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Abstract

We present a neurosymbolic framework for the lifelong learning of algorithmic
tasks that mix perception and procedural reasoning. Reusing high-level concepts
across domains and learning complex procedures are key challenges in lifelong
learning. We show that a program synthesis approach that combines gradient
descent with combinatorial search over programs can be a more effective response
to these challenges than purely neural methods. Our framework, called HOUDINI,
represents neural networks as strongly typed, differentiable functional programs
that use symbolic higher-order combinators to compose a library of neural func-
tions. Our learning algorithm consists of: (1) a symbolic program synthesizer that
performs a type-directed search over parameterized programs, and decides on the
library functions to reuse, and the architectures to combine them, while learning a
sequence of tasks; and (2) a neural module that trains these programs using stochas-
tic gradient descent. We evaluate HOUDINI on three benchmarks that combine
perception with the algorithmic tasks of counting, summing, and shortest-path
computation. Our experiments show that HOUDINI transfers high-level concepts
more effectively than traditional transfer learning and progressive neural networks,
and that the typed representation of networks significantly accelerates the search.

1 Introduction

Differentiable programming languages [25, 29, 8, 15, 10, 39, 34] have recently emerged as a powerful
approach to the task of engineering deep learning systems. These languages are syntactically similar
to, and often direct extensions of, traditional programming languages. However, programs in these
languages are differentiable in their parameters, permitting gradient-based parameter learning. The
framework of differentiable languages has proven especially powerful for representing architectures
that have input-dependent structure, such as deep networks over trees [35, 2] and graphs [23, 19].

A recent paper by Gaunt et al. [14] points to another key appeal of high-level differentiable languages:
they facilitate transfer across learning tasks. The paper gives a language called NEURAL TERPRET
(NTPT) in which programs can invoke a library of trainable neural networks as subroutines. The
parameters of these “library functions” are learned along with the code that calls them. The modularity
of the language allows knowledge transfer, as a library function trained on a task can be reused in
later tasks. In contrast to standard methods for transfer learning in deep networks, which re-use the
first few layers of the network, neural libraries have the potential to enable reuse of higher, more
abstract levels of the network, in what could be called high-level transfer. In spite of its promise,
though, inferring the structure of differentiable programs is a fundamentally hard problem. While
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NTPT and its predecessor TERPRET [15] allow some aspects of the program structure to be induced,
a detailed hand-written template of the program is required for even the simplest tasks.

In this paper, we show that algorithmic ideas from program synthesis can help overcome this difficulty.
The goal in program synthesis [3, 36, 13] is to discover programs (represented as terms following a
specified syntax) that accomplish a given task. Many symbolic algorithms for the problem have been
proposed in the recent past [16]. These algorithms can often outperform purely neural approaches on
procedural tasks [15]. A key insight behind our approach is that these methods naturally complement
stochastic gradient descent (SGD) in the induction of differentiable programs: while SGD is an
effective way of learning program parameters, each step in a symbolic search can explore large
changes to the program structure.

A second feature of our work is a representation of programs in a typed functional language. Such
a representation is natural because functional combinators can compactly describe many common
neural architectures [26]. For example, fold combinators can describe recurrent neural networks,
and convolution over data structures such as lists and graphs can also be naturally expressed as
functional combinators. Such representations also facilitate search, as they tend to be more canonical,
and as the type system can help prune infeasible programs early on in the search [13, 27].

Concretely, we present a neurosymbolic learning framework, called HOUDINI, which is to our
knowledge the first method to use symbolic methods to induce differentiable programs. In HOUDINI,
a program synthesizer is used to search over networks described as strongly typed functional programs,
whose parameters are then tuned end-to-end using gradient descent. Programs in HOUDINI specify
the architecture of the network, by using functional combinators to express the network’s connections,
and can also facilitate learning transfer, by letting the synthesizer choose among library functions.
HOUDINI is flexible about how the program synthesizer is implemented: here, we use and compare
two implementations, one performing top-down, type-directed enumeration with a preference for
simpler programs, and the other based on a type-directed evolutionary algorithm. The implementation
for HOUDINI is available online [1].

