ′(c) (57)

where f(m) = logH(m, p). Meanwhile, Lemma 17 ensures that f ′′(m) ≥ 0 always holds. Thus,
we can have

logH(m+ 1, p)− logH(m, p) ≥ log
H(1, 0)

H(0, p)
(58)

which concludes the first case of Lemma 19. Similarly, we compute the ratio between m = M − 1
and M as

log
H(M,p)

H(M − 1, p)
= log

p

p̄+M−1
+O

(
1

M

)
. (59)

Meanwhile, Rolle’s theorem and Lemma 17 ensure that

logH(m, p)− logH(m− 1, p) ≤ log
H(M, 0)

H(M − 1, p)
(60)

which concludes the second case of Lemma 19.

Lastly, we focus on the upper bound described by Lemma 20. According to the inequality of
arithmetic and geometric means, x(1− x) ≤ 2−2 holds for any x ∈ [0, 1]. Thus, when 2m ≤M (i.e.
n ≥ m), we can have

H(m, p) ≤ 2−2mω(p) ·
∫ p

p̄

xn−m(x− 1 + p)dx (61)

8

where the equality only holds when m = 0.∫ p

p̄

xn−m(x− 1 + p)dx =
(2p− 1)pδ

δ
+

∆

δ(δ + 1)
(62)

where δ = n−m+ 1 and ∆ = p̄δ+1 − pδ+1 < 0. Hence,

log
H(m, p)

H(0, p)
≤ −2m[log(2p)− ε(m)] +O

(
1

M

)
(63)

where ε(m) = −(2m)−1[log(n−m+ 1)− log(M + 1)]. Since log(x) is a concave function, we
can know that

ε(m) ≤ (M)−1 log(M + 1) = O
(
M−1

)
(64)

which concludes the first case in Lemma 20. Similarly, for 2m > M (i.e. n < m), we can have

log
H(m, p)

H(M,p)
≤ −2n[log(2p)− ε̂(n)] +O

(
1

M

)
(65)

where ε̂(n) ≤ O(M−1). Thereby, we can conclude the second case of Lemma 20. Note that the case
where p < 0.5 can be derived by using Lemma 16.

For the case that t = 0 and M � 1, using the same method as the above proof, we can derive the
same lower and upper bounds as Lemmas 20 and 19. On the other hand, for t = 0, Lemma 18 does
not hold and we can have

Lemma 21. H(m, p;M, 0) = H(n, p;M, 0)
Proof. When t = 0,

H(m, p) = 2M+1(2p− 1)−1

∫ p

p̄

xn(1− x)mdx. (66)

Then, substituting x as 1− v concludes Lemma 21.

C Proof for Theorem 1

Following the notations in Section C, when M � 1, in Eqn. (??), we have P̃i = EL(xi + zi)/M +
O(1/M), where EL denotes the expectation of P(L|L). Meanwhile, according to Chebyshev’s
inequality, Pi = (xi + wi)/M + ε, where |ε| ≤1−δ O(1/

√
δM) and δ is any given number in (0, 1).

Here, we use a ≤1−δ b to denote that a is smaller or equal than b with probability 1− δ. Thus, we
can calculate the upper bound of |P̃i − Pi| as

|P̃i − Pi| ≤1−δ EL|wi − zi|/M +O(1/
√
M) ≤ EL [m/M] +O(1/

√
M). (67)

Recalling Lemma 1, we know that when M � 1,

E[m/M] . (1 + eδ)−1(ε+ eδ)(1 + ε)M−1 , E[m/M]2 . (1 + eδ)−1(ε2 + eδ)(1 + ε)M−2. (68)

where ε−1 =
∏N
i=0(2P̂i)2, δ = O[∆ · log(M)] and ∆ =

∑N
i=1[1(Pi < 0.5) − 1(Pi > 0.5)]. If

∆ < 0, from the definition of ∆, we can know that ∆ ≤ 1. Thus, eδ ≤ O(1/M). Furthermore, when∏N
i=0(2P̂i)2 ≥M , ε ≤M−1. Thereby,

E
[m
M

]
.

