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Abstract

The change-point detection problem seeks to identify distributional changes at
an unknown change-point k⇤ in a stream of data. This problem appears in many
important practical settings involving personal data, including biosurveillance, fault
detection, finance, signal detection, and security systems. The field of differen-
tial privacy offers data analysis tools that provide powerful worst-case privacy
guarantees. We study the statistical problem of change-point detection through
the lens of differential privacy. We give private algorithms for both online and
offline change-point detection, analyze these algorithms theoretically, and provide
empirical validation of our results.

1 Introduction

The change-point detection problem seeks to identify distributional changes at an unknown change-
point k⇤ in a stream of data. The estimated change-point should be consistent with the hypothesis
that the data are initially drawn from pre-change distribution P

0

but from post-change distribution P
1

starting at the change-point. This problem appears in many important practical settings, including
biosurveillance, fault detection, finance, signal detection, and security systems. For example, the CDC
may wish to detect a disease outbreak based on real-time data about hospital visits, or smart home
IoT devices may want to detect changes in activity within the home. In both of these applications, the
data contain sensitive personal information.

The field of differential privacy offers data analysis tools that provide powerful worst-case privacy
guarantees. Informally, an algorithm that is ✏-differentially private ensures that any particular output
of the algorithm is at most e✏ more likely when a single data entry is changed. In the past decade,
the theoretical computer science community has developed a wide variety of differentially private
algorithms for many statistical tasks. The private algorithms most relevant to this work are based on
the simple output perturbation principle that to produce an ✏-differentially private estimate of some
statistic on the database, we should add to the exact statistic noise proportional to �/✏, where �

indicates the sensitivity of the statistic, or how much it can be influenced by a single data entry.

We study the statistical problem of change-point problem through the lens of differential privacy. We
give private algorithms for both online and offline change-point detection, analyze these algorithms
theoretically, and then provide empirical validation of these results.

⇤Primary author. Authors are listed in alphabetical order.
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1.1 Related work

The change-point detection problem originally arose from industrial quality control, and has since
been applied in a wide variety of other contexts including climatology [LR02], econometrics [BP03],
and DNA analysis [ZS12]. The problem is studied both in the offline setting, in which the algorithm
has access to the full dataset X = {x

1

, . . . , x
n

} up front, and in the online setting, in which data
points arrive one at a time X = {x

1

, . . .}. Change-point detection is a canonical problem in statistics
that has been studied for nearly a century; selected results include [She31, Pag54, Shi63, Rob66,
Lor71, Pol85, Pol87, Mou86, Lai95, Lai01, Kul01, Mei06, Mei08, Mei10, Cha17].

Our approach is inspired by the commonly used Cumulative Sum (CUSUM) procedure [Pag54]. It
follows the generalized log-likelihood ratio principle, calculating

`(k) =
n

X

i=k

log

P
1

(x
i

)

P
0

(x
i

)

for each k 2 [n] and declaring that a change occurs if and only if `(ˆk) � T for MLE ˆk =

argmax

k

`(k) and appropriate threshold T > 0. The existing change-point literature works primarily
in the asymptotic setting when k⇤

n

/n ! r for some r 2 (0, 1) as n ! 1 (see, e.g., [Hin70, Car88]).
In contrast, we consider finite databases and provide the first accuracy guarantees for the MLE from
a finite sample (n < 1).

In offering the first algorithms for private change-point detection, we primarily use two powerful
tools from the differential privacy literature. REPORTMAX [DR14] calculates noisy approximations
of a stream of queries on the database and reports which query produced the largest noisy value.
We instantiate this with partial log-likelihood queries to produce a private approximation of the the
change-point MLE in the offline setting. ABOVETHRESH [DNR+09] calculates noisy approximations
of a stream of queries on the database iteratively and aborts as soon as a noisy approximation exceeds
a specified threshold. We extend our offline results to the harder online setting, in which a bound on
k⇤ is not known a priori, by using ABOVETHRESH to identify a window of fixed size n in which a
change is likely to have occurred so that we can call our offline algorithm at that point to estimate the
true change-point.

1.2 Our results

We use existing tools from differential privacy to solve the change-point detection problem in both
offline and online settings, neither of which have been studied in the private setting before.