We evaluate HOUDINI in the setting of lifelong learning [38], in which a model is trained on a
series of tasks, and each training round is expected to benefit from previous rounds of learning. Two
challenges in lifelong learning are catastrophic forgetting, in which later tasks overwrite what has
been learned from earlier tasks, and negative transfer, in which attempting to use information from
earlier tasks hurts performance on later tasks. Our use of a neural library avoids both problems, as
the library allows us to freeze and selectively re-use portions of networks that have been successful.

Our experimental benchmarks combine perception with algorithmic tasks such as counting, summing,
and shortest-path computation. Our programming language allows parsimonious representation for
such tasks, as the combinators used to describe network structure can also be used to compactly
express rich algorithmic operations. Our experiments show that HOUDINI can learn nontrivial
programs for these tasks. For example, on a task of computing least-cost paths in a grid of images,
HOUDINI discovers an algorithm that has the structure of the Bellman-Ford shortest path algorithm [7],
but uses a learned neural function that approximates the algorithm’s “relaxation” step. Second, our
results indicate that the modular representation used in HOUDINI allows it to transfer high-level
concepts and avoid negative transfer. We demonstrate that HOUDINI offers greater transfer than
progressive neural networks [32] and traditional “low-level” transfer [40], in which early network
layers are inherited from previous tasks. Third, we show that the use of a higher-level, typed language
is critical to scaling the search for programs.

The contributions of this paper are threefold. First, we propose the use of symbolic program synthesis
in transfer and lifelong learning. Second, we introduce a specific representation of neural networks
as typed functional programs, whose types contain rich information such as tensor dimensions, and
show how to leverage this representation in program synthesis. Third, we show that the modularity
inherent in typed functional programming allows the method to transfer high-level modules, to avoid
negative transfer and to achieve high performance with a small number of examples.

Related Work. HOUDINI builds on a known insight from program synthesis [16]: that functional
representations and type-based pruning can be used to accelerate search over programs [13, 27, 20].
However, most prior efforts on program synthesis are purely symbolic and driven by the Boolean
goals. HOUDINI repurposes these methods for an optimization setting, coupling them with gradient-
based learning. A few recent approaches to program synthesis do combine symbolic and neural
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Types τ :
τ ::= Atom | ADT | F Atom ::= bool | real
TT ::= Tensor〈Atom〉[m1][m2] . . . [mk] ADT ::= TT | α〈TT 〉
F ::= ADT | F1 → F2 .

Programs e over library L: e ::= ⊕w : τ0 | e0 ◦ e1 |mapα e | foldα e | convα e.

Figure 1: Syntax of the HOUDINI language. Here, α is an ADT, e.g., list; m1, . . . ,mk ≥ 1 define
the shape of a tensor; F1 → F2 is a function type; ⊕w ∈ L is a neural library function that has type
τ0 and parameters w; and ◦ is the composition operator. map, fold, and conv are defined below.

methods [11, 6, 12, 28, 18]. Unlike our work, these methods do not synthesize differentiable programs.
The only exception is NTPT [14], which neither considers a functional language nor a neurosymbolic
search. Another recent method that creates a neural library is progress-and-compress [33], but this
method is restricted to feedforward networks and low-level transfer. It is based on progressive
networks [32], a method for lifelong learning based on low-level transfer, in which lateral connections
are added between the networks for the all the previous tasks and the new task.

Neural module networks (NMNs) [4, 17] select and arrange reusable neural modules into a program-
like network, for visual question answering. The major difference from our work is that NMNs
require a natural language input to guide decisions about which modules to combine. HOUDINI
works without this additional supervision. Also, HOUDINI can be seen to perform a form of neural
architecture search. Such search has been studied extensively, using approaches such as reinforcement
learning, evolutionary computation, and best-first search [42, 24, 31, 41]. HOUDINI operates at a
higher level of abstraction, combining entire networks that have been trained previously, rather than
optimizing over lower-level decisions such as the width of convolutional filters, the details of the
gating mechanism, and so on. HOUDINI is distinct in its use of functional programming to represent
architectures compactly and abstractly, and in its extensive use of types in accelerating search.

2 The HOUDINI Programming Language

HOUDINI consists of two components. The first is a typed, higher-order, functional language of
differentiable programs. The second is a learning procedure split into a symbolic module and a
neural module. Given a task specified by a set of training examples, the symbolic module enumerates
parameterized programs in the HOUDINI language. The neural module uses gradient descent to find
optimal parameters for synthesized programs; it also assesses the quality of solutions and decides
whether an adequately performant solution has been discovered.

