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Abstract

Learning low-dimensional embeddings of knowledge graphs is a powerful ap-
proach used to predict unobserved or missing edges between entities. However,
an open challenge in this area is developing techniques that can go beyond simple
edge prediction and handle more complex logical queries, which might involve
multiple unobserved edges, entities, and variables. For instance, given an incom-
plete biological knowledge graph, we might want to predict what drugs are likely
to target proteins involved with both diseases X and Y?—a query that requires
reasoning about all possible proteins that might interact with diseases X and Y.
Here we introduce a framework to efficiently make predictions about conjunctive
logical queries—a flexible but tractable subset of first-order logic—on incomplete
knowledge graphs. In our approach, we embed graph nodes in a low-dimensional
space and represent logical operators as learned geometric operations (e.g., transla-
tion, rotation) in this embedding space. By performing logical operations within a
low-dimensional embedding space, our approach achieves a time complexity that
is linear in the number of query variables, compared to the exponential complexity
required by a naive enumeration-based approach. We demonstrate the utility of
this framework in two application studies on real-world datasets with millions
of relations: predicting logical relationships in a network of drug-gene-disease
interactions and in a graph-based representation of social interactions derived from
a popular web forum.

1 Introduction

A wide variety of heterogeneous data can be naturally represented as networks of interactions between
typed entities, and a fundamental task in machine learning is developing techniques to discover or
predict unobserved edges using this graph-structured data. Link prediction [25], recommender
systems [48], and knowledge base completion [28] are all instances of this common task, where the
goal is to predict unobserved edges between nodes in a graph using an observed set of training edges.
However, an open challenge in this domain is developing techniques to make predictions about more
complex graph queries that involve multiple unobserved edges, nodes, and even variables—rather
than just single edges.

One particularly useful set of such graph queries, and the focus of this work, are conjunctive
queries, which correspond to the subset of first-order logic using only the conjunction and existential
quantification operators [1]. In terms of graph structure, conjunctive queries allow one to reason
about the existence of subgraph relationships between sets of nodes, which makes conjunctive queries
a natural focus for knowledge graph applications. For example, given an incomplete biological
knowledge graph—containing known interactions between drugs, diseases, and proteins—one could
pose the conjunctive query: “what protein nodes are likely to be associated with diseases that have
both symptoms X and Y?” In this query, the disease node is an existentially quantified variable—
i.e., we only care that some disease connects the protein node to these symptom nodes X and Y.
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Figure 1: Two example conjunctive graph queries. In the boxes we show the query, its natural language
interpretation, and the DAG that specifies this query’s structure. Below these boxes we show subgraphs that
satisfy the query (solid lines), but note that in practice, some of these edges might be missing, and we need to
predict these missing edges in order for the query to be answered. Dashed lines denote edges that are irrelevant
to the query. The example on the left shows a path query on the Reddit data; note that there are multiple nodes
that satisfy this query, as well as multiple paths that reach the same node. The example on the right shows a
more complex query with a polytree structure on the biological interaction data.

Valid answers to such a query correspond to subgraphs. However, since any edge in this biological
interaction network might be unobserved, naively answering this query would require enumeration
over all possible diseases.

In general, the query prediction task—where we want to predict likely answers to queries that can
involve unobserved edges—is difficult because there are a combinatorial number of possible queries
of interest, and any given conjunctive query can be satisfied by many (unobserved) subgraphs (Figure
1). For instance, a naive approach to make predictions about conjunctive queries would be the
following: First, one would run an edge prediction model on all possible pairs of nodes, and—after
obtaining these edge likelihoods—one would enumerate and score all candidate subgraphs that might
satisfy a query. However, this naive enumeration approach could require computation time that is
exponential in the number of existentially quantified (i.e., bound) variables in the query [12].