Private offline change-point detection. We develop an offline private change-point detection
algorithm OFFLINEPCPD (Algorithm 1) that is accurate under one of two assumptions about
the distributions from which data are drawn. As is standard in the privacy literature, we give
accuracy guarantees that bound the additive error of our estimate of the true change-point with
high probability. Our accuracy theorem statements (Theorems 2 and 4) also provide guarantees for
the non-private estimator for comparison. Since traditional statistics typically focuses on the the
asymptotic consistency and unbiasedness of the estimator, ours are the first finite-sample accuracy
guarantees for the standard (non-private) MLE. As expected, MLE accuracy decreases with the
sensitivity of the measured quantity but increases as the pre- and post-change distribution grow
apart. Interestingly, it is constant with respect to the size of the database. In providing MLE bounds
alongside accuracy guarantees for our private algorithms, we are able to quantify the cost of privacy
as roughly D

KL

(P
0

||P
1

)/✏.

We are able to prove ✏-differential privacy under the first distributional assumption, which is that the
measured quantity has bounded sensitivity �(`), by instantiating the general-purpose REPORTMAX
algorithm from the privacy literature with our log-likelihood queries (Theorem 1). Importantly and in
contrast to our accuracy results, the distributional assumption need only apply to the hypothesized
distributions from which data are drawn; privacy holds for arbitrary input databases. We offer a
limited privacy guarantee for our second distributional assumption, ensuring that if an individual
data point is drawn from one of the two hypothesized distributions, redrawing that data from either
of the distributions will not be detected, regardless of the composition of the rest of the database
(Theorem 3).
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Private online change-point detection. In ONLINEPCPD (Algorithm 2), we extend our offline
results to the online setting by using the ABOVETHRESH framework to first identify a window in
which the change is likely to have happened and then call the offline algorithm to identify a more
precise approximation of when it occurred. Standard ✏-differential privacy under our first distributional
assumption follows from composition of the underlying privacy mechanisms (Theorem 5).2 Accuracy
of our online mechanism relies on appropriate selection of the threshold that identifies a window in
which a change-point has likely occurred, at which point the error guarantees are inherited from the
offline algorithm (Theorem 6).

Empirical validation. Finally, we run several Monte Carlo experiments to validate our theoretical
results for both the online and offline settings. We consider data drawn from Bernoulli and Gaussian
distributions, which satisfy our first and second distributional assumptions, respectively. Our offline
experiments are summarized in Figure 1, which shows that change-point detection is easier when
P
0

and P
1

are further apart and harder when the privacy requirement is stronger (✏ is smaller).
Additionally, these experiments enhance our theoretical results, finding that OFFLINEPCPD performs
well even when we relax the assumptions required for our theoretical accuracy bounds by running
our algorithm on imperfect hypotheses P

0

and P
1

that are closer together than the true distributions
from which data are drawn. Figure 2 shows that ONLINEPCPD also performs well, consistent with
our theoretical guarantees.

2 Preliminaries

Our work considers the statistical problem of change-point detection through the lens of differential
privacy. Section 2.1 defines the change-point detection problem, and Section 2.2 describes the
differentially private tools that will be brought to bear.

2.1 Change-point background

Let X = {x
1

, . . . , x
n

} be n real-valued data points. The change-point detection problem is
parametrized by two distributions, P

0

and P
1

. The data points in X are hypothesized to initially
be sampled i.i.d. from P

0

, but at some unknown change time k⇤ 2 [n], an event may occur (e.g.,
epidemic disease outbreak) and change the underlying distribution to P

1

. The goal of a data analyst is
to announce that a change has occurred as quickly as possible after k⇤. Since the x

i

may be sensitive
information—such as individuals’ medical information or behaviors inside their home—the analyst
will wish to announce the change-point time in a privacy-preserving manner.

In the standard non-private offline change-point literature, the analyst wants to test the null hypothesis
H

0

: k⇤ = 1, where x
1

, . . . , x
n

⇠iid P
0

, against the composite alternate hypothesis H
1

: k⇤ 2 [n],
where x

1

, . . . , x
k

⇤�1

⇠iid P
0

and x
k

⇤ , . . . , x
n

⇠iid P
1

. The log-likelihood ratio of k⇤ = 1 against
k⇤ = k is given by

`(k,X) =

n

X

i=k

log

P
1

(x
i

)

P
0

(x
i

)

. (1)

The maximum likelihood estimator (MLE) of the change time k⇤ is given by

ˆk(X) = argmax

k2[n]

`(k,X). (2)

When X is clear from context, we will simply write `(k) and ˆk.

