
A Proofs for Section 2

A.1 Proof of Proposition 1

For p = 1, the result follows immediately from the Kantorovich dual representation of W1(·, ·) [21]:

W1(Q,Q0) = sup

8
<

:|EQF �EQ0F | : sup
z,z02Z

z 6=z0

|F (z)� F (z0)|
dZ(z, z0)

 1

9
=

;

and from the fact that, for Q,Q0 2 BW
%,1(P ), W1(Q,Q0)  2% by the triangle inequality. For p > 1,

the result follows from the fact that W1(Q,Q0)  Wp(Q,Q0) for all Q,Q0 2 Pp(Z).

A.2 Proof of Proposition 2

Fix some Q,Q0 2 BW
%,p(P ) and let M 2 P(Z⇥ Z) achieve the infimum in (4) for Wp(Q,Q0). Then

for (Z,Z 0) ⇠ M we have

f(Z 0)� f(Z) 
Z 1

0
Gf (�(t))dt · dZ(Z,Z 0)

 1

2
(Gf (Z) +Gf (Z

0)) dZ(Z,Z
0),

where the first inequality is from (5) and the second one is by the assumed geodesic convexity of Gf .
Taking expectations of both sides with respect to M and using Hölder’s inequality, we obtain

R(Q0, f)�R(Q, f)  1

2

�
EM |Gf (Z) +Gf (Z

0)|q
�1/q �

EMdp
Z
(Z,Z 0)

�1/p

=
1

2
kGf (Z) +Gf (Z

0)kLq(M) Wp(Q,Q0),

where we have used the p-Wasserstein optimality of M for Q and Q0. By the triangle inequality, and
since Z ⇠ Q and Z 0 ⇠ Q0,

kGf (Z) +Gf (Z
0)kLq(M)  kGf (Z)kLq(Q) + kGf (Z)kLq(Q0)

 2 sup
Q2BW

%,p(P )
kGf (Z)kLq(Q).

Interchanging the roles of Q and Q0 and proceeding with the same argument, we obtain the estimate

sup
Q,Q02BW

%,p(P )
|R(Q, f)�R(Q0, f)|  2% sup

Q2BW
%,p(P )

kGf (Z)kLq(Q),

from which it follows that

R(Q, f)  R%,p(P, f)

= sup
Q02BW

%,p(P )
[R(Q0, f)�R(Q, f) +R(Q, f)]

 R(Q, f) + 2% sup
Q2BW

%,p(P )
kGf (Z)kLq(Q).

A.3 Proof of Proposition 3

As a subset of Rd+1, Z is a geodesic space: for any pair z, z0 2 Z there is a unique constant-speed
geodesic �(t) = (1� t)z + tz0. We claim that Gf (z) = Gf (x, y) = 2(B +M)(1 + Lkrh(x)k2)
is a geodesically convex upper gradient for f(z) = f(x, y) = (y � h(x))2. In this flat Euclidean
setting, geodesic convexity coincides with the usual definition of convexity, and the map z 7! Gf (z)
is evidently convex:

Gf ((1� t)z + tz0)  (1� t)Gf (z) + tGf (z
0).
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Next, by the mean-value theorem,

f(z0)� f(z) =

Z 1

0
hz0 � z,rf((1� t)z + t0z)idt


Z 1

0
krf((1� t)z + tz0)k2 dt · kz � z0k2

=

Z 1

0
krf((1� t)z + tz0)k2 dt · dZ(z, z0),

and a simple calculation shows that

krf(z)k22 = krf(x, y)k22
= 4f(z)

�
1 + krh(z)k22

�

 4(B +M)2(1 + L2kxk22).

Therefore, krf(z)k2  Gf (z) for z = (x, y), as claimed. Thus, by Proposition (2),

R(Q, f)  R%,2(P, f)

 R(Q, f) + 2 sup
Q2BW

%,2(P )

kGf (Z)kL2(Q)%

= R(Q, f) + 4(B +M)
⇣
1 + L sup

Q2BW
%,2(P )

EQkXk2
⌘
%

= R(Q, f) + 4(B +M)
⇣
1 + L sup

Q2BW
%,2(P )

�Q,X

⌘
%.

