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Abstract

Quantized Neural Networks (QNNs) are often used to improve network efficiency
during the inference phase, i.e. after the network has been trained. Extensive
research in the field suggests many different quantization schemes. Still, the number
of bits required, as well as the best quantization scheme, are yet unknown. Our
theoretical analysis suggests that most of the training process is robust to substantial
precision reduction, and points to only a few specific operations that require
higher precision. Armed with this knowledge, we quantize the model parameters,
activations and layer gradients to 8-bit, leaving at a higher precision only the final
step in the computation of the weight gradients. Additionally, as QNNs require
batch-normalization to be trained at high precision, we introduce Range Batch-
Normalization (BN) which has significantly higher tolerance to quantization noise
and improved computational complexity. Our simulations show that Range BN is
equivalent to the traditional batch norm if a precise scale adjustment, which can be
approximated analytically, is applied. To the best of the authors’ knowledge, this
work is the first to quantize the weights, activations, as well as a substantial volume
of the gradients stream, in all layers (including batch normalization) to 8-bit while
showing state-of-the-art results over the ImageNet-1K dataset.

1 Introduction

Deep Neural Networks (DNNs) achieved remarkable results in many fields making them the most
common off-the-shelf approach for a wide variety of machine learning applications. However, as
networks get deeper, using neural network (NN) algorithms and training them on conventional
general-purpose digital hardware is highly inefficient. The main computational effort is due to
massive amounts of multiply-accumulate operations (MACs) required to compute the weighted sums
of the neurons’ inputs and the parameters’ gradients.

Much work has been done to reduce the size of networks. The conventional approach is to com-
press a trained (full precision) network [4, 19, 12] using weights sharing, low rank approximation,
quantization, pruning or some combination thereof. For example, Han et al., 2015 [7] successfully
pruned several state-of-the-art large-scale networks and showed that the number of parameters can be
reduced by an order of magnitude.

Since training neural networks requires approximately three times more computation power than just
evaluating them, quantizing the gradients is a critical step towards faster training machines. Previous
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work demonstrated that by quantizing network parameters and intermediate activations during the
training phase more computationally efficient DNNs could be constructed.

Researchers [6, 5] have shown that 16-bit is sufficient precision for most network training but further
quantization (i.e., 8-bit) results with severe degradation. Our work is the first to almost exclusively
train at 8-bit without harming classification accuracy. This is addressed by overcoming two main
obstacles known to hamper numerical stability: batch normalization and gradient computations.

The traditional batch normalization [11] implementation requires the computation of the sum of
squares, square-root and reciprocal operations; these require high precision (to avoid zero variance)
and a large dynamic range. It should come as no surprise that previous attempts to use low precision
networks did not use batch normalization layers [21] or kept them in full precision [24]. This
work replaces the batch norm operation with range batch-norm (range BN) that normalizes inputs
by the range of the input distribution (i.e., max(x) −min(x)). This measure is more suitable for
low-precision implementations. Range BN is shown analytically to approximate the original batch
normalization by multiplying this range with a scale adjustment that depends on the size of the
batch and equals to (2 · ln(n))−0.5. Experiments on ImageNet with Res18 and Res50 showed no
distinguishable difference between accuracy of Range BN and traditional BN.

The second obstacle is related to the gradients quantization. Given an upstream gradient gl from layer
l, layer l − 1 needs to apply two different matrix multiplications: one for the layer gradient gl−1 and
the other for the weight gradient gW which are needed for the update rule. Our analysis indicates that
the statistics of the gradient gl violates the assumptions at the crux of common quantization schemes.
As such, quantizing these gradients constitutes the main cause of degradation in performance through
training. Accordingly, we suggest to use two versions of layer gradients gl, one with low-precision
(8-bit) and another with higher-precision (16-bit). The idea is to keep all calculations with gl that
does not involve a performance bottleneck at 16 bits, while the rest at 8 bits. As the gradients gW
are required only for the weight update, they are computed using the 16 bits copy of gl. On the
other hand, the gradient gl−1 is required for the entire backwards stream and as such it is computed
using the corresponding 8-bit version of gl. In most layers of the DNN these computations can be
performed in parallel. Hence gW can be computed at high precision in parallel with gl−1, without
interrupting the propagation of gl to lower layers. We denote the use of two different arithmetic
precision operations in the differentiation process as "Gradients Bifurcation".