The design of the language is based on three ideas:

• The ubiquitous use of function composition to glue together different networks.
• The use of higher-order combinators such as map and fold to uniformly represent neural archi-

tectures as well as patterns of recursion in procedural tasks.
• The use of a strong type discipline to distinguish between neural computations over different forms

of data, and to avoid generating provably incorrect programs during symbolic exploration.

Figure 1 shows the grammar for the HOUDINI language. Here, τ denotes types and e denotes
programs. Now we elaborate on the various language constructs.

Types. The “atomic” data types in HOUDINI are booleans (bool) and reals. For us, bool is
relaxed into a real value in [0, 1], which for example, allows the type system to track if a vector has
been passed through a sigmoid. Tensors over these types are also permitted. We have a distinct type
Tensor〈Atom〉[m1][m2] . . . [mk] for tensors of shape m1 × · · · ×mk whose elements have atomic
type Atom. (The dimensions m1, . . . ,mk, as well as k itself, are bounded to keep the set of types
finite.) We also have function types F1 → F2, and abstract data types (ADTs) α〈TT 〉 parameterized
by a tensor type TT . Our current implementation supports two kinds of ADTs: list〈TT 〉, lists with
elements of tensor type TT , and graph〈TT 〉, graphs whose nodes have values of tensor type TT .

Programs. The fundamental operation in HOUDINI is function composition. A composition opera-
tion can involve functions ⊕w, parameterized by weights w and implemented by neural networks,
drawn from a library L. It can also involve a set of symbolic higher-order combinators that are
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guaranteed to preserve end-to-end differentiability and used to implement high-level network archi-
tectures. Specifically, we allow the following three families of combinators. The first two are standard
constructs for functional languages, whereas the third is introduced specifically for deep models.

• Map combinators mapα〈τ〉, for ADTs of the form α〈τ〉. Suppose e is a function. The expression
maplist〈τ〉 e is a function that, given a list [a1, . . . , ak], returns the list [e(a1), . . . , e(ak)]. The
expression mapgraphτ

e is a function that, given a graph G whose i-th node is labeled with a value
ai, returns a graph that is identical to G, but whose i-th node is labeled by e(ai).

• Left-fold combinators foldα〈τ〉. For a function e and a term z, foldlist〈τ〉 e z is the function that,
given a list [a1, . . . , ak], returns the value (e (e . . . (e (e z a1) a2) . . . ) ak). To define fold over
a graph, we assume a linear order on the graph’s nodes. Given G, the function foldgraph〈τ〉 e z
returns the fold over the list [a1, . . . , ak], where ai is the value at the i-th node in this order.

• Convolution combinators convα〈τ〉. Let p > 0 be a fixed constant. For a “kernel” function e,
convlist〈τ〉 e is the function that, given a list [a1, . . . , ak], returns the list [a′1, . . . , a

′
k], where

a′i = e [ai−p, . . . , ai, . . . , ai+p]. (We define aj = a1 if j < 1, and aj = ak if j > k.) Given
a graph G, the function convgraph〈τ〉 e returns the graph G′ whose node u contains the value
e [ai1 , . . . , aim ], where aij is the value stored in the j-th neighbor of u.

Every neural library function is assumed to be annotated with a type. Using programming language
techniques [30], HOUDINI assigns a type to each program e whose subexpressions use types consis-
tently (see supplementary material). If it is impossible to assign a type to e, then e is type-inconsistent.
Note that complete HOUDINI programs do not have explicit variable names. Thus, HOUDINI follows
the point-free style of functional programming [5]. This style permits highly succinct representations
of complex computations, which reduces the amount of enumeration needed during synthesis.

Figure 2: A grid of images
from the GTSRB dataset [37].
The least-cost path from the
top left to the bottom right
node is marked.

HOUDINI for deep learning. The language has several properties
that are useful for specifying deep models. First, any complete HOU-
DINI program e is differentiable in the parameters w of the neural
library functions used in e. Second, common deep architectures can be
compactly represented in our language. For example, deep feedforward
networks can be represented by ⊕1 ◦ · · · ◦ ⊕k, where each ⊕i is a neu-
ral function, and recurrent nets can be expressed as foldlist〈τ〉 ⊕ z,
where ⊕ is a neural function and z is the initial state. Graph convo-
lutional networks can be expressed as convgraph〈τ〉 ⊕. Going further,
the language can be easily extended to handle bidirectional recurrent
networks, attention mechanisms, and so on.