B The illustrative example of Section 2.2

Consider Z ⇠ Unif[0, 1] =: P on data space Z = [0, 2], along with the hypothesis class F with only
two hypotheses

f0(z) = 1, f1(z) =

⇢
0, z 2 [0, 1)
↵, z 2 [1, 2]

,

for some constant ↵ � 1. Also, let dZ(z, z0) = |z � z0|.
Now we calculate the local minimax risk of the hypothesis class for both empirical and population
measure. The local worst-case risk of f0 for both measures is 1, by definition. For f1, it is easy to see
that the worst-case distribution for both P and Pn can be specified explicitly: For P , it is optimal to
transport the mass to the point z = 1 from the interval [�, 1), with � 2 [0, 1) specified according to
the ambiguity radius % > 0. For P , the optimal � can be calculated as a solution to

✓Z 1

�
(1� z)pdz

◆1/p

= %,

which gives � = 1 � (p + 1)
1

p+1 %
p

p+1 , leading to the local worst-case risk R%,p(P, f1) = ↵ · (p +
1)

1
p+1 %

p
p+1 . For Pn, it is optimal to transport mass from the largest value among the training data

{Zi}ni=1 to z = 1, where the amount of mass � to be transported is given as a solution to
✓
� · (1�max

i2[n]
Zi)

p

◆1/p

= %,

which gives � = %p

(1�maxZi)p
leading to the local worst-case risk of R%,p(Pn, f1) =

↵%p

(1�maxZi)p
2.

2Note that we are assuming that %  (1�maxZi) · n�1/p; otherwise, the local minimax risk of f1 can be
smaller, which leads to even higher probability of choosing nonrobust hypothesis by local minimax ERM
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The outcome of the local minimax ERM procedure is the hypothesis minimizing the local worst-case
risk. In other words, the local minimax hypothesis is f0 whenever 1  ↵%p

(1�maxZi)p
holds, which is

true whenever 1� ↵1/p% < maxZi. Thus, the local minimax ERM procedure gives

bf =

(
f1, with probability

⇣
1� %↵

1
p

⌘n
,

f0 otherwise

for any %  ↵�1/p. On the other hand, the minimizer of the local minimax risk with respect to P is
given by

f⇤ =

(
f1, %  (p+ 1)�

1
p↵� p+1

p

f0, % � (p+ 1)�
1
p↵� p+1

p

Now if we calculate the excess risk of the local minimax ERM hypothesis, we get

R%,p( bf, P )�R%,p(f
⇤, P ) =

(
↵(p+ 1)

1
p+1 %

p
p+1 � 1 w.p.

⇣
1� %↵

1
p

⌘n

0, otherwise
,

for any % 2 [(p+ 1)�1/p↵�1�1/p,↵�1/p], which is a nonempty interval as ↵ > 1. Now, if we look
at the quantity

"⇤�(%) := inf
n
% � 0 : P

h
R%,p( bf, P )�R%,p(f

⇤, P ) > "
i
< �
o

for some fixed � > 0, then we get

"⇤�(%) =

(
↵(p+ 1)

1
p+1 %

p
p+1 � 1, (p+ 1)�

1
p↵� p+1

p  %  (1� �
1
n )↵� 1

p

0, otherwise.
.

Now observe that for some fixed % and �, we can select ↵ = (1 � �1/n)p%�p to incur a nontrivial

excess risk of order %�
p2

p+1 . Moreover, this ‘selection of worst ↵’ can be done without changing the
value of the Rademacher average of F, as f1 does not change on the support of P .

C Proofs for Section 3

C.1 Proof of Theorem 1

The proof uses a modification of the techniques of Koltchinskii and Panchenko [14]. From the
definition of the local minimax risk, we have, for any f 2 F

R%,p(P, f) = min
��0

{�%p +EP ['�,f ]}

 min
��0

(
�%p +EPn ['�,f ] + sup

f2F

(EP ['�,f ]�EPn ['�,f ])

)
,

where

X� := sup
f2F

(EP ['�,f ]�EPn ['�,f ]) =
1

n
sup
f2F

"
nX

i=1

(E'�,f (Z)� '�,f (Zi))

#

is a data-dependent random variable for each � � 0. Since '�,f (Zi) 2 [0,M ], we know from
McDiarmid’s inequality that, for any fixed � � 0,

P

✓
X� > EX� +

Mtp
n

◆
 exp(�2t2).