An important quantity in our accuracy analysis will be the Kullback-Leibler distance between probabil-
ity distributions P

0

and P
1

, defined as D
KL

(P
1

||P
0

) =

R1
�1 P

1

(x) log P1(x)

P0(x)
dx = E

x⇠P1 [log
P1(x)

P0(x)
].

We always use log to refer to the natural logarithm, and when necessary, we interpret log 0

0

= 0.

We will measure the additive error of our estimations of the true change point as follows.
Definition 1 ((↵,�)-accuracy). A change-point detection algorithm that produces a change-point
estimator ˜k(X) where a distribution change occurred at time k⇤ is (↵,�)-accurate if Pr[|˜k � k⇤| <
↵] � 1� �, where the probability is taken over randomness of the algorithm and sampling of X .

2We note that we can relax our distributional assumption and get a weaker privacy guarantee as in the offline
setting if desired.
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2.2 Differential privacy background

Differential privacy bounds the maximum amount that a single data entry can affect analysis performed
on the database. Two databases X,X 0 are neighboring if they differ in at most one entry.
Definition 2 (Differential Privacy [DMNS06]). An algorithm M : Rn ! R is (✏, �)-differentially
private if for every pair of neighboring databases X,X 0 2 Rn, and for every subset of possible
outputs S ✓ R,

Pr[M(X) 2 S]  exp(✏) Pr[M(X 0
) 2 S] + �.

If � = 0, we say that M is ✏-differentially private.

One common technique for achieving differential privacy is by adding Laplace noise. The Laplace dis-
tribution with scale b is the distribution with probability density function: Lap(x|b) = 1

2b

exp

⇣

� |x|
b

⌘

.
We will write Lap(b) to denote the Laplace distribution with scale b, or (with a slight abuse of notation)
to denote a random variable sampled from Lap(b).

The sensitivity of a function or query f is defined as �(f) = maxneighbors X,X

0 |f(X)� f(X 0
)|. The

Laplace Mechanism of [DMNS06] takes in a function f , database X , and privacy parameter ✏, and
outputs f(X) + Lap(�(f)/✏). Our algorithms rely on two existing differentially private algorithms,
REPORTMAX [DR14] and ABOVETHRESH [DNR+09], which are overviewed in Appendix A.
Appendix B covers the concentration inequalities used in the proofs of our bounds.

3 Offline private change-point detection

In this section, we investigate the differentially private change point detection problem in the setting
that n data points X = {x

1

, . . . , x
n

} are known to the algorithm in advance. Given two hypothesized
distributions P

0

and P
1

, our algorithm OFFLINEPCPD privately approximates the MLE ˆk of the
change time k⇤. We provide accuracy bounds for both the MLE and the output of our algorithm
under two different assumptions about the distributions from which the data are drawn, summarized
in Table 1.

Table 1: Summary of non-private and private offline accuracy guarantees under H1. The expressions
�(`), A� , C, and CM are defined in (4), (5), (8), (9), resp.

Assumption MLE OFFLINEPCPD
A := �(`) < 1 2A

2

C

2 log

32

3�

max

n

8A

2

C

2 log

64

3�

, 4A

C✏

log

16

�

o

A := A
�

< 1 67

C

2
M

log

64

3�

max

n

262

C

2
M

log

128

3�

, 2A log(16/�)

CM ✏

o

The first assumption essentially requires that P
1

(x)/P
0

(x) cannot be arbitrarily large or arbitrarily
small for any x. We note that this assumption is not satisfied by several important families of
distributions, including Gaussians. The second assumption, motivated by the � > 0 relaxation of
differential privacy, instead requires that the x for which this log ratio exceeds some bound A

�

have
probability mass at most �.

Although the accuracy of OFFLINEPCPD only holds under the change-point model’s alternate
hypothesis H

1

, it is ✏-differentially private for any hypothesized distributions P
0

, P
1

with finite �(`)
and privacy parameters ✏ > 0, � = 0 regardless of the distributions from which X is drawn. We
offer a similar but somewhat weaker privacy guarantee when �(`) is infinite but A

�

is finite, which
roughly states that a data point sampled from either P

0

or P
1

can be replaced with a fresh sample
from either P

0

or P
1

without detection.