Example: Shortest path in a grid of images. To show how HOU-
DINI can model tasks that mix perception and procedural reasoning,

we use an example that generalizes the navigation task of Gaunt et al. [14]. Suppose we are given a
grid of images (e.g., Figure 2), whose elements represent speed limits and are connected horizontally
and vertically, but not diagonally. Passing through each node induces a penalty, which depends on
the node’s speed limit, with lower speed limits having a higher penalty. The task is to predict the
minimum cost d(u) incurred while traveling from a fixed starting point init to every other node u.

One way to compute these costs is using the Bellman-Ford shortest-path algorithm [7], whose i-th
iteration computes an estimated minimum cost di(u) of travel to each node u in the graph. The
cost estimates for the (i + 1)-th iteration are computed using a relaxation operation: di+1(u) :=
min(di(u),minv∈Adj (u) di(v) + w(v)), where w(v) is the penalty and Adj (u) the neighbors of u.
As the update to di(u) only depends on values at u and its neighbors, the relaxation step can be
represented as a graph convolution. As described in Section 4, HOUDINI is able to discover an
approximation of this program purely from data. The synthesized program uses a graph convolution,
a graph map, a neural module that processes the images of speed limits, and a neural module that
approximates the relaxation function.

3 Learning Algorithm

Now we define our learning problem. For a HOUDINI program ew parameterized by a vector w,
let e[w 7→ v] be the function for the specific parameter vector v, i.e. by substituting w by v in e.
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Suppose we have a library L of neural functions and a training set D. As usual, we assume that D
consists of i.i.d. samples from a distribution pdata . We assume that D is properly typed, i.e., every
training instance (xi, yi) ∈ D has the same type, which is known. This means that we also know the
type τ of our target function. The goal in our learning problem is to discover a program e∗w of type
τ , and values v for w such that e∗w[w 7→ v] = argmine∈Progs(L),w∈Rn(Ex∼pdata [l(e,D, x)]), where
Progs(L) is the universe of all programs over L, and l is a suitable loss function.

Our algorithm for this task consists of a symbolic program synthesis module called GENERATE and a
gradient-based optimization module called TUNE. GENERATE repeatedly generates parameterized
programs ew and “proposes” them to TUNE. TUNE uses stochastic gradient descent to find parameter
values v for ew that lead to the optimal value of the loss function on a training set, and produces a
program e = ew[w 7→ v] with instantiated parameters. The final output of the algorithm is a program
e∗, among all programs e as above, that leads to optimal loss on a validation set.

As each program proposed by GENERATE is subjected to training, GENERATE can only afford to
propose a small number of programs, out of the vast combinatorial space of all programs. Selecting
these programs is a difficult challenge. We use and compare two strategies for this task. Now we
sketch these strategies; for more details, see the supplementary material.

• The first strategy is top-down iterative refinement, similar to the algorithm in the λ2 program
synthesizer [13]. Here, the synthesis procedure iteratively generates a series of “partial” programs
(i.e., programs with missing code) over the library L, starting with an “empty” program and ending
with a complete program. A type inference procedure is used to rule out any partial program that is
not type-safe. A cost heuristic is used to generate programs in an order of structural simplicity.
Concretely, shorter programs are evaluated first.

• The second method is an evolutionary algorithm inspired by work on functional genetic program-
ming [9]. Here, we use selection, crossover, and mutation operators to evolve a population of
programs over L. Types play a key role: all programs in the population are ensured to be type-safe,
and mutation and crossover only replace a subterm in a program with terms of the same type.

In both cases, the use of types vastly reduces the amount of search that is needed, as the number of
type-safe programs of a given size is a small fraction of the number of programs of that size. See
Section 4 for an experimental confirmation.

Lifelong Learning. A lifelong learning setting is a sequence of related tasks D1,D2, . . ., where
each task Di has its own training and validation set. Here, the learner is called repeatedly, once for
each task Di using a neural library Li, returning a best-performing program e∗i with parameters v∗i .