Furthermore, using a standard symmetrization argument, we have

EX�  2 ·E sup
f2F

1

n

nX

i=1

"i'�,f (Zi)

13



where "1, . . . , "n are i.i.d. Rademacher random variables independent of Z1, . . . , Zn. The F-indexed
process Y = (Yf )f2F defined via

Yf =
1p
n
"i'�,f (Zi)

is clearly zero-mean and subgaussian with respect to the metric kf � f 0k1, as

E[exp(t(Yf � Yf 0)] = E

"
exp

 
tp
n

nX

i=1

"i('�,f (Zi)� '�,f 0(Zi))

!#

=

✓
E


exp

✓
tp
n
"1 · sup

z0
inf
z00

{f(z0)� �dp
Z
(Z1, z

0)� f 0(z00) + �dp
Z
(Z1, z

00)}
◆�◆n


✓
E


exp

✓
tp
n
"1 · sup

z0
{f(z0)� f 0(z0)}

◆�◆n

 exp

✓
t2kf � f 0k21

2

◆
,

where the second line is by independence and last line is by Hoeffding’s lemma. Invoking Dudley’s
entropy integral [19], we get

EX�  24p
n
C(F)

for any � � 0. Summing up, we have, for any fixed � � 0,

P

✓
9f 2 F : R%,p(P, f) > �%p +EPn ['�,f ] +

24p
n
C(F) +

Mtp
n

◆
 exp(�2t2).

Now, pick the sequences �k = k and tk = t+
p
log k for k = 1, 2, 3, . . .. Then, by the union bound,

P

✓
9f 2 F : R%,p(P, f) > min

k=1,2,...

⇢
�k%

p +EPn ['�k,f ] +
24p
n
C(F) +

Mtkp
n

�◆


1X

k=1

exp(�2t2k)

 exp(�2t2)
1X

k=1

exp(�2 log k)

 2 exp(�2t2).

On the other hand,

min
k=1,2,...

⇢
�k%

p +EPn ['�k,f ] +
24p
n
C(F) +

Mtkp
n

�

= min
k=1,2,...

⇢
k%p +EPn ['k,f ] +

24p
n
C(F) +

Mtp
n
+

M
p
log kp
n

�

 min
��0

(
(�+ 1)%p +EPn ['�,f ] +

24p
n
C(F) +

Mtp
n
+

M
p
log(�+ 1)p

n

)
,

where the last line holds since, for any � � 0, there exists k 2 {1, 2, . . .} such that �  k  �+ 1,
and '�1,f  '�2,f holds whenever �1 � �2 (from the definition of '�,f ).

For the other direction, notice that

R%,p(Pn, f)  min
��0

(
�%p +EP ['�,f ] + sup

f2F

(EPn ['�,f ]�EP ['�,f ])

)
,
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where the random variable supf2F
(EPn ['�,f ] � EP ['�,f ]) can be analyzed in the same way as

above. This leads to

P

✓
9f 2 F : R%,p(Pn, f) >min

��0

(
(�+ 1)%p +EP ['�,f (Z)] +

M
p

log(�+ 1)p
n

)

+
24C(F)p

n
+

Mtp
n

◆
 2 exp(�2t2),

for any t > 0.

C.2 Proof of Lemma 1

First note that we have

�̃ · %p  �̃ · %p +EQ


sup
z02Z

{f̃(z0)� f̃(Z)� �̃ · dp
Z
(Z, z0)}

�
,

as the left-hand side corresponds to the choice z0 = Z. Now, by the optimality of �̃ with respect to f̃ ,
the right-hand side can be further upper-bounded as follows for any � � 0:

 � · %p +EQ


sup
z02Z

{f̃(z0)� f̃(Z)� � · dp
Z
(Z, z0)}

�

 � · %p +EQ


sup
z02Z

{L · dZ(Z, z0)� � · dp
Z
(Z, z0)}

�

 � · %p + sup
t�0

{L · t� � · tp} ,

where for the second line we used the Lipschitz property (Assumption 3) and the third line holds by
parametrizing t = dZ(Z, z0). If p = 1, we can simply take � = L to get the inequality

�̃ · %  L · %+ sup
t�0

{L · t� L · t} = L · %,

which gives �̃  L. If p > 1, we can use the optimal value of t = (L/p�)1/(p�1) to get

 � · %p + L
p

p�1 p�
p

p�1 (p� 1)�� 1
p�1 .