C1

M · C2
, E

[m
M

]2
.

C1

M2 · C2
2

(69)

where C1 = (1 + M−1)M ≈ e and C2 = 1 + M−1 ≈ 1. Based on Eqn. (69), we can know
E[m/M] . O(1/M) and Var[m/M] . O(1/M2). Again, according to Chebyshev’s inequality, we
can have EL [m/M] ≤1−δ O(1/

√
δM), and we can conclude Theorem 1 by taking the upper bound

of EL [m/M] into Eqn. (67).

9

D Background for Reinforcement Learning

In this section, we introduce some important concepts about reinforcement learning (RL). In an RL
problem, an agent interacts with an unknown environment and attempts to maximize its cumulative
collected reward [9, 10]. The environment is commonly formalized as a Markov Decision Process
(MDP) defined asM = 〈S,A,R,P, γ〉. At time t the agent is in state st ∈ S where it takes an
action at ∈ A leading to the next state st+1 ∈ S according to the transition probability kernel P ,
which encodes P(st+1 | st, at). In most RL problems, P is unknown to the agent. The agent’s goal
is to learn the optimal policy, a conditional distribution π(a | s) that maximizes the sate’s value
function. The value function calculates the cumulative reward the agent is expected to receive given
it would follow the current policy π after observing the current state st

V π(s) = Eπ

[∞∑
k=1

γkrt+k | st = s

]
.

Intuitively, it measures how preferable each state is given the current policy.

As a critical step towards improving a given policy, it is a standard practice for RL algorithms to learn
a state-action value function (i.e. Q-function). Q-function calculates the expected cumulative reward
if agent choose a in the current state and follows π thereafter

Qπ(s, a) = Eπ [R(st, at, st+1) + γV π(st+1) | st = s, at = a] .

In real-world problems, in order to achieve better generalization, instead of learning a value for each
state-action pair, it is more common to learn an approximate value function: Qπ(s, a; θ) ≈ Qπ(s, a).
A standard approach is to learn a feature-based state representation φ(s) instead of using the raw
state s [3]. Due to the popularity of Deep Reinforcement learning, it has been a trend to deploy
neural networks to automatically extract high-level features [8, 6]. However, running most deep
RL models are very computationally heavy. On contrast, static feature representations are usually
light-weight and simple to deploy. Several studies also reveal that a carefully designed static feature
representation can achieve performance as good as the most sophisticated deep RL models, even in
the most challenging domains [4].

E Utility-Maximizing Strategy for Workers

Lemma 22. For worker i, when M � 1 and at >
ci,H

Pi,H−0.5 , if P̃ti ≈ Pti, reporting truthfully

(rptti = 1) and exerting high efforts (eftti = 1) is the utility-maximizing strategy.
Proof. When M � 1, we can have

∑
j sci(j) ≈ M · P̃i. Thus, the utility of worker i can be

computed as
uti ≈M · at · (P̃i − 0.5) +M · b−M · ci,H · eftti. (70)

Further considering Eqn. (1) and PL = 0.5, if P̃ti ≈ Pti, we can compute worker i’s utility as

uti ≈M · [at(2 · rptti − 1)(Pi,H − 0.5)− ci,H] · eftti +M · b. (71)

Thereby, if at >
ci,H

Pi,H−0.5 , rptti = 1 and eftti = 1 maximize uti, which concludes Lemma 22.

F Uninformative Equilibrium

The uninformative equilibrium denotes the case where all workers collude by always reports the
same answer to all tasks. For traditional peer prediction mechanisms, under this equilibrium, all the
workers still can get high payments because these mechanisms determines the payment by comparing
the reports of two workers. However, the data requester only can get uninformative labels, and thus
this equilibrium is undesired.