We implement transfer learning simply by adding new modules to the neural library after each call
to the learner. We add all neural functions from e∗i back into the library, freezing their parameters.
More formally, let ⊕i1 . . .⊕iK be the neural library functions which are called anywhere in e∗i . Each
library function ⊕ik has parameters wik, set to the value v∗ik by TUNE. The library for the next task
is then Li+1 = Li ∪ {⊕ik[wik 7→ v∗ik]}. This process ensures that the parameter vectors of ⊕ik are
frozen and can no longer be updated by subsequent tasks. Thus, we prevent catastrophic forgetting
by design. Importantly, it is always possible for the synthesizer to introduce “fresh networks” whose
parameters have not been pretrained. This is because the library always monotonically increases over
time, so that an original neural library function with untrained parameters is still available.

This approach has the important implication that the set of neural library functions that the synthesizer
uses is not fixed, but continually evolving. Because both trained and untrained versions of the library
functions are available, this can be seen to permit selective transfer, meaning that depending on which
version of the library function GENERATE chooses, the learner has the option of using or not using
previously learned knowledge in a new task. This fact allows HOUDINI to avoid negative transfer.

4 Evaluation

Our evaluation studies four questions. First, we ask whether HOUDINI can learn nontrivial differen-
tiable programs that combine perception and algorithmic reasoning. Second, we study if HOUDINI
can transfer perceptual and algorithmic knowledge during lifelong learning. We study three forms of
transfer: low-level transfer of perceptual concepts across domains, high-level transfer of algorithmic
concepts, and selective transfer where the learning method decides on which known concepts to
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Individual tasks
recognize digit(d): Binary
classification of whether image
contains a digit d ∈ {0 . . . 9}
classify digit: Classify a digit into
digit categories (0− 9)

recognize toy(t): Binary
classification of whether an image
contains a toy t ∈ {0 . . . 4}
regress speed: Return the speed value
and a maximum distance constant
from an image of a speed limit sign.
regress mnist: Return the value and a
maximum distance constant from a
digit image from MNIST dataset.
count digit(d): Given a list of images,
count the number of images of digit d
count toy(t): Given a list of images,
count the number of images of toy t
sum digits: Given a list of digit
images, compute the sum of the
digits.
shortest path street: Given a grid of
images of speed limit signs, find the
shortest distances to all other nodes
shortest path mnist: Given a grid of
MNIST images, and a source node,
find the shortest distances to all other
nodes in the grid.

Task Sequences
Counting
CS1: Evaluate low-level transfer.
Task 1: recognize digit(d1); Task 2: recognize digit(d2); Task 3:
count digit(d1); Task 4: count digit(d2)
CS2: Evaluate high-level transfer, and learning of perceptual tasks from
higher-level supervision.
Task 1: recognize digit(d1); Task 2: count digit(d1); Task 3:
count digit(d2); Task 4: recognize digit(d2)
CS3: Evaluate high-level transfer of counting across different image
domains.
Task 1: recognize digit(d); Task 2: count digit(d); Task 3: count toy(t);
Task 4: recognize toy(t)

Summing
SS: Demonstrate low-level transfer of a multi-class classifier as well as
the advantage of functional methods like foldl in specific situations.
Task 1: classify digit; Task 2: sum digits

Single-Source Shortest Path
GS1: Learning of complex algorithms.
Task 1: regress speed; Task 2: shortest path street
GS2: High-level transfer of complex algorithms.
Task 1: regress mnist; Task 2: shortest path mnist; Task 3:
shortest path street
Long sequence LS.
Task 1:count digit(d1); Task 2: count toy(t1); Task 3: recognize toy(t2);
Task 4: recognize digit(d2); Task 5: count toy(t3); Task 6:
count digit(d3); Task 7: count toy(t4); Task 8: recognize digit(d4); Task
9: count digit(d5)

Figure 3: Tasks and task sequences.

reuse. Third, we study the value of our type-directed approach to synthesis. Fourth, we compare the
performance of the top-down and evolutionary synthesis algorithms.

Task Sequences. Each lifelong learning setting is a sequence of individual learning tasks. The full
list of tasks is shown in Figure 3. These tasks include object recognition tasks over three data sets:
MNIST [21], NORB [22], and the GTSRB data set of images of traffic signs [37]. In addition, we
have three algorithmic tasks: counting the number of instances of images of a certain class in a list of
images; summing a list of images of digits; and the shortest path computation described in Section 2.