Minimizing the right-hand side over � � 0 with the choice of � = L/p%p�1, we get

�̃ · %p  L%,

which yields the stated bound on �̃.

C.3 Proof of Theorem 2

The proof is same as the proof of Theorem 3 given below, except that we use Lemma 1 instead of
Lemma 2. Then, the expected Rademacher complexity of the function class satisfies

Rn(�) 
24p
n
C(F) +

24L · C0 · diam(Z)pp
n%p�1

(see Section D), and the result follows.

C.4 Proof of Lemma 2

Since '�,f � 0 for all �, f , we arrive at

�̃ 
R⇤

%,p(Q,F)

%p
. (C.1)
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We proceed to upper-bound the local minimax risk R⇤
%,p(Q,F):

R⇤
%,p(Q,F) = inf

f2F

min
��0

⇢
�%p +

Z

Z

sup
z02Z

⇥
f(z0)� �dp

Z
(z, z0)

⇤
Q(dz0)

�

 min
��0

⇢
�%p +

Z

Z

sup
z02Z

⇥
f0(z

0)� �dp
Z
(z, z0)

⇤
Q(dz0)

�

 min
��0

⇢
�%p +

Z

Z

sup
z02Z

⇥
C0d

p
Z
(z0, z0)� �dp

Z
(z, z0)

⇤
Q(dz0)

�
.

For � � C02p�1, the integrand can be upper-bounded as follows:

sup
z02Z

⇥
C0d

p
Z
(z0, z0)� �dp

Z
(z, z0)

⇤
 sup

z02Z

⇥
C02

p�1dp
Z
(z, z0) + (C02

p�1 � �)dp
Z
(z, z0)

⇤

 C02
p�1dp

Z
(z, z0).

Therefore,

R⇤
%,p(Q,F)  min

��C02p�1

⇢
�%p + C02

p�1

Z

Z

dp
Z
(z, z0)Q(dz)

�

 C02
p�1 (%p + (diam(Z))p) .

Substituting this estimate into (C.1), we obtain what we want.

C.5 Proof of Theorem 3

Let f⇤ 2 F be any achiever of the local minimax risk R⇤
%,p(P,F). We start by decomposing the

excess risk:

R%,p(P, bf)�R⇤
%,p(P,F) = R%,p(P, bf)�R%,p(P, f

⇤)

 R%,p(P, bf)�R%,p(Pn, bf) +R%,p(Pn, f
⇤)�R%,p(P, f

⇤),

where the last step follows from the definition of bf . Define

b� := argmin
��0

n
�%p +EPn ['�, bf (Z)]

o
, �⇤ := argmin

��0
{�%p +EP ['�,f⇤(Z)]} .

Then, using Proposition 4, we can write

R%,p(P, bf)�R%,p(Pn, bf) = min
��0

⇢
�%p +

Z

Z

'�, bf (z)P (dz)

�
�
✓
b�%p +

Z

Z

'b�, bf (z)Pn(dz)

◆


Z

Z

'b�, bf (z)(P � Pn)(dz)

and, following similar logic,

R%,p(Pn, f
⇤)�R%,p(P, f

⇤) 
Z

Z

'�⇤,f⇤(z)(Pn � P )(dz). (C.2)

By Lemma 2, b� 2 ⇤ := [0, C02p�1(1 + (diam(Z)/%)p)]. Hence, defining the function class
� := {'�,f : � 2 ⇤, f 2 F}, we have

R%,p(P, bf)�R%,p(Pn, bf)  sup
'2�

Z

Z

' d(P � Pn)

�
. (C.3)

Since all f 2 F take values in [0,M ], the same holds for all ' 2 �. Therefore, by a standard
symmetrization argument,

R%,p(P, bf)�R%,p(Pn, bf)  2Rn(�) +M

r
2 log(2/�)

n
(C.4)
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with probability at least 1� �/2, where

Rn(�) := E

"
sup
'2�

1

n

nX

i=1

"i'(Zi)

#

is the expected Rademacher average of �, with i.i.d. Rademacher random variables "1, . . . , "n
independent of Z1, . . . , Zn. Moreover, from (C.2) and from Hoeffding’s inequality it follows that

R%,p(Pn, f
⇤)�R%,p(P, f

⇤)  M

r
log(2/�)

2n
(C.5)

with probability at least 1��/2. Combining (C.4) and (C.5), and applying Lemma 5 from Appendix D,
we obtain the theorem.