Here we address this challenge and develop graph query embeddings (GQEs), an embedding-based
framework that can efficiently make predictions about conjunctive queries on incomplete knowledge
graphs. The key idea behind GQEs is that we embed graph nodes in a low-dimensional space
and represent logical operators as learned geometric operations (e.g., translation, rotation) in this
embedding space. After training, we can use the model to predict which nodes are likely to satisfy
any valid conjunctive query, even if the query involves unobserved edges. Moreover, we can make
this prediction efficiently, in time complexity that is linear in the number of edges in the query and
constant with respect to the size of the input network. We demonstrate the utility of GQEs in two
application studies involving networks with millions of edges: discovering new interactions in a
biomedical drug interaction network (e.g., “predict drugs that might treat diseases associated with
protein X”) and predicting social interactions on the website Reddit (e.g., “recommend posts that
user A is likely to downvote, but user B is likely to upvote”).

2 Related Work

Our framework builds upon a wealth of previous research at the intersection of embedding methods,
knowledge graph completion, and logical reasoning.

Logical reasoning and knowledge graphs. Recent years have seen significant progress in using
machine learning to reason with relational data [16], especially within the context of knowledge
graph embeddings [6, 23, 18, 28, 29, 45], probabilistic soft logic [3], and differentiable tensor-based
logic [11, 33]. However, existing work in this area primarily focuses on using logical reasoning to
improve edge prediction in knowledge graphs [14, 13, 27], for example, by using logical rules as
regularization [15, 20, 35, 37]. In contrast, we seek to directly make predictions about conjunctive
logical queries. Another well-studied thread in this space involves leveraging knowledge graphs
to improve natural language question answering (QA) [4, 5, 47]. However, the focus of these QA
approaches is understanding natural language, whereas we focus on queries that are in logical form.
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Figure 2: Schema diagrams for the biological interaction network and the Reddit data. Note that in the Reddit
data words are only used as features for posts and are not used in any logical queries. Note also that for directed
relationships, we add the inverses of these relationships to allow for a richer query space.

Probabilistic databases. Our research also draws inspiration from work on probabilistic databases
[9, 12]. The primary distinction between our work and probabilistic databases is the following:
Whereas probabilistic databases take a database containing probabilistic facts and score queries, we
seek to predict unobserved logical relationships in a knowledge graph. Concretely, a distinguishing
challenge in our setting is that while we are given a set of known edge relationships (i.e., facts), all
missing edge relationships could possibly be true.

Neural theorem proving. Lastly, our work builds closely upon recent advancements in neural
theorem proving [34, 43], which have demonstrated how neural networks can prove first-order logic
statements in toy knowledge bases [36]. Our main contribution in this space is providing an efficient
approach to embed a useful subset of first-order logic, demonstrating scalability to real-world network
data with millions of edges.

3 Background and Preliminaries

We consider knowledge graphs (or heterogeneous networks) G = (V, E) that consists of nodes
v ∈ V and directed edges e ∈ E of various types. We will usually denote edges e ∈ E as binary
predicates e = τ(u, v), τ ∈ R, where u, v ∈ V are nodes with types γ1, γ2,∈ Γ, respectively, and
τ : γ1 × γ2 → {true, false} is the edge relation. When referring generically to nodes we use
the letters u and v (with varying subscripts); however, in cases where type information is salient we
will use distinct letters to denote nodes of different types (e.g., d for a disease node in a biological
network), and we omit subscripts whenever possible. Finally, we use lower-case script (e.g., vi) for
the actual graph nodes and upper-case script for variables whose domain is the set of graph nodes
(e.g., Vi). Throughout this paper we use two real-world networks as running examples:

Example 1: Drug interactions (Figure 2.a). A knowledge graph derived from a number from public
biomedical databases (Appendix B). It consists of nodes corresponding to drugs, diseases, proteins,
side effects, and biological processes. There are 42 different edge types, including multiple edge
types between proteins (e.g., co-expression, binding interactions), edges denoting known drug-disease
treatment pairs, and edges denoting experimentally documented side-effects of drugs. In total this
dataset contains over 8 million edges between 97,000 nodes.