2 Previous Work

While several works [6, 5] have shown that training at 16-bit is sufficient for most networks, more
aggressive quantization schemes were also suggested [24, 16, 14, 10]. In the extreme case, the
quantization process used only one bit which resulted in binarized neural networks (BNNs) [9] where
both weights and activations were constrained to -1 and 1. However, for more complex models and
challenging datasets, the extreme compression rate resulted in a loss of accuracy. Recently, Mishra
et al. [15] showed that this accuracy loss can be prevented by merely increasing the number of filter
maps in each layer, thus suggesting that quantized neural networks (QNNs) do not possess an inherent
convergence problem. Nevertheless, increasing the number of filter maps enlarge quadratically the
number of parameters, which raises questions about the efficiency of this approach.

In addition to the quantization of the forward pass, a growing interest is directed towards the
quantization of the gradient propagation in neural networks. A fully quantized method, allowing
both forward and backward low-precision operations will enable the use of dedicated hardware,
with considerable computational, memory, and power benefits. Previous attempts to discretize the
gradients managed to either reduce them to 16-bit without loss of accuracy [5] or apply a more
aggressive approach and reduce the precision to 6-8 bit [24, 10] with a noticeable degradation. Batch
normalization is mentioned by [21] as a bottleneck for network quantization and is either replaced by
a constant scaling layer kept in full precision, or avoided altogether; this clearly has some impact on
performance (e.g., AlexNet trained over ImageNet resulted with top-1 error of 51.6%, where the state
of the art is near 42%) and better ways to quantize normalization are explicitly called for. Recently
L1 batch norm with only linear operations in both forward and backward propagation was suggested
by [22, 8] with improved numerical stability. Yet, our experiments show that with 8-bit training even
L1 batch norm is prone to overflows when summing over many large positive values. Finally, Wen
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et al. [20] focused on quantizing the gradient updates to ternary values to reduce the communication
bandwidth in distributed systems.

We claim that although more aggressive quantization methods exist, 8-bit precision may prove to
have a "sweet-spot" quality to it, by enabling training with no loss of accuracy and without modifying
the original architecture. Moreover, we note that 8-bit quantization is better suited for future and even
current hardware, many of which can already benefit from 8-bit operations [17]. So far, to the best of
our knowledge, no work has succeeded to quantize the activations, weights, and gradient of all layers
(including batch normalization) to 8-bit without any degradation.

3 Range Batch-Normalization

For a layer with n×d−dimensional input x = (x(1), x(2), ..., x(d)), traditional batch norm normalizes
each dimension

x̂(d) =
x(d) − µd√

Var[x(d)]
, (1)

where µd is the expectation over x(d), n is the batch size and Var[x(d)] = 1
n ||x

(d) − µd||22. The term√
Var[x(d)] involves sums of squares that can lead to numerical instability as well as to arithmetic

overflows when dealing with large values. The Range BN method replaces the above term by
normalizing according to the range of the input distribution (i.e., max(·)−min(·)), making it more
tolerant to quantization. For a layer with d−dimensional input x = (x(1), x(2), ..., x(d)), Range BN
normalizes each dimension

x̂(d) =
x(d) − µd

C(n) · range(x(d) − µd)
, (2)

where µd is the expectation over x(d), n is the batch size, C(n) = 1√
2·ln(n)

is a scale adjustment

term, and range(x) = max(x)−min(x).

The main idea behind Range BN is to use the scale adjustment C(n) to approximate the standard
deviation σ (traditionally being used in vanilla batch norm) by multiplying it with the range of the
input values. Assuming the input follows a Gaussian distribution, the range (spread) of the input is
highly correlated with the standard deviation magnitude. Therefore by normalizing the range by C(n)
we can estimate σ. Note that the Gaussian assumption is a common approximation (e.g., Soudry
et al. [18]), based on the fact that the neural input x(d) is a sum of many inputs, so we expect it to be
approximately Gaussian from the central limit theorem.