3.1 Offline algorithm

Our proposed offline algorithm OFFLINEPCPD applies the report noisy max algorithm [DR14] to the
change-point problem by adding noise to partial log-likelihood ratios `(k) used to estimate the change
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point MLE ˆk. The algorithm chooses Laplace noise parameter A/✏ depending on input hypothesized
distributions P

0

, P
1

and privacy parameters ✏, � and then outputs
˜k = argmax

1kn

{`(k) + Z
k

}. (3)

Our algorithm can be easily modified to additionally output an approximation of `(˜k) and incur 2✏
privacy cost by composition.

Algorithm 1 Offline private change-point detector : OFFLINEPCPD(X,P
0

, P
1

, ✏, �, n)
Input: database X , distributions P

0

, P
1

, privacy parameters ✏, �, database size n
if � = 0 then

Set A = max

x

log

P1(x)

P0(x)
�min

x

0
log

P1(x
0
)

P0(x
0
)

# set A = �` as in (4)
else

Set A = min{t : max

i=0,1

Pr

x⇠Pi [2| log
P1(x)

P0(x)
| > t] < �/2} # set A = A

�

as in (5)
end if
for k = 1, . . . , n do

Compute `(k) =
P

n

i=k

log

P1(xi)

P0(xi)

Sample Z
k

⇠ Lap(A
✏

)

end for
Output ˜k = argmax

1kn

{`(k) + Z
k

} # Report noisy argmax

In the change-point or statistical process control (SPC) literature, when the pre- and post- change
distributions are unknown in practical settings, researchers often choose hypotheses P

0

, P
1

with the
smallest justifiable distance. While it is easier to detect and accurately estimate a larger change, larger
changes are often associated with a higher-sensitivity MLE, requiring more noise (and therefore
additional error) to preserve privacy. We propose that practitioners using our private change point
detection algorithm choose input hypotheses accordingly. This practical setting is considered in our
numerical studies, presented in Section 5.

In the case that � = 0, we sample Laplace noise directly proportional to the sensitivity of the partial
log-likelihood ratios we compute:

�` = max

k2[n],X,X

02Rn

||X�X

0||
1
=1

||`(k,X)� `(k,X 0
)||

1

= max

x2R
log

P
1

(x)

P
0

(x)
� min

x

02R
log

P
1

(x0
)

P
0

(x0
)

. (4)

The algorithm should not be invoked with � = 0 unless �(`) is finite. In the case that ` has infinite
sensitivity, we instead allow the user to select a privacy parameter � > 0 and identify a value A

�

for
which most values of x ⇠ P

0

, P
1

have bounded log-likelihood ratio:

A
�

= min

⇢

t : max

i=0,1

Pr

x⇠Pi



2|log P
1

(x)

P
0

(x)
| > t

�

< �/2

�

. (5)

As a concrete canonical example, �(`) is unbounded for two Gaussian distributions, but A
�

is
bounded for Gaussians with different means as follows:
Example 1. For P

0

= N (0, 1), P
1

= N (µ, 1), and � > 0, we have A
�

= 2µ[��1

(1� �/2)+µ/2],
where � is the cumulative distribution function (CDF) of the standard normal distribution.

3.2 Theoretical properties under the uniform bound assumption

In this subsection, we prove privacy and accuracy of OFFLINEPCPD when � = 0 and P
0

, P
1

are
such that �(`) is finite. Note that if �(`) is infinite, then the algorithm will simply add noise with
infinite scale and will still be differentially private.
Theorem 1. For arbitrary data X , OFFLINEPCPD(X,P

0

, P
1

, ✏, 0) is (✏, 0)-differentially private.

The proof follows by instantiation of REPORTMAX [DR14] with queries `(k) for k 2 [n], which
have sensitivity A = �(`). It is included in Appendix C for completeness.
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Next we provide accuracy guarantees of the standard (non-private) MLE ˆk and the output ˜k of
our private algorithm OFFLINEPCPD when the data are drawn from P

0

, P
1

with true change point
k⇤ 2 (1, n). By providing both bounds, Theorem 2 quantifies the cost of requiring privacy in change
point detection.

Our result for the standard (non-private) MLE is the first finite-sample accuracy guarantee for this
estimator. Such non-asymptotic properties have not been previously studied in traditional statistics,
which typically focuses on consistency and unbiasedness of the estimator, with less attention to the
convergence rate. We show that the additive error of the MLE is constant with respect to the sample
size, which means that the convergence rate is O

P

(1). That is, it converges in probability to the true
change-point k⇤ in constant time.