Example 2: Reddit dynamics (Figure 2.b). We also consider a graph-based representation of Red-
dit, one of the most popular websites in the world. Reddit allows users to form topical communities,
within which users can create and comment on posts (e.g., images, or links to news stories). We
analyze all activity in 105 videogame related communities from May 1-5th, 2017 (Appendix B). In
total this dataset contains over 4 million edges denoting interactions between users, communities and
posts, with over 700,000 nodes in total (see Figure 2.b for the full schema). Edges exist to denote
that a user created,“upvoted”, or “downvoted” a post, as well as edges that indicate whether a user
subscribes to a community
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3.1 Conjunctive graph queries

In this work we seek to make predictions about conjunctive graph queries (Figure 1). Specifically,
the queries q ∈ Q(G) that we consider can be written as:

q = V? . ∃V1, ..., Vm : e1 ∧ e2 ∧ ... ∧ en, (1)
where ei = τ(vj , Vk), Vk ∈ {V?, V1, ..., Vm}, vj ∈ V, τ ∈ R
or ei = τ(Vj , Vk), Vj , Vk ∈ {V?, V1, ..., Vm}, j 6= k, τ ∈ R.

In Equation (1), V? denotes the target variable of the query, i.e., the node that we want the query to
return, while V1, ..., Vm are existentially quantified bound variable nodes. The edges ei in the query
can involve these variable nodes as well as anchor nodes, i.e., non-variable/constant nodes that form
the input to the query, denoted in lower-case as vj .

To give a concrete example using the biological interaction network (Figure 2.a), consider the query
“return all drug nodes that are likely to target proteins that are associated with a given disease node d.”
We would write this query as:

q = C?.∃P : ASSOC(d, P ) ∧ TARGET(P,C?), (2)

and we say that the answer or denotation of this query JqK is the set of all drug nodes that are likely
to be connected to node d on a length-two path following edges that have types TARGET and ASSOC,
respectively. Note that d is an anchor node of the query: it is the input that we provide. In contrast,
the upper-case nodes C? and P , are variables defined within the query, with the P variable being
existentially quantified. In terms of graph structure, Equation (2) corresponds to a path. Figure 1
contains a visual illustration of this idea.

Beyond paths, queries of the form in Equation (1) can also represent more complex relationships. For
example, the query “return all drug nodes that are likely to target proteins that are associated with the
given disease nodes d1 and d2” would be written as:

C?.∃P : ASSOC(d1, P ) ∧ ASSOC(d2, P ) ∧ TARGET(P,C?).

In this query we have two anchor nodes d1 and d2, and the query corresponds to a polytree (Figure 1).

In general, we define the dependency graph of a query q as the graph with edges Eq = {e1, ..., en}
formed between the anchor nodes v1, ..., vk and the variable nodes V?, V1, ..., Vm (Figure 1). For a
query to be valid, its dependency graph must be a directed acyclic graph (DAG), with the anchor
nodes as the source nodes of the DAG and the query target as the unique sink node. The DAG
structure ensures that there are no contradictions or redundancies.

Note that there is an important distinction between the query DAG, which contains variables, and
a subgraph structure in the knowledge graph that satisfies this query, i.e., a concrete assignment of
the query variables (see Figure 1). For instance, it is possible for a query DAG to be satisfied by a
subgraph that contains cycles, e.g., by having two bound variables evaluate to the same node.

Observed vs. unobserved denotation sets. If we view edge relations as binary predicates, the graph
queries defined by Equation (1) correspond to a standard conjunctive query language [1], with the
restriction that we allow at most one free variable. However, unlike standard queries on relational
databases, we seek to discover or predict unobserved relationship and not just answer queries that
exactly satisfy a set of observed edges. Formally, we assume that every query q ∈ Q(G) has some
unobserved denotation set JqK that we are trying to predict, and we assume that JqK is not fully
observed in our training data. To avoid confusion on this point, we also introduce the notion of the
observed denotation set of a query, denoted JqKtrain, which corresponds to the set of nodes that exactly
satisfy q according to our observed, training edges. Thus, our goal is to train using example query-
answer pairs that are known in the training data, i.e., (q, v∗), v∗ ∈ JqKtrain, so that we can generalize to
parts of the graph that involve missing edges, i.e., so that we can make predictions for query-answer
pairs that rely on edges which are unobserved in the training data (q, v∗), v∗ ∈ JqK \ JqKtrain.