We now turn to derive the normalization term C(n). The expectation of maximum of Gaussian
random variables are bounded as follows [13]:

0.23σ ·
√

ln(n) ≤ E[max(x(d) − µd)] ≤
√

2σ
√

ln(n). (3)

Since x(d) − µd is symmetrical with respect to zero (centred at zero and assumed gaussian), it holds
that E[max(·)] = −E[min(·)]; hence,

0.23σ ·
√

ln(n) ≤ −E[min(x(d) − µd)] ≤
√

2σ
√

ln(n). (4)

Therefore, by summing Equations 3 and 4 and multiplying the three parts of the inequality by the
normalization term C(n), Range BN in Eq. 2 approximates the original standard deviation measure
σ as follows:

0.325σ ≤ C(n) · range(x(d) − µd) ≤ 2 · σ

Importantly, the scale adjustment termC(n) plays a major role in RangeBN success. The performance
was degraded in simulations when C(n) was not used or modified to nearby values.
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4 Quantized Back-Propagation

Quantization methods: Following [23] we used the GEMMLOWP quantization scheme as de-
cribed in Google’s open source library [1]. A detailed explanation of this approach is given in
Appendix.While GEMMLOWP is widely used for deployment, to the best of the authors knowledge
this is the first time GEMMLOWP quantization is applied for training. Note that the activations maxi-
mum and minimum values were computed by the range BN operator, thus finding the normalization
scale (see Appendix)does not require additional O(n) operations.

Finally we note that a good convergence was achieved only by using stochastic rounding [6] for the
gradient quantization. This behaviour is not surprising as the gradients will serve eventually for the
weight update thus unbiased quantization scheme is required to avoid noise accumulation.

Gradients Bifurcation: In the back-propagation algorithm we recursively calculate the gradients
of the loss function L with respect to I`, the input of the ` neural layer,

g` =
∂L
∂I`

, (5)

starting from the last layer. Each layer needs to derive two sets of gradients to perform the recursive
update. The layer activation gradients:

g`−1 = g`W
T
` , (6)

served for the Back-Propagation (BP) phase thus passed to the next layer,and the weights gradients

gW`
= g`I

T
`−1, (7)

used to updated the weights in layer `. Since the backward pass requires twice the amount of
multiplications compared to the forward pass, quantizing the gradients is a crucial step towards faster
training machines. Since g`, the gradients streaming from layer `, are required to compute g`−1, it is
important to expedite the matrix multiplication described in Eq.6. The second set of gradient derive in
Eq.7 is not required for this sequential process and thus we choose to keep this matrix multiplication
in full precision. We argue that the extra time required for this matrix multiplication is comparably
small to the time required to communicate the gradients g`. Thus, in this work the gradients used for
the weight gradients derivation are still in float. In section 6, we show empirically that bifurcation of
the gradients is crucial for high accuracy results.

Straight-Through Estimator: Similar to previous work [9, 15], we used the straight-through
estimator (STE) approach to approximate differentiation through discrete variables. This is the most
simple and hardware friendly approach to deal with the fact that the exact derivative of discrete
variables is zero almost everywhere.

5 When is quantization of neural networks possible?

This section provides some of the foundations needed for understanding the internal representation of
quantized neural networks. It is well known that when batch norm is applied after a convolution layer,
the output is invariant to the norm of the weight on the proceeding layer [11] i.e., BN(C ·W · x) =
BN(W · x) for any given constant C. This quantity is often described geometrically as the norm of
the weight tensor, and in the presence of this invariance, the only measure that needs to be preserved
upon quantization is the directionality of the weight tensor. In the following we show that quantization
preserves the direction (angle) of high-dimensional vectors when W follows a Gaussian distribution.

More specifically, for networks with M -bit fixed point representation, the angle is preserved when
the number of quantization levels 2M is much larger than

√
2 ln(N), where N is the size of quan-

tized vector. This shows that significant quantization is possible on practical settings. Taking for
example the dimensionality of the joint product in a batch with 1024 examples corresponding to
the last layer of ResNet-50, we need no more than 8-bit of precision to preserve the angle well
(i.e.,

√
2 ln(3 · 3 · 2048 · 1024) = 5.7 << 28). We stress that this result heavily relays on values

being distributed according to a Gaussian distribution, and suggests why some vectors are robust to
quantization (e.g., weights and activations) while others are more fragile (e.g., gradients).
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5.1 Problem Statement