Note that accuracy depends on two measures A and C of the distances between distributions P
0

and P
1

. Accuracy both of MLE ˆk and OFFLINEPCPD output ˜k is best for distributions for which
A = �(`) is small relative to KL-divergence, which is consistent with the intuition that larger changes
are easier to detect but output sensitivity degrades the robustness of the estimator and requires more
noise for privacy, harming accuracy.

A technical challenge that arises in proving accuracy of the private estimator is that the x
i

are not
identically distributed when the true change-point k⇤ 2 (1, n], and so the partial log-likelihood ratios
`(k) are dependent across k. Hence we need to investigate the impact of adding i.i.d. noise draws
to a sequence of `(k) that may be neither independent nor identically distributed. Fortunately, the
differences `(k) � `(k + 1) = log

P1(xk)

P0(xk)
are piecewise i.i.d. This property is key in our proof.

Moreover, we show that we can divide the possible outputs of the algorithm into regions that of
doubling size with exponentially decreasing probability of being selected by the algorithm, resulting
in accuracy bounds that are independent of the number of data points n.
Theorem 2. For hypotheses P

0

, P
1

such that �(`) < 1 and n data points X drawn from P
0

, P
1

with true change time k⇤ 2 (1, n], the MLE ˆk is (↵,�)-accurate for any � > 0 and

↵ =

2A2

C2

log

32

3�
. (6)

For hypotheses and data drawn this way with privacy parameter ✏ > 0,
OFFLINEPCPD(X,P

0

, P
1

, ✏, 0, n) is (↵,�)-accurate for any � > 0 and

↵ = max

⇢

8A2

C2

log

64

3�
,
4A

C✏
log

16

�

�

. (7)

In both expressions, A = �(`) and C = min{D
KL

(P
1

||P
0

), D
KL

(P
0

||P
1

)}.

3.3 Relaxing uniform bound assumptions

In this subsection, we prove accuracy and a limited notion of privacy for OFFLINEPCPD when
� > 0 and P

0

, P
1

are such that A
�

is finite. Since we are no longer able to uniformly bound
logP

1

(x)/P
0

(x), these accuracy results include worse constants than those in Section 3.2, but the
relaxed assumption about P

0

, P
1

makes the results applicable to a wider range of distributions,
including Gaussian distributions (see Example 1). Note of course that for some pairs of very different
distributions, such as distributions with non-overlapping supports, the assumption that A

�

< 1 may
still fail. A true change point k⇤ can always be detected with perfect accuracy given x

k

⇤�1

and x
k

⇤ ,
so we should not expect to be able to offer any meaningful privacy guarantees for such distributions.

By similar rationale, relaxing the uniform bound assumption means that we may have a single data
point x

j

that dramatically increases `(k) for k � j, so we cannot add noise proportional to �(`) and
privacy no longer follows from that of REPORTMAX. Instead we offer a weaker notion of privacy in
Theorem 3 below. As with the usual definition of differential privacy, we guarantee that the output
of our algorithm is similarly distributed on neighboring databases, only our notion of neighboring
databases depends on the hypothesized distributions. Specifically, the a single entry in X drawn from
either P

0

or P
1

may be replaced without detection by another entry drawn from either P
0

or P
1

, even
if the rest of the database is arbitrary. The proof is given in Appendix C.
Theorem 3. For any ✏, � > 0, any hypotheses P

0

, P
1

such that A
�

< 1, any index j 2 [n],
any i, i0 2 {0, 1}, and any x

1

, . . . , x
j�1

, x
j+2

, . . . , x
n

, let X
i

= {x
1

, . . . , x
n

} denote the random

6



variable with x
j

⇠ P
i

and let X 0
i

0 = {x
1

, . . . , x
j�1

, x0
j

, x
j+1

, . . . , x
n

} denote the random variable
with x0

j

⇠ P
i

0 . Then for any S ✓ [n], we have

Pr[OFFLINEPCPD(X
i

, P
0

, P
1

, ✏, �, n) 2 S]

 exp(✏) · Pr[OFFLINEPCPD(X 0
i

0 , P
0

, P
1

, ✏, �, n) 2 S] + �,

where the probabilities are over the randomness of the algorithm and of X
i

, X 0
i

0 .