C.6 Proof of Corollary 1

We first verify the regularity assumptions. Assumption 1 is evidently satisfied since diam(Z) =p
diam(X)2 + diam(Y)2  2

p
r20 +B2. Each f 2 F is continuous, and Assumption 2 holds with

M = (ksk1 +B)2. To verify Assumption 3, we proceed as

|f(x, y)� f(x0, y0)| =
��(y � s(fT

0 x))2 � (y0 � s(fT
0 x0))2

��


��y + y0 � s(fT

0 x)� s(fT
0 x0)

�� ·
��y � y0 + s(fT

0 x0)� s(fT
0 x)

��

 (2B + 2ksk1) ·
�
|y � y0|+

��s(fT
0 x0)� s(fT

0 x)
���

 (2B + 2ksk1) · (1 + ks0k1) (|y � y0|+ kx0 � xk)
 2

p
2(B + ksk1) · (1 + ks0k1)

p
|y � y0|2 + kx� x0k2,

where the last line follows from Jensen’s inequality. Hence, Assumption 3 holds with L = 2
p
2(B +

ksk1)(1 + ks0k1).

To evaluate the Dudley entropy integral in (3), we need to estimate the covering numbers N(F, k ·
k1, ·). First observe that, for any two f, g 2 F corresponding to f0, g0 2 Rd, we have

sup
x2X

sup
y2Y

|f(x, y)� g(x, y)| = sup
x2X

sup
y2Y

���
�
y � s(fT

0 x)
�2 �

�
y � s(gT0 x)

�2���

 2B sup
x2X

|s(fT
0 x)� s(gT0 x)|+ sup

x2X

|s2(fT
0 x)� s2(gT0 x)|

 2r0 (B + ksk1) ks0k1| {z }
:=D

kf0 � g0k2.

Since f0, g0 belong to the unit ball in Rd,

N(F, k · k1, u) 
✓
3D

u

◆d

for 0 < u < D, and N(F, k · k1, u/2) = 1 for u � 2D, which gives
Z 1

0

p
logN(F, k · k1, u)du 

Z D

0

p
d log (3D/u)du

= 3D
p
d

Z 1/3

0

p
log (1/u)du

 3D
p
d/2.

Substituting this into the bound (10), we get the desired estimate.

C.7 Proof of Corollary 2

We will denote by h·, ·iK the inner product in HK , and by k · kK the induced norm.

For completeness, we state the covering number estimates by Cucker and Zhou [7, Thm 5.1].
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Proposition 6. For compact X ⇢ Rd
, the following holds for all u 2 (0, r/2].

logN(IK(Br), k · kX, u)  d

✓
32 +

640d(diam(X))2

�2

◆d+1 ⇣
log

r

u

⌘d+1
.

We would also need the following technical lemma.
Lemma 4. For any f, g 2 F induced by f0, g0 2 IK(Br) (respectively), we have:

kfk1  2(r2 +B2)

kf � gk1  2(r +B)kf0 � g0kX.

Proof. First note that
p
K(x, x) = 1 holds for any x 2 X by the definition of Gaussian kernel. This

leads immediately to the first claim: for any x 2 X, y 2 [�B,B],

(f0(x)� y)2  2f2
0 (x) + 2y2  2(hf0,KxiK)2 + 2B2  2(hf0, f0iK) + 2B2,

where the first inequality is by Jensen’s inequality, the second is due to the reproducing kernel
property of K, and the third is Cauchy-Schwarz inequality in HK (Kx denotes the kernel centered at
x, i.e. x0 7! K(x, x0)). The second claim can be established similarly: for any x 2 X, y 2 [�B,B],

��(f0(x)� y)2 � (g0(x)� y)2
�� =

��f0(x) + g0(x)� 2y
����f0(x)� g0(x)

��


�
2 sup
h02IK(Br)

|h0(x)|+ 2|y|
���f0(x)� g0(x)

��

 2(r +B)kf0 � g0kX,
where the last inequality is due to Cauchy-Schwarz inequality again.