We combine these tasks into seven sequences. Three of these (CS1, SS, GS1) involve low-level
transfer, in which earlier tasks are perceptual tasks like recognizing digits, while later tasks introduce
higher-level algorithmic problems. Three other task sequences (CS2, CS3, GS2) involve higher-level
transfer, in which earlier tasks introduce a high-level concept, while later tasks require a learner
to re-use this concept on different perceptual inputs. For example, in CS2, once count digit(d1) is
learned for counting digits of class d1, the synthesizer can learn to reuse this counting network on a
new digit class d2, even if the learning system has never seen d2 before. The graph task sequence GS1
also demonstrates that the graph convolution combinator in HOUDINI allows learning of complex
graph algorithms and GS2 tests if high-level transfer can be performed with this more complex task.
Finally, we include a task sequence LS that is designed to evaluate our method on a task sequence
that is both longer and that lacks a favourable curriculum. The sequence LS was initially randomly
generated, and then slightly amended in order to evaluate all lifelong learning concepts discussed.

Experimental setup. We allow three kinds of neural library modules: multi-layer perceptrons
(MLPs), convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We use two
symbolic synthesis strategies: top-down refinement and evolutionary. We use three types of baselines:
(1) standalone networks, which do not do transfer learning, but simply train a new network (an RNN)
for each task in the sequence, starting from random weights; (2) a traditional neural approach to
low-level transfer (LLT) that transfers all weights learned in the previous task, except for the output
layer that is kept task-specific; and (3) a version of the progressive neural networks (PNNs) [32]
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Task Top 3 programs RMSE
Task 1: regress mnist 1. nn gs2 1 ◦ nn gs2 2 1.47

Task 2:
shortest path mnist

1. (conv g10 (nn gs2 3)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 1.57
2. (conv g9 (nn gs2 4)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 1.72
3. (conv g9 (nn gs2 5)) ◦ (map g (nn gs2 6 ◦ nn gs2 7)) 4.99

Task 3:
shortest path street

1. (conv g10(lib.nn gs2 3)) ◦ (map g (nn gs2 8 ◦ nn gs2 9)) 3.48
2. (conv g9(lib.nn gs2 3)) ◦ (map g (nn gs2 10 ◦ nn gs2 11)) 3.84
3. (conv g10(lib.nn gs2 3)) ◦ (map g (lib.nn gs2 1 ◦ lib.nn gs2 2)) 6.91

Figure 4: Top 3 synthesized programs on Graph Sequence 2 (GS2). map g denotes a graph map (of
the appropriate type); conv gi denotes i repeated applications of a graph convolution combinator.

approach, which retains a pool of pretrained models during training and learns lateral connections
among these models. Experiments were performed using a single-threaded implementation on a
Linux system, with 8-core Intel E5-2620 v4 2.10GHz CPUs and TITAN X (Pascal) GPUs.

The architecture chosen for the standalone and LLT baselines composes an MLP, an RNN, and a
CNN, and matches the structure of a high-performing program returned by HOUDINI, to enable
an apples-to-apples comparison. In PNNs, every task in a sequence is associated with a network
with the above architecture; lateral connections between these networks are learned. Each sequence
involving digit classes d and toy classes t was instantiated five times for random values of d and t,
and the results shown are averaged over these instantiations. In the graph sequences, we ran the same
sequences with different random seeds, and shared the regressors learned for the first tasks across the
competing methods for a more reliable comparison. We do not compare against PNNs in this case, as
it is nontrivial to extend them to work with graphs. We evaluate the competing approaches on 2%,
10%, 20%, 50% and 100% of the training data for all but the graph sequences, where we evaluate
only on 100%. For classification tasks, we report error, while for the regression tasks — counting,
summing, regress speed and shortest path — we report root mean-squared error (RMSE).

Results: Synthesized programs. HOUDINI successfully synthesizes programs for each of the tasks
in Figure 3 within at most 22 minutes. We list in Figure 4 the top 3 programs for each task in the graph
sequence GS2, and the corresponding RMSEs. Here, function names with prefix “nn ” denote fresh
neural modules trained during the corresponding tasks. Terms with prefix “lib.” denote pretrained
neural modules selected from the library. The synthesis times for Task 1, Task 2, and Task 3 are 0.35s,
1061s, and 1337s, respectively.