Allowing �(`) to be infinite precludes our use of Hoeffding’s inequality as in Theorem 2. The main
idea in the proof, however, can be salvaged by decomposing the change into a change from P

0

to
the average distribution (P

0

+ P
1

)/2 and then the average distribution to P
1

. Correspondingly, we
will use C

M

, an alternate distance measure between P
0

and P
1

, defined below next to C from the
previous section for comparison:

C = min {D
KL

(P
0

||P
1

), D
KL

(P
1

||P
0

)} (8)

C
M

= min

⇢

D
KL

(P
0

||P0

+ P
1

2

), D
KL

(P
1

||P0

+ P
1

2

)

�

= min

i=0,1

E
x⇠Pi



log

2P
i

(x)

P
0

(x) + P
1

(x)

�

(9)

Because (2P
i

)/(P
0

+ P
1

)  2, we have 0  D
KL

(P
i

||(P
0

+ P
1

)/2)  log 2, and thus the constant
C

M

in (9) is well-defined. The proof of the following theorem is given in Appendix C.
Theorem 4. For � > 0 and hypotheses P

0

, P
1

such that A
�

< 1 and n data points X drawn from
P
0

, P
1

with true change time k⇤ 2 (1, n), the MLE ˆk is (↵,�)-accurate for any � > 0 and

↵ =

67

C2

M

log

64

3�
. (10)

For hypotheses and data drawn this way with privacy parameter ✏ > 0,
OFFLINEPCPD(X,P

0

, P
1

, ✏, �, n) is (↵,�)-accurate for any � > 0 and

↵ = max{ 262
C2

M

log

128

3�
,
2A log(16/�)

C
M

✏
}. (11)

In both expressions, A = A
�

and C
M

= min

�

D
KL

(P
0

||P0+P1
2

), D
KL

(P
1

||P0+P1
2

)

 

.

4 Online private change-point detection

In this section, we give a new differentially private algorithm for change point detection in the online
setting, ONLINEPCPD. In this setting, the algorithm initially receives n data points x

1

, . . . , x
n

and
then continues to receive data points one at a time. As before, the goal is to privately identify an
approximation of the time k⇤ when the data change from distribution P

0

to P
1

. Additionally, we
want to identify this change shortly after it occurs.

Our offline algorithm is not directly applicable because we do not know a priori how many points must
arrive before a true change point occurs. To resolve this, ONLINEPCPD works like ABOVETHRESH,
determining after each new data entry arrives whether it is likely that a change occurred in the most
recent n entries. When ONLINEPCPD detects a sufficiently large (noisy) partial log likelihood ratio
`(k) =

P

j

i=k

log

P1(xi)

P0(xi)
, it calls OFFLINEPCPD to privately determine the most likely change point

˜k in the window {x
j�n+1

, . . . , x
j

}.

Privacy of ONLINEPCPD is immediate from composition of ABOVETHRESH and OFFLINEPCPD,
each with privacy loss ✏/2. As before, accuracy requires X to be drawn from P

0

, P
1

with some true
change point k⇤. This algorithm also requires a suitable choice of T to guarantee that OFFLINEPCPD
is called for a window of data that actually contains k⇤. Specifically, T should be large enough that
the algorithm is unlikely to call OFFLINEPCPD when j < k⇤ but small enough so that it is likely
to call OFFLINEPCPD by time j = k⇤ + n/2. When both of these conditions hold, we inherit the
accuracy of OFFLINEPCPD, with an extra log n factor arising from the fact that the data are no longer
distributed exactly as in the change-point model after conditioning on calling OFFLINEPCPD in a
correct window.
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With our final bounds, we note that n � A

C

log(k⇤/�) suffices for existence of a suitable threshold,
and an analyst must have a reasonable approximation of k⇤ in order to choose such a threshold.
Otherwise, the accuracy bound itself has no dependence on the change-point k⇤.

Algorithm 2 Online private change-point detector : ONLINEPCPD(X,P
0

, P
1

, ✏, n, T )
Input: database X , distributions P

0

, P
1

, privacy parameter ✏, starting size n, threshold T

Let A = max

x

log

P1(x)

P0(x)
�min

x

0
log

P1(x
0
)

P0(x
0
)

Let ˆT = T + Lap(4A/✏)
for each new data point x

j

, j � n do
Compute `

j

= max

j�n+1kj

`(k)
Sample Z

j

⇠ Lap( 8A
✏

)

if `
j

+ Z
j

> ˆT then
Output OFFLINEPCPD({x

j�n+1

, . . . , x
j

}, P
0

, P
1

, ✏/2, 0, n) + (j � n)
Halt

else
Output ?

end if
end for

Theorem 5. For arbitrary data X , ONLINEPCPD(X,P
0

, P
1

, ✏, n, T ) is (✏, 0)-differentially private.