4 Proposed Approach

The key idea behind our approach is that we learn how to embed any conjunctive graph query into
a low-dimensional space. This is achieved by representing logical query operations as geometric
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Figure 3: Overview of GQE framework. Given an input query q, we represent this query according to its DAG
structure, then we use Algorithm 1 to generate an embedding of the query based on this DAG. Algorithm 1
starts with the embeddings of the query’s anchor nodes and iteratively applies geometric operations P and I to
generate an embedding q that corresponds to the query. Finally, we can use the generated query embedding to
predict the likelihood that a node satisfies the query, e.g., by nearest neighbor search in the embedding space.

operators that are jointly optimized on a low-dimensional embedding space along with a set of node
embeddings. The core of our framework is Algorithm 1, which maps any conjunctive input query q
to an embedding q ∈ Rd using two differentiable operators, P and I, described below. The goal is
to optimize these operators—along with embeddings for all graph nodes zv ∈ Rd,∀v ∈ V—so that
the embedding q for any query q can be generated and used to predict the likelihood that a node v
satisfies the query q. In particular, we want to generate query embeddings q and node embeddings
zv, so that the likelihood or “score” that v ∈ JqK is given by the distance between their respective
embeddings:1

score(q, zv) =
q · zv
‖q‖‖zv‖

. (3)

Thus, our goal is to generate an embedding q of a query that implicitly represents its denotation JqK;
i.e., we want to generate query embeddings so that score(q, zv) = 1,∀v ∈ JqK and score(q, zv) =
0,∀v /∈ JqK. At inference time, we take a query q, generate its corresponding embedding q, and then
perform nearest neighbor search—e.g., via efficient locality sensitive hashing [21]—in the embedding
space to find nodes likely to satisfy this query (Figure 3).

To generate the embedding q for a query q using Algorithm 1, we (i) represent the query using its
DAG dependency graph, (ii) start with the embeddings zv1 , ..., zvn of its anchor nodes, and then (iii)
we apply geometric operators, P and I (defined below) to these embeddings to obtain an embedding
q of the query. In particular, we introduce two key geometric operators, both of which can be
interpreted as manipulating the denotation set associated with a query in the embedding space.

Geometric projection operator, P:. Given a query embedding q and an edge type τ , the projection
operator P outputs a new query embedding q′ = P(q, τ) whose corresponding denotation is
Jq′K = ∪v∈JqKN(v, τ), where N(v, τ) denotes the set of nodes connected to v by edges of type τ .
Thus, P takes an embedding corresponding to a set of nodes JqK and produces a new embedding that
corresponds to the union of all the neighbors of nodes in JqK, by edges of type τ . Following a long
line of successful work on encoding edge and path relationships in knowledge graphs [23, 18, 28, 29],
we implement P as follows:

P(q, τ) = Rτq, (4)

where Rd×d
τ is a trainable parameter matrix for edge type τ . In the base case, if P is given a node

embedding zv and edge type τ as input, then it returns an embedding of the neighbor set N(v, τ).

Geometric intersection operator, I:. Suppose we are given a set of query embeddings q1, ...,qn,
all of which correspond to queries with the same output node type γ. The geometric intersection

1We use the cosine distance, but in general other distance measures could be used.
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operator I takes this set of query embeddings and produces a new embedding q′ whose denotation
corresponds to Jq′K = ∩i=1,...,nJqKi, i.e., it performs set intersection in the embedding space. While
path projections of the form in Equation (4) have been considered in previous work on edge and path
prediction, no previous work has considered such a geometric intersection operation. Motivated by
recent advancements in deep learning on sets [32, 46], we implement I as:

I({q1, ...,qn}) = WγΨ (NNk(qi),∀i = 1, ...n}) , (5)

where NNk is a k-layer feedforward neural network, Ψ is a symmetric vector function (e.g., an
elementwise mean or min of a set over vectors), Wγ ,Bγ are trainable transformation matrices
for each node type γ ∈ Γ, and ReLU denotes a rectified linear unit. In principle, any sufficiently
expressive neural network that operates on sets could be also employed as the intersection operator
(e.g., a variant of Equation 5 with more hidden layers), as long as this network is permutation invariant
on its inputs [46].