ε
W + ε

W θ

Figure 1: Graphic illustration of the angle between full pre-
cision vector W and its low precision counterpart which we
model as W + ε where ε ∼ U(−∆/2,∆/2)

Given a vector of weights
W = (w0, w1, ..., wN−1), where the
weights follow a Gaussian distribu-
tion W ∼ N(0, σ), we would like
to measure the cosine similarity (i.e.,
cosine of the angle) between W and
Q(W ), where Q(·) is a quantization
function. More formally, we are
interested in estimating the following
geometric measure:

cos(θ) =
W ·Q(W )

||W ||2 · ||Q(W )||2
(8)

We next define the quantization function Q(·) using a fixed quantization step between adjacent
quantified levels as follows:

Q(x) = ∆ ·
(⌊ x

∆

⌋
+

1

2

)
, where ∆ =

max(|W |)
2M

(9)

We consider the case where quantization step ∆ is much smaller than mean(|W |). Under this
assumption correlation between W and quantization noise W − Q(W ) = (ε0, ε1, ..., εN−1) is
negligible, and can be approximated as an additive noise. Our model assumes an additive quantization
noise ε̄ with a uniform distribution i.e., εi ∼ U [−∆/2,∆/2] for each index i. Our goal is to estimate
the angle between W and W + ε̄ for high dimensions (i.e., N →∞).

5.2 Angle preservation during quantization

In order to estimate the angle between W and W + ε, we first estimate the angle between W and
ε. It is well known that if ε and W are independent, then at high dimension the angle between W
and ε tends to

π

2
[2] i.e., we get a right angle triangle with W and ε as the legs, while W + ε is

the hypotenuse as illustrated in Figure 1-right. The cosine of the angle θ in that triangle can be
approximated as follows:

cos(θ) =
||W ||
||W + ε||

≥ ||W ||
||W ||+ ||ε||

(10)

Since W is Gaussian, we have that E(||W ||) ∼=
√
Nσ in high dimensions [3]. Additionally, in

Appendix ?? we show that E(||ε̄||) ≤
√
N/12 ·∆. Moreover, at high dimensions, the relative error

made as considering E||X|| instead of the random variable ||X|| becomes asymptotically negligible
[2]. Therefore, the following holds in high dimensions:

cos(θ) ≥ σ

σ + E(∆)/
√

12
=

2M · σ
2M · σ + E(max(|W |))/

√
12

(11)

Finally, E(max(W )) ≤
√

2σ
√

ln(N) when W follows a Gaussian distribution [13], establishing
the following:

cos(θ) ≥ 2M

2M +
√

lnN/
√

6
(12)

Eq. 12 establishes that when 2M >>
√

ln(N) the angle is preserved during quantization. It is
easy to see that in most practical settings this condition holds even for challenging quantizations.
Moreover, this results highly depends on the assumption made about the Gaussian distribution of W
(transition from equation 11 to equation 12).

6 Experiments

We evaluated the ideas of Range Batch-Norm and Quantized Back-Propagation on multiple different
models and datasets. The code to replicate all of our experiments is available on-line 2.

2https://github.com/eladhoffer/quantized.pytorch
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6.1 Experiment results on cifar-10 dataset

To validate our assumption that the cosine similarity is a good measure for the quality of the
quantization, we ran a set of experiments on Cifar-10 dataset, each with a different number of bits,
and then plotted the average angle and the final accuracy. As can be seen in Figure 2 there is a
high correlation between the two. Taking a closer look the following additional observations can
be made: (1) During quantization the direction of vectors is better preserved with the forward pass
compared to the backward pass; (2) validation accuracy follows tightly the cosine of the angle in
the backward pass, indicating gradient quantization as the primary bottleneck; (3) as expected, the
bound on E(cos(θ)) in Eq. 12 holds in the forward pass, but less so in the backward pass, where
the Gaussian assumption tends to break. The histograms in Figure 2 further confirms that the layer
gradients gl do not follow Gaussian distribution. These are the values that are bifurcated into low and
high precision copies to reduce noise accumulation.