In our mechanism, when workers always reports the same answer, for example 1, our Bayesian
inference will wrongly regard the collected labels as high-quality ones and calculate the estimates as

P̃i =
M + 2

M + 3
, τ̃−1 =

M + 1

M + 2
. (72)

10

If the answer is 2, our estimates are

P̃i =
M + 2

M + 3
, τ̃+1 =

M + 1

M + 2
. (73)

In this case, we can build a warning signal for the uninformative equilibrium as

Sigu =
1

N

N∑
i=1

log(P̃i) + log(max{τ̃1, τ̃2}) (74)

If
Sigu ≥ log

M + 1

M + 3
(75)

workers are identified to be under the uniformative equilibrium, and we will directly set the score in
our payment rule as 0. By doing so, we can create a huge loss for workers and push them to leave
this uninformative equilibrium.

G Proof for Theorem 3

In our proof, if we omit the superscript t in an equation, we mean that this equation holds for all
time steps. Due to the one step IC, we know that, to get higher long term payments, worker i must
mislead our RIL algorithm into at least increasing the scaling factor from a to any a′ > a at a certain
state ŝ. Actually, our RIL algorithm will only increase the scaling factor when the state-action value
function satisfies Qπ(ŝ, a) ≤ Qπ(ŝ, a′). Eqn. (??) tells us that the reward function consists of the
utility obtained from the collected labels (F (Ãt)) and the utility lost in the payment (η

∑N
i=1P

t
i).

Once we increase the scaling factor, we at least need to increase the payments for the other N − 1
workers by M

∑
x 6=i Px,H ·GA, corresponding to the left-hand side of the first equation in Eqn. (??).

On the other hand, for the obtained utility from the collected labels, we have
Lemma 23. At any time step t, if all workers except worker i report truthfully and exert high efforts,
we have F (Ãt) ≤ F (1) and F (Ãt) ≥ F (1− ψ), where ψ is defined in Eqn. (??).
Proof. In our Bayesian inference algorithm, when M � 1, the estimated accuracy Ã satisfies

Ã ≈ 1− Eg(σ̃j) , g(σ̃j) = 1/(1 + e|σ̃j |). (76)

From the proof of Theorem 2, we can know that P̃ti ≈ Pti. In this case, according to Eqn. (??), we
can have

σ̃j(Pi) ≈ log

(
τ−1

τ+1
λ
δij1−δij2
i

∏
k 6=i

λ
δkj1−δkj2

H

)
. (77)

where λi = Pi/(1− Pi) and λH = PH/(1− PH).

We know that Ã ≤ 1.0 holds no matter what strategy worker i takes. To prove Lemma 2, we still need
to know the lower bound of Ã. Thus, we consider two extreme cases where worker i intentionally
provides low-quality labels:

Case 1: If Pi = 0.5, we can eliminate λi from Eqn.77 because λi = 1. Furthermore, according to
Lemma 12, we can know that g(σ̃j) < eσ̃j and g(σ̃j) < e−σ̃j both hold. Thus, we build a tighter
upper bound of g(σ̃j) by dividing all the combinations of δkj1 and δkj2 in Eqn.77 into two sets and
using the smaller one of eσ̃j and e−σ̃j in each set. By using this method, if the true label is −1, we
can have E[L(j)=−1]g(σ̃j) < q1 + q2, where

q1 =
τ+1

τ−1

∑N−1

n=K+1
CnN−1(

1

λH
)n−mPnH(1− PH)m

q2 =
τ−1

τ+1

∑K

n=0
CnN−1λH

n−mPnH(1− PH)m

n =
∑

k 6=i
δkj(−1) , m =

∑
k 6=i

δkj(+1)

and K = b(N − 1)/2c. By using Lemma 13, we can thus get

E[L(j)=−1]g(σ̃j) < cτ [4PH(1− PH)]
N−1

2 .