Query inference using P and I. Given the geometric projection operator P (Equation 4) and
the geometric intersection operator I (Equation 5) we can use Algorithm 1 to efficiently generate
an embedding q that corresponds to any DAG-structured conjunctive query q on the network. To
generate a query embedding, we start by projecting the anchor node embeddings according to their
outgoing edges; then if a node has more than one incoming edge in the query DAG, we use the
intersection operation to aggregate the incoming information, and we repeat this process as necessary
until we reach the target variable of the query. In the end, Algorithm 1 generates an embedding q of a
query in O(d2E) operations, where d is the embedding dimension and E is the number of edges in
the query DAG. Using the generated embedding q we can predict nodes that are likely to satisfy this
query by doing a nearest neighbor search in the embedding space. Moreover, since the set of nodes is
known in advance, this nearest neighbor search can be made highly efficient (i.e., sublinear in |V|)
using locality sensitive hashing, at a small approximation cost [21].

4.1 Theoretical analysis

Formally, we can show that in an ideal setting Algorithm 1 can exactly answer any conjunctive query
on a network. This provides an equivalence between conjunctive queries on a network and sequences
of geometric projection and intersection operations in an embedding space.

Theorem 1. Given a network G = (V, E), there exists a set of node embeddings zv ∈ Rd,∀v ∈ V ,
geometric projection parameters Rτ ∈ Rd×d,∀τ ∈ R, and geometric intersection parameters
Wγ ,Bγ ∈ Rd×d,∀γ ∈ Γ with d = O(|V |) such that for all DAG-structured queries q ∈ Q(G)
containing E edges the following holds: Algorithm 1 can compute an embedding q of q using O(E)
applications of the geometric operators P and I such that

score(q, zv) =

{
0 if v /∈ JqKtrain

α > 0 if v ∈ JqKtrain
,

i.e., the observed denotation set of the query JqKtrain can be exactly computed in the embeddings space
by Algorithm 1 using O(E) applications of the geometric operators P and I.

Theorem 1 is a consequence of the correspondence between tensor algebra and logic [11] combined
with the efficiency of DAG-structured conjunctive queries [1], and the full proof is in Appendix A.

4.2 Node embeddings

In principle any efficient differentiable algorithm that generates node embeddings can be used as the
base of our query embeddings. Here we use a standard “bag-of-features” approach [44]. We assume
that every node of type γ has an associated binary feature vector xu ∈ Zmγ , and we compute the
node embedding as

zu =
Zγxu
|xu|

, (6)

where Zγ ∈ Rd×mγ is a trainable embedding matrix. In our experiments, the xu vectors are one-hot
indicator vectors (e.g., each node gets its own embedding) except for posts in Reddit, where the
features are binary indicators of what words occur in the post.
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4.3 Other variants of our framework

Above we outlined one concrete implementation of our GQE framework. However, in principle, our
framework can be implemented with alternative geometric projection P and intersection I operators.
In particular, the projection operator can be implemented using any composable, embedding-based
edge prediction model, as defined in Guu et al., 2015 [18]. For instance, we also consider variants
of the geometric projection operator based on DistMult [45] and TransE [6]. In the DistMult model
the matrices in Equation (4) are restricted to be diagonal, whereas in the TransE variant we replace
Equation (4) with a translation operation, PTransE(q, τ) = q + rτ . Note, however, that our proof of
Theorem 1 relies on specific properties of projection operator described in Equation (4).

4.4 Model training

The geometric projection operator P , intersection operator I, and node embedding parameters can
be trained using stochastic gradient descent on a max-margin loss. To compute this loss given a
training query q, we uniformly sample a positive example node v∗ ∈ JqKtrain and negative example
node vN /∈ JqKtrain from the training data and compute:

L(q) = max (0, 1− score(q, zv∗) + score(q, zvN )) .

For queries involving intersection operations, we use two types of negative samples: “standard”
negative samples are randomly sampled from the subset of nodes that have the correct type for a
query; in contrast, “hard” negative samples correspond to nodes that satisfy the query if a logical
conjunction is relaxed to a disjunction. For example, for the query “return all drugs that are likely to
treat disease d1 and d2”, a hard negative example would be diseases that treat d1 but not d2.