This privacy guarantee follows from simple composition of ABOVETHRESH and OFFLINEPCPD,
each with privacy loss ✏/2. The proof of the accuracy bound is given in Appendix D.
Theorem 6. For hypotheses P

0

, P
1

such that �(`) < 1, a stream of data points X with starting
size n drawn from P

0

, P
1

with true change time k⇤ � n/2, privacy parameter ✏ > 0, and threshold
T 2 [T

L

, T
U

] with

T
L

:= 2A

s

2 log

64k⇤

�
� C +

16A

✏
log

8k⇤

�
,

T
U

:=

nC

2

� A

2

p

n log(8/�)� 16A

✏
log

8k⇤

�
,

we have that ONLINEPCPD(X,P
0

, P
1

, ✏, n, T ) is (↵,�) accurate for any � > 0 and

↵ = max

⇢

16A2

C2

log

32n

�
,
4A

C✏
log

8n

�

�

.

In the above expressions, A = �(`) and C = min{D
KL

(P
0

||P
1

), D
KL

(P
1

||P
0

)}.

5 Numerical studies

We now report the results of Monte Carlo experiments designed to validate the theoretical results of
previous sections. We only consider our accuracy guarantees because the nature of differential privacy
provides a strong worst-case guarantee for all hypothetical databases, and therefore is impractical
and redundant to test empirically. Our simulations consider both offline and online settings for two
canonical problems: detecting a change in the mean of Bernoulli and Gaussian distributions.

We begin with the offline setting to verify performance of our OFFLINEPCPD algorithm. We use
n = 200 observations where the true change occurs at time k⇤ = 100. This process is repeated 10

4

times. For both the Bernoulli and Gaussian models, we consider the following three different change
scenarios, corresponding to the size of the change and parameter selection for OFFLINEPCPD. For
each of these cases, we consider privacy parameter ✏ = 0.1, 0.5, 1,1, where ✏ = 1 corresponds to
the non-private problem, which serves as our baseline. The results are summarized in Figure 1, which
plots the empirical probabilities � = Pr[|˜k � k⇤| > ↵] as a function of ↵.

(A) Large change. Bernoulli model: detecting a change from p
0

= 0.2 to p
1

= 0.8. Gaussian
model: detecting a change from µ

0

= 0 to µ
1

= 1.
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(B) Small change. Bernoulli model: detecting a change from p
0

= 0.2 to p
1

= 0.4. Gaussian
model: detecting a change from µ

0

= 0 to µ
1

= 0.5.
(C) Misspecified change Bernoulli model: algorithm tests for change from p

0

= 0.2 to p
1

= 0.4
when true distributions have p

0

= 0.2 and p
1

= 0.8. Gaussian model: algorithm tests for
change from µ

0

= 0 to µ
1

= 0.5 when true distributions have µ
0

= 0 and µ
1

= 1.

Figure 1 highlights three positive results for our algorithm when data is drawn from Bernoulli or
Gaussian distributions: accuracy is best when the true change in data is large (plots a and d) compared
to small (plots b and e), accuracy deteriorates as ✏ decreases for stronger privacy, and the algorithm
performs well even when the true change is larger than that hypothesized (plots c and f). This figure
emphasizes that our algorithm performs well even for quite strong privacy guarantees (✏ < 1). The
misspecified change experiments bolster our theoretical results substantially, indicating that our
hypotheses can be quite far from the distributions of the true data and our algorithms will still identify
a change-point accurately. We also run Monte Carlo simulations of our online change-point detection
algorithm ONLINEPCPD. These are displayed in Figure 2 and discussed in Appendix E.
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(a) Bernoulli, large change
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(b) Bernoulli, small change
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(c) Bernoulli, misspecified change
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(d) Gaussian, large change
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(e) Gaussian, small change
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(f) Gaussian, misspecified change

Figure 1: Accuracy for large change, small change, and misspecified change Monte Carlo simulations
with Bernoulli and Gaussian data. Each simulation involves 104 runs of OFFLINEPCPD with varying
✏ on data generated by 200 i.i.d. samples from appropriate distributions with change point k⇤ = 100.
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