Before proceeding, we first observe that the Gaussian kernel is (
p
2/�)-Lipschitz, i.e. kKx �

Kx0kK 
p
2/� · kx� x0k2. Indeed, we can proceed as

kKx �Kx0k2K = hKx �Kx0 ,Kx �Kx0iK
= 2� 2K(x, x0)

= 2� 2 exp

✓
�kx� x0k22

�2

◆

 2

�2
kx� x0k22,

where we used the fact that the function u 7! 2u/�2 � 2 + 2e�u/�2

is nonnegative for u � 0.

We now check the validity of Assumptions 1–3. Assumption 1 holds as diam(Z) =p
diam(X)2 + diam(Y)2  2

p
r20 +B2. The functions in F are continuous, and Assumption 2

holds with M = 2(r2 +B2) by virtue of the first estimate of Lemma 4. To verify Assumption 3, we
proceed as

|f(x, y)� f(x0, y0)| =
��(y � f0(x))

2 � (y0 � f0(x
0))2
��

 |y + y0 � f0(x)� f0(x
0)| · |y � y0 + f0(x

0)� f0(x)|
 2(r +B) · (|y � y0|+ |hf0,Kx0 �KxiK |)
 2(r +B) · (|y � y0|+ r · kKx0 �KxkK)

 2(r +B) ·
 
|y � y0|+ r

p
2

�
kx� x0k2

!

 2(r +B) ·
⇣
1 + r

p
2/�

⌘
(|y � y0|+ kx� x0k2)

 2
p
2(r +B) ·

⇣
1 + r

p
2/�

⌘q
|y � y0|2 + kx� x0k22,

where the fourth inequality holds by the Lipschitz continuity of the Gaussian reproducing kernel,
and the last inequality is Jensen’s inequality. Hence, Assumption 3 holds with L = 2

p
2(r + B) ·�

1 + r
p
2/�

�
.
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Now we proceed to upper-bound the Dudley entropy integral for F:
Z 1

0

p
logN (F, k · k1, u)du 

Z 2(r2+Br)

0

s

logN

✓
IK(Br), k · kX,

u

2(r +B)

◆
du


Z r2+Br

0

s

logN

✓
IK(Br), k · kX,

u

2(r +B)

◆
du

| {z }
:=T1

+

Z 2(r2+Br)

r2+Br

r
logN

⇣
IK(Br), k · kX,

r

2

⌘
du

| {z }
:=T2

where we used the second claim of Lemma 4 for the first inequality and the monotonicity of covering
numbers for the second inequality. Plugging in the estimate from Proposition 6, we get

T1  2
p
d

✓
32 +

2560dr20
�2

◆ d+1
2

(r2 +Br)�

✓
d+ 3

2
, log 2

◆

T2 
p
d

✓
32 +

2560dr20
�2

◆ d+1
2

(r2 +Br)(log 2)
d+1
2 ,

and hence T1 + T2  C1
48 (r

2 +Br), where the constant C1 is

C1 = 48
p
d

✓
2�

✓
d+ 3

2
, log 2

◆
+ (log 2)

d+1
2

◆✓
32 +

2560dr20
�2

◆ d+1
2

,

D Rademacher complexity of �

Lemma 5. The expected Rademacher complexity of the function class � satisfies

Rn(�) 
24p
n
C(F) +

12C0(2 diam(Z))pp
n

✓
1 +

✓
diam(Z)

%

◆p◆
.

Proof of Lemma 5. Define the �-indexed process X = (X')'2� via

X' :=
1p
n

nX

i=1

"i'(Zi),

which is clearly zero-mean: E[X'] = 0 for all ' 2 �. To upper-bound the Rademacher average
Rn(�), we first show that X is a subgaussian process with respect to a suitable pseudometric. For
' = '�,f and '0 = '�0,f 0 , define

d�(','
0) := kf � f 0k1 + (diam(Z))p|�� �0|,

and it is not hard to show that k' � '0k1  d�(','0). Then, for any t 2 R, using Hoeffding’s
lemma and the fact that ("i, Zi) are i.i.d., we arrive at

E [exp(t(X' �X'0))] = E

"
exp

 
tp
n

nX

i=1

"i('(Zi)� '0(Zi))

!#

=

✓
E


exp

✓
tp
n
"1 ('(Z1)� '0(Z1))

◆�◆n

 exp

✓
t2d2�(','

0)

2

◆
.