5 Experiments

We run experiments on the biological interaction (Bio) and Reddit datasets (Figure 2). Code and data
is available at https://github.com/williamleif/graphqembed.

5.1 Baselines and model variants

We consider variants of our framework using the projection operator in Equation 4 (termed Bilinear),
as well as variants using TransE and DistMult as the projection operators (see Section 4.3). All
variants use a single-layer neural network in Equation (5). As a baseline, we consider an enumeration
approach that is trained end-to-end to perform edge prediction (using Bilinear, TransE, or DistMult)
and scores possible subgraphs that could satisfy a query by taking the product (i.e., a soft-AND)
of their individual edge likelihoods (using a sigmoid with a learned scaling factor to compute the
edge likelihoods). However, this enumeration approach has exponential time complexity w.r.t. to the
number of bound variables in a query and is intractable in many cases, so we only include it as a
comparison point on the subset of queries with no bound variables. (A slightly less naive baseline
variant where we simply use one-hot embeddings for nodes is similarly intractable due to having
quadratic complexity w.r.t. to the number of nodes.) As additional ablations, we also consider
simplified variants of our approach where we only train the projection operator P on edge prediction
and where the intersection operator I is just an elementwise mean or min. This tests how well
Algorithm 1 can answer conjunctive queries using standard node embeddings that are only trained to
perform edge prediction. For all baselines and variants, we used PyTorch [30], the Adam optimizer,
an embedding dimension d = 128, a batch size of 256, and tested learning rates {0.1, 0.01, 0.001}.

5.2 Dataset of train and test queries

To test our approach, we sample sets of train/test queries from a knowledge graph, i.e., pairs (q, v∗),
where q is a query and v∗ is a node that satisfies this query. In our sampling scheme, we sample a
fixed number of example queries for each possible query DAG structure (Figure 4, bottom). For each
possible DAG structure, we sampled queries uniformly at random using a simple rejection sampling
approach (described below).

To sample training queries, we first remove 10% of the edges uniformly at random from the graph
and then perform sampling on this downsampled training graph. To sample test queries, we sample
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Table 1: Performance on test queries for different variants of our framework. Results are macro-averaged across
queries with different DAG structures (Figure 4, bottom). For queries involving intersections, we evaluate both
using standard negative examples as well as “hard” negative examples (Section 4.4), giving both measures equal
weight in the macro-average. Figure 4 breaks down the performance of the best model by query type.

Bio data Reddit data

Bilinear DistMult TransE Bilinear DistMult TransE

GQE training AUC 91.0 90.7 88.7 76.4 73.3 75.9
APR 91.5 91.3 89.9 78.7 74.7 78.4

Edge training AUC 79.2 86.7 78.3 59.8 72.2 73.0
APR 78.6 87.5 81.6 60.1 73.5 75.5

 EVALUATING ON HARD NEGATIVE EXAMPLES
Query dependency graph

 A
U

C

Figure 4: AUC of the Bilinear GQE model on both datasets, broken down according to test queries with different
dependency graph structures, as well as test queries using standard or hard negative examples.

from the original graph (i.e., the complete graph without any removed edges), but we ensure that
the test query examples are not directly answerable in the training graph. In other words, we ensure
that every test query relies on at least one deleted edge (i.e., that for every test query example (q,
v∗), v∗ /∈ JqKtrain). This train/test setup ensures that a trivial baseline—which simply tries to answer
a query by template matching on the observed training edges—will have an accuracy that is no
better random guessing on the test set, i.e., that every test query can only be answered by inferring
unobserved relationships.

Sampling details. In our sampling scheme, we sample a fixed number of example queries for each
possible query DAG structure. In particular, given a DAG structure with E edges—specified by a
vector d = [d1, d2, ..., dE ] of node out degrees, which are sorted in topological order [42] —we
sample edges using the following procedure: First we sample the query target node (i.e., the root of
the DAG); next, we sample d1 out-edges from this node and we add each of these sampled nodes to
a queue; we then iteratively pop nodes from the queue, sampling di+1 neighbors from the ith node
popped from the queue, and so on. If a node has di = 0, then this corresponds to an anchor node
in the query. We use simple rejection sampling to cope with cases where the sampled nodes cannot
satisfy a particular DAG structure, i.e., we repeatedly sample until we obtain S example queries
satisfying a particular query DAG structure.