As an illustration, consider the top program for Task 3: (conv g10 lib.nn gs2 3) ◦
(map g (nn gs2 8 ◦ nn gs2 9)). Here, map g takes as argument a function for processing the
images of speed limits. Applied to the input graph, the map returns a graphG in which each node con-
tains a number associated with its corresponding image and information about the least cost of travel
to the node. The kernel for the graph convolution combinator conv g is a function lib.nn gs2 3,
originally learned in Task 2, that implements the relaxation operation used in shortest-path algorithms.
The convolution is applied repeatedly, just like in the Bellman-Ford shortest path algorithm.

In the SS sequence, the top program for Task 2 is: (fold l nn ss 3 zeros(1)) ◦ map l(nn ss 4 ◦
lib.nn ss 2). Here, fold l denotes the fold operator applied to lists, and zeros(dim) is a function
that returns a zero tensor of appropriate dimension. The program uses a map to apply a previously
learned CNN feature extractor (lib.nn ss 2) and a learned transformation of said features into a 2D
hidden state, to all images in the input list. It then uses fold with another function (nn ss 3) to give
the final sum. Our results, presented in the supplementary material, show that this program greatly
outperforms the baselines, even in the setting where all of the training data is available. We believe
that this is because the synthesizer has selected a program with fewer parameters than the baseline
RNN. In the results for the counting sequences (CS) and the long sequence (LS), the number of
evaluated programs is restricted to 20, therefore fold l is not used within the synthesized programs.
This allows us to evaluate the advantage of HOUDINI brought by its transfer capabilities, rather than
its rich language.

Results: Transfer. First we evaluate the performance of the methods on the counting sequences
(Figure 5). For space, we omit early tasks where, by design, there is no opportunity for transfer; for
these results, see the Appendix. In all cases where there is an opportunity to transfer from previous
tasks, we see that HOUDINI has much lower error than any of the other transfer learning methods.
The actual programs generated by HOUDINI are listed in the Appendix.
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Low-level transfer (CS1) High-level transfer (CS2) High-level transfer
across domains (CS3)

(a) CS1 Task 3: count digit(d1) (b) CS2 Task 3: count digit(d2) (c) CS3 Task 3: count toy(t1)

(d) CS1 Task 4: count digit(d2) (e) CS2 Task 4: recognize digit(d2) (f) CS3 Task 4: recognize toy(t1)

Figure 5: Lifelong “learning to count” (Sequences CS1 – CS3), demonstrating both low-level
transfer of perceptual concepts and high-level transfer of a counting network. HOUDINI-TD and
HOUDINI-EVOL are HOUDINI with the top-down and evolutionary synthesizers, respectively.

Task sequence CS1 evaluates the method’s ability to selectively perform low-level transfer of a
perceptual concept across higher level tasks. The first task that provides a transfer opportunity is
CS1 task 3 (Figure 5a). There are two potential lower-level tasks that the methods could transfer
from: recognize digit(d1) and recognize digit(d2). HOUDINI learns programs composed of neural
modules nn cs1 1, nn cs1 2, nn cs1 3, and nn cs1 4 for these two tasks. During training for the
count digit(d1) task, all the previously learned neural modules are available in the library. The
learner, however, picks the correct module (nn cs1 2) for reuse, learning the program “nn cs1 7 ◦
(map l (nn cs1 8 ◦ lib.nn cs1 2))” where nn cs1 7 and nn cs1 8 are fresh neural modules, and
map l stands for a list map combinator of appropriate type. The low-level transfer baseline cannot
select which of the previous tasks to re-use, and so suffers worse performance.

Task sequence CS2 provides an opportunity to transfer the higher-level concepts of counting, across
different digit classification tasks. Here CS2 task 3 (Figure 5b) is the task that provides the first
opportunity for transfer. We see that HOUDINI is able to learn much faster on this task because
it is able to reuse a network which has learned from the previous counting task. Task sequence
CS3 examines whether the methods can demonstrate high-level transfer when the input image
domains are very different, from the MNIST domain to the NORB domain of toy images. We see in
Figure 5c that the higher-level network still successfully transfers across tasks, learning an effective
network for counting the number of toys of type t1, even though the network has not previously
seen any toy images at all. What is more, it can be seen that because of the high-level transfer,
HOUDINI has learned a modular solution to this problem. From the subsequent performance on a
standalone toy classification task (Figure 5f), we see that CS3 task 3 has already caused the network
to induce a re-usable classifier on toys. Overall, it can be seen that HOUDINI outperforms all the
baselines even under the limited data setting, confirming the successful selective transfer of both
low-level and high-level perceptual information. Similar results can be seen on the summing task
(see supplementary material). Moreover, on the longer task sequence LS, we also find that HOUDINI
performs significantly better on the tasks in the sequence where there is an opportunity for transfer,
and performs comparably the baselines on the other tasks (see supplementary material). Furthermore,
on the summing sequence, our results also show low level transfer.