11

where cτ = τ−1τ
−1
+1 + τ−1

−1 τ+1. Similarly,

E[L(j)=+1]g(σ̃j) < cτ [4PH(1− PH)]
N−1

2 .

Thereby, Ã > 1− cτ [4PH(1− PH)]
N−1

2 = 1− ψ.

Case 2: If Pi = 1− PH , we can rewrite Eqn.77 as

σ̃j(1− PH) ≈ log

(
τ−1

τ+1
λx−yH

∏
k 6=i

λ
δkj(−1)−δkj(+1)

H

)
where x = δij(+1) and y = δij(−1). Since Pi = 1− PH , x and y actually has the same distribution
as δkj(−1) and δkj(+1). Thus, the distribution of σ̃j(1−PH) is actually the same as σ̃j(PH). In other
words, since Theorem 2 ensures P̃i ≈ Pi, our Bayesian inference algorithm uses the information
provided by worker i via flipping the label when Pi < 0.5.

Thus, even if worker i intentionally lowers the label quality, Ã ≥ 1− ψ still holds. Considering F (·)
is a non-decreasing monotonic function, we conclude Lemma 2.

Thereby, if Eqn. (13) is satisfied, worker i will not be able to cover Q value loss in the payments,
and our RL algorithm will reject the hypothesis to increase the scaling factor. In this case, the only
utility-maximizing strategy for worker i is to report truthfully and exert high efforts.

H Worker Models

To demonstrate the general applicability of our mechanism, we test it under three different worker
models in Section 5.2, with each capturing a different way to decide the labeling strategy. The formal
description of the three models is as follows:

• Rational workers alway act to maximize their own utilities. Since our incentive mechanism
theoretically ensures that exerting high effort is the utility-maximizing strategy for all
workers (proved in Section 4), it is safe to assume workers always do so as long as the
payment is high enough to cover the cost.

• Quantal Response (QR) workers [5] exert high efforts with the probability

eftti =
exp(λ · utiH)

exp(λ · utiH) + exp(λ · utiL)

where utiH and utiL denote worker i’s expected utility after exerting high or low efforts
respectively at time t. λ describe workers’ rationality level and we set λ = 3.

• Multiplicative Weight Update (MWU) workers [2] update their probabilities of exerting
high efforts at every time step t after receiving the payment as the following equation

eftt+1
i =

eftti(1 + ū·H)

eftti(ū·H − ū·L) + ū·L + 1

where ū·H and ū·L denote the average utilities received if exerting high efforts or low efforts
at time t respectively. We initialize eft0i as 0.2 in our experiments.

References
[1] R. Arratia and L. Gordon. Tutorial on large deviations for the binomial distribution. Bulletin of

Mathematical Biology, 51(1):125–131, Jan 1989.

[2] Erick Chastain, Adi Livnat, Christos Papadimitriou, and Umesh Vazirani. Algorithms, games,
and evolution. PNAS, 111(29):10620–10623, 2014.

[3] Geoffrey J. Gordon. Reinforcement Learning with Function Approximation Converges to a
Region. In Proc. of NIPS, 2000.

[4] Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State of the art control
of atari games using shallow reinforcement learning. In Proc. of AAMAS, 2016.

12

[5] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6–38, 1995.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level Control through Deep Reinforcement
Learning. Nature, 518(7540):529–533, 02 2015.

[7] Frank W. J. Olver. NIST Handbook of Mathematical Functions. Cambridge University Press,
2010.

[8] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of go without human knowledge. Nature, 550:354 EP –, 10 2017.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
1998.

[10] Csaba Szepesvári. Algorithms for Reinforcement Learning. Synthesis lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool, 2010.

13

	Derivation of Posterior Distribution
	Proof for Lemma 1
	Basic Lemmas
	Main Proof
	H function analysis

	Proof for Theorem 1
	Background for Reinforcement Learning
	Utility-Maximizing Strategy for Workers
	Uninformative Equilibrium
	Proof for Theorem 3
	Worker Models