Training, validation, and test set details. For training we sampled 106 queries with two edges and
106 queries with three edges, with equal numbers of samples for each different type of query DAG
structure. For testing, we sampled 10,000 test queries for each DAG structure with two or three edges
and ensured that these test queries involved missing edges (see above). We further sampled 1,000 test
queries for each possible DAG structure to use for validation (e.g., for early stopping). We used all
edges in the training graph as training examples for size-1 queries (i.e., edge prediction), and we used
a 90/10 split of the deleted edges to form the test and validation sets for size-1 queries.

5.3 Evaluation metrics

For a test query q we evaluate how well the model ranks a node v∗ that does satisfy this query
v∗ ∈ JqK compared to negative example nodes that do not satisfy it, i.e., vN /∈ JqK. We quantify this
performance using the ROC AUC score and average percentile rank (APR). For the APR computation,
we rank the true node against min(1000, |{v /∈ JqK|) negative examples (that have the correct type
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Table 2: Comparing GQE to an enumeration baseline that performs edge prediction and then computes logical
conjunctions as products of edge likelihoods. AUC values are reported (with analogous results holding for the
APR metric). Bio-H and Reddit-H denote evaluations where hard negative examples are used (see Section 5.3).

Bio Bio-H Reddit Reddit-H

Enum. Baseline 0.985 0.731 0.910 0.643
GQE 0.989 0.743 0.948 0.645

for the query) and compute the percentile rank of the true node within this set. For queries containing
intersections, we run both these metrics using both standard and “hard” negative examples to compute
the ranking/classification scores, where“hard” negative examples are nodes that satisfy the query if a
logical conjunction is relaxed to a disjunction.

5.4 Results and discussion

Table 1 contains the performance results for three variants of GQEs based on bilinear transformations
(i.e., Equation 4), DistMult, and TransE, as well as the ablated models that are only trained on edge
prediction (denoted Edge Training).2 Overall, we can see that the full Bilinear model performs the
best, with an AUC of 91.0 on the Bio data and an AUC of 76.4 on the Reddit data (macro-averaged
across all query DAG structures of size 1-3). In Figure 4 we breakdown performance across different
types of query dependency graph structures, and we can see that its performance on complex queries
is very strong (relative to its performance on simple edge prediction), with long paths being the most
difficult type of query.

Table 2 compares the best-performing GQE model to the best-performing enumeration-based baseline.
The enumeration baseline is computationally intractable on queries with bound variables, so this
comparison is restricted to the subset of queries with no bound variables. Even in this restricted
setting, we see that GQE consistently outperforms the baseline. This demonstrates that performing
logical operations in the embedding space is not only more efficient, it is also an effective alternative
to enumerating the product of edge-likelihoods, even in cases where the latter is feasible.

The importance of training on complex queries. We found that explicitly training the model to
predict complex queries was necessary to achieve strong performance (Table 1). Averaging across all
model variants, we observed an average AUC improvement of 13.3% on the Bio data and 13.9% on
the Reddit data (both p < 0.001, Wilcoxon signed-rank test) when using full GQE training compared
to Edge Training. This shows that training on complex queries is a useful way to impose a meaningful
logical structure on an embedding space and that optimizing for edge prediction alone does not
necessarily lead to embeddings that are useful for more complex logical queries.

6 Conclusion

We proposed a framework to embed conjunctive graph queries, demonstrating how to map a practical
subset of logic to efficient geometric operations in an embedding space. Our experiments showed that
our approach can make accurate predictions on real-world data with millions of relations. Of course,
there are limitations of our framework: for instance, it cannot handle logical negation or disjunction,
and we also do not consider features on edges. Natural future directions include generalizing the
space of logical queries—for example, by learning a geometric negation operator—and using graph
neural networks [7, 17, 19] to incorporate richer feature information on nodes and edges.
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