Finally, for the graph-based tasks (Table 2), we see that the graph convolutional program learned by
HOUDINI on the graph tasks has significantly less error than a simple sequence model, a standalone
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Task Number of programs
size = 4 size = 5 size = 6

No types

Task 1 8182 110372 1318972
Task 2 12333 179049 2278113
Task 3 17834 278318 3727358
Task 4 24182 422619 6474938

+ Types

Task 1 2 20 44
Task 2 5 37 67
Task 3 9 47 158
Task 4 9 51 175

Table 1: Effect of the type system on the number of
programs considered in the symbolic search for task
sequence CS1.

Task 1 Task 2
RNN w llt 0.75 5.58
standalone 0.75 4.96
HOUDINI 0.75 1.77

HOUDINI EA 0.75 8.32
low-level-transfer 0.75 1.98

(a) Low-level transfer (llt) (task sequence GS1).

Task 1 Task 2 Task 3
RNN w llt 1.44 5.00 6.05
standalone 1.44 6.49 7.
HOUDINI 1.44 1.50 3.31

HOUDINI EA 1.44 6.67 7.88
low-level-transfer 1.44 1.76 2.08

(b) High-level transfer (task sequence GS2).

Table 2: Lifelong learning on graphs. Col 1:
RMSE on speed/distance from image. Cols 2,
3: RMSE on shortest path (mnist, street).

baseline and the evolutionary-algorithm-based version of HOUDINI. As explained earlier, in the
shortest path street task in the graph sequence GS2, HOUDINI learns a program that uses newly
learned regress functions for the street signs, along with a “relaxation” function already learned
from the earlier task shortest path mnist. In Table 2, we see this program performs well, suggesting
that a domain-general relaxation operation is being learned. Our approach also outperforms the
low-level-transfer baseline, except on the shortest path street task in GS2. We are unable to compare
directly to NTPT because no public implementation is available. However, our graph task is a more
difficult version of a task from [14], who report on their shortest-path task “2% of random restarts
successfully converge to a program that generalizes” (see their supplementary material).

Results: Typed vs. untyped synthesis. To assess the impact of our type system, we count the
programs that GENERATE produces with and without a type system (we pick the top-down imple-
mentation for this test, but the results also apply to the evolutionary synthesizer). Let the size of a
program be the number of occurrences of library functions and combinators in the program. Table 1
shows the number of programs of different sizes generated for the tasks in the sequence CS1. Since
the typical program size in our sequences is less than 6, we vary the target program size from 4 to 6.
When the type system is disabled, the only constraint that GENERATE has while composing programs
is the arity of the library functions. We note that this constraint fails to bring down the number of
candidate programs to a manageable size. With the type system, however, GENERATE produces far
fewer candidate programs. For reference, neural architecture search often considers thousands of
potential architectures for a single task [24].

Results: Top-Down vs. Evolutionary Synthesis. Overall, the top-down implementation of GEN-
ERATE outperformed the evolutionary implementation. In some tasks, the two strategies performed
similarly. However, the evolutionary strategy has high variance; indeed, in many runs of the task
sequences, it times out without finding a solution. The timed out runs are not included in the plots.

5 Conclusion

We have presented HOUDINI, the first neurosymbolic approach to the synthesis of differentiable
functional programs. Deep networks can be naturally specified as differentiable programs, and
functional programs can compactly represent popular deep architectures [26]. Therefore, symbolic
search through a space of differentiable functional programs is particularly appealing, because it
can at the same time select both which pretrained neural library functions should be reused, and
also what deep architecture should be used to combine them. On several lifelong learning tasks that
combine perceptual and algorithmic reasoning, we showed that HOUDINI can accelerate learning by
transferring high-level concepts.

Acknowledgements. This work was partially supported by DARPA MUSE award #FA8750-14-2-
0270 and NSF award #CCF-1704883.
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