5 10 15
0.0

0.2

0.4

0.6

0.8

1.0

theoretical bound
final valid acc (top1)
errorbar (avg-std) fwd
errorbar (avg-std) bwd

Figure 2: Left: empirical and theoretical analysis of cosine similarity, cos(θ), with respect the number
of bits used for quantization. Right: Histograms of activations, layer gradients gl and weight gradients
gW . To emphasize that gl do not follow a Gaussian distribution, the histograms were plotted in a
log-scale (ResNet-18, Cifar-10).

Figure 3: Equivalent accuracy with standard and range batch-norm (ResNet-50, ImageNet).

6.2 Experiment results on ImageNet dataset: Range Batch-Normalization

We ran experiments with Res50 on ImageNet dataset showing the equivalence between the standard
batch-norm and Range BN in terms of accuracy. The only difference between the experiments was
the use of Range BN instead of the traditional batch-norm. Figure 3 compares between the two.
It shows equivalence when models are trained at high precision. We also ran simulations on other
datasets and models. When examining the final results, both were equivalent i.e., 32.5% vs 32.4%
for ResNet-18 on ImageNet and 10.5% vs 10.7% for ResNet-56 on Cifar10. To conclude, these
simulations prove that we can replace standard batch-norm with Range BN while keeping accuracy
unchanged. Replacing the sum of squares and square root operations in standard batch-norm by a
few maximum and minimum operations has a major benefit in low-precision implementations.
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6.3 Experiment results on ImageNet dataset: Putting it all together

We conducted experiments using RangeBN together with Quantized Back-Propagation. To validate
this low precision scheme, we were quantizing the vast majority of operations to 8-bit. The only
operations left at higher precising were the updates (float32) needed to accumulate small changes
from stochastic gradient descent, and a copy of the layer gradients at 16 bits needed to compute gW .
Note that the float32 updates are done once per minibatch while the propagations are done for each
example (e.g., for a minibatch of 256 examples the updates constitute less than 0.4% of the training
effort). Figure 4 presents the result of this experiment on ImageNet dataset using ResNet18 and
ResNet50. We provide additional results using more aggressive quantizations in Appedix F.

Figure 4: Comparing a full precision run against 8-bit run with Quantized Back-Propagation and
Range BN (ResNet-18 and ResNet-50 trained on ImageNet).

7 Discussion

In this study, we investigate the internal representation of low precision neural networks and present
guidelines for their quantization. Considering the preservation of direction during quantization, we
analytically show that significant quantization is possible for vectors with a Gaussian distribution.
On the forward pass the inputs to each layer are known to be distributed according to a Gaussian
distribution, but on the backward pass we observe that the layer gradients gl do not follow this
distribution. Our experiments further assess that angle is not well preserved on the backward pass,
and moreover final validation accuracy tightly follows that angle. Accordingly, we bifurcate the layer
gradients gl and use it at 16-bits for the computation of the weight gradient gW while keeping the
computation of next layer gradient gl−1 at 8-bit. This enables the (slower) 16-bits computation of
gW to be be done in parallel with gl−1, without interrupting the propagation the layer gradients.

We further show that Range BN is comparable to the traditional batch norm in terms of accuracy
and convergence rate. This makes it a viable alternative for low precision training. During the
forward-propagation phase computation of the square and square root operations are avoided and
replaced by max(·) and min(·) operations. During the back-propagation phase, the derivative of
max(·) or min(·) is set to one where the coordinates for which the maximal or minimal values are
attained, and is set to zero otherwise.

Finally, we combine the two novelties into a single training scheme and demonstrate, for the first
time, that 8-bit training on a large scale dataset does not harm accuracy. Our quantization approach
has major performance benefits in terms of speed, memory, and energy. By replacing float32 with
int8, multiplications become 16 times faster and at least 15 times more energy efficient [10]. This
impact is attained for 2/3 of all the multiplications, namely the forward pass and the calculations of
the layer gradients gl. The weight gradients gW are computed as a product of 8-bit precision (layer
input) with a 16-bit precision (unquantized version of gl), resulting with a speedup of x8 for the rest
of multiplications and at least x2 power savings. Although previous works considered an even lower
precision quantization (up-to 1-bit), we claim that 8-bit quantization may prove to be more of an
interest. Furthermore, 8-bit matrix multiplication is available as an off-the-shelf operation in existing
hardware and can be easily adopted and used with our methods.
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