Hence, X is subgaussian with respect to d�, and therefore the Rademacher average Rn(�) can be
upper-bounded by the Dudley entropy integral [19]:

Rn(�) 
12p
n

Z 1

0

p
logN(�, d�, u)du,
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where N(�, d�, ·) are the covering numbers of (�, d�). From the definition of d�, it follows that

N(�, d�, u)  N(F, k · k1, u/2) ·N(⇤, | · |, u/2(diam(Z))p),

and therefore

Rn(�) 
12p
n

✓Z 1

0

p
logN(F, k · k1, u/2)du+

Z 1

0

p
logN(⇤, | · |, u/2(diam(Z))p)du

◆
.

Since ⇤ is a compact interval, it is straightforward to upper-bound the second integral:

Z 1

0

p
logN(⇤, | · |, u/2(diam(Z))p)du  2|⇤|(diam(Z))p

Z 1/2

0

p
log(1/u)du

= 2c|⇤|(diam(Z))p,

where |⇤| = C02p�1(1 + (diam(Z)/%)p) is the length of the interval ⇤ and the constant c =
1
2

�p
log 2 +

p
⇡ · erfc(

p
log 2)

�
< 1. Consequently,

Rn(�) 
12p
n

✓Z 1

0

p
logN(F, k · k1, u/2)du+ 2|⇤|(diam(Z))p

◆

 24p
n
C(F) +

12C0(2 diam(Z))pp
n

✓
1 +

✓
diam(Z)

%

◆p◆
.

E Proofs for Section 4

E.1 Proof of Lemma 3

First we prove that Wp(P,Q)  Wp(µ, ⌫). Define the mapping T̃ : Z ! Z by T̃ := T ⌦ idY, i.e.,
T̃ (z) = T̃ (x, y) = (T (x), y), and let Q̃ = T̃#P , the pushforward of P by T̃ . We claim that Q̃ ⌘ Q.
Indeed, for any measurable sets A ✓ X and B ✓ Y,

Q̃(A⇥B) = T̃#P (A⇥B)

= P (T�1(A)⇥B)

=

Z

T�1(A)
µ(dx)PY |X(B|x)

=

Z

A
T#µ(dx)PY |X(B|T (x))

=

Z

A
⌫(dx)QY |X(B|x),

where we have used the relation (13) and the invertibility of T . Thus,

W p
p (P,Q)  EP [d

p
Z
(Z, T̃ (Z)))] = EP [d

p
X
(X,T (X))] = W p

p (µ, ⌫).

For the reverse inequality, let M 2 P(Z ⇥ Z) be the optimal coupling of P and Q. Then, for
Z = (X,Y ) and Z 0 = (X 0, Y 0) with (Z,Z 0) ⇠ M , the marginal MXX0 is evidently a coupling of
the marginals µ and ⌫, and therefore

W p
p (P,Q) = EM [dp

Z
(Z,Z 0)]

= EM [dp
X
(X,X 0)] +EM [dp

Y
(Y, Y 0)]

� EM [dp
X
(X,X 0)]

� W p
p (µ, ⌫).
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E.2 Proof of Theorem 4

For simplicity, we assume that there exists a hypothesis f⇤ 2 F that achieves R⇤(Q,F). Then, for
any % > 0 such that Wp(P,Q)  %, Proposition 1 implies that

R(Q, bf)�R(Q, f⇤)  R%,p(P, bf)�R%,p(P, f
⇤) + 2L%

 R%,p(P, bf)�R⇤
%,p(P,F) + 2L%.

From Theorem 2, we know that

R%,p(P, bf)�R⇤
%,p(P,F) 

48C(F)p
n

+
48Ldiamp(Z)p

n%p�1
+

3M
p

log(4/�)p
2n

holds with probability at least 1��/2. Thus, it remains to find the right %, such that that Wp(P,Q)  %
holds with high probability. From Proposition 5, we see that each of the following two statements
holds with probability at least 1� �/4:

Wp(µn, µ) 
✓
log(4Ca/�)

Cbn

◆p/d

, Wp(⌫m, ⌫) 
✓
log(4Ca/�)

Cbm

◆p/d

.

Since Wp(P,Q) = Wp(µ, ⌫) by Lemma 3, we see that Wp(P,Q)  b%(�) with probability at least
1� �/2, where b%(�) is given by Eq. (17). The claim of the theorem follows from the union bound.
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