
Robust Detection of Adversarial Attacks by Modeling
the Intrinsic Properties of Deep Neural Networks

Zhihao Zheng
Department of Computer Science

Brandeis University
Waltham, MA 02453

zhihaozh@brandeis.edu

Pengyu Hong
Department of Computer Science

Brandeis University
Waltham, MA 02453

hongpeng@brandeis.edu

Abstract

It has been shown that deep neural network (DNN) based classifiers are vulnerable
to human-imperceptive adversarial perturbations which can cause DNN classifiers
to output wrong predictions with high confidence. We propose an unsupervised
learning approach to detect adversarial inputs without any knowledge of attackers.
Our approach tries to capture the intrinsic properties of a DNN classifier and uses
them to detect adversarial inputs. The intrinsic properties used in this study are the
output distributions of the hidden neurons in a DNN classifier presented with natural
images. Our approach can be easily applied to any DNN classifiers or combined
with other defense strategies to improve robustness. Experimental results show that
our approach demonstrates state-of-the-art robustness in defending black-box and
gray-box attacks.

1 Introduction

Since the successful application of deep convolutional neural network to large-scale image recognition
[26] by Krizhevsky et al. [11], neural network based Deep Learning has gained significant attentions.
Researchers have been shown that deep neural networks (DNN) were able to deliver state-of-the-art
performances in various fields, such as, robotics [20, 7], self-driving cars [1, 2], face recognition
for identification [33], games [29, 30, 19], biomedical image processing [6, 28], and so on. Despite
of these successes, DNN-based classifiers have a severe weakness [34]. For example, knowing the
architecture and parameters of a DNN classifier (i.e., white-box attack), an adversarial example can
be easily constructed to fool the DNN classifier by applying a small perturbation to an input image.
Even though the perturbations are too small to affect human recognition, the DNN classifier can
misclassify the perturbed input with high confidence. Successful attacks can also be black-box, in
which the architecture and parameters of a DNN are unknown to the attackers [23]. Interestingly,
adversarial images remain malicious even after printed out and then fed to a well trained DNN [12]. A
variety of algorithms have been developed to generate powerful attacks [34, 9, 12, 24, 32, 4, 21, 22].

Without proper safeguards, users of DNN-based applications can be exposed to unforeseen hazardous
situations caused by "trivial" noises. Various attempts have been conducted to defend adversarial
attacks. Papernot et al. [25] proposed a defensive distillation approach, which reduces the magnitude
of gradients during training, to make the trained model more robust to input perturbations . However,
it was later shown that the distillation approach was still highly vulnerable to attacks [3]. Recently,
the adversarial training strategy became popular [9, 18, 13]. This strategy augments the training data
with adversarial examples to enhance the capability of DNNs to deal with targeted attacks. It focuses
more on defending black-box attacks, and usually does not consider white-box attacks. Hence, it
is still vulnerable to iterative attacks [13]. In addition, the robustness of the model trained by this
strategy depends on the attacks covered by the adversarial training examples. Another strategy is

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

to actively detect adversarial inputs [17, 15] by training a two-class classifier that takes the hidden
states of a DNN as the input to tell if an input is adversarial. Unfortunately, this strategy can seriously
suffer from attacks unseen during the training procedure.

In this paper, we propose a strategy for detecting adversarial inputs by modeling the intrinsic
properties of a DNN classifier. This strategy does not need to know the attack methods or require
to train the classifier with adversarial samples. Therefore, it will suffer less from unseen attacks.
We implement an approach, termed I-defender ("I" stands for intrinsic), which explores one of the
intrinsic properties of a DNN classifier, i.e., the distributions of its hidden states given natural training
data. We reason that: When the DNN classifier mis-assigns a specific class label to an adversarial
input, its hidden states are quite different from those given natural data of the same class. I-defender
models the hidden state distributions of a DNN classifier given natural data and uses them to detect
adversarial inputs. We do not attempt to model the hidden state distributions of a classifier presented
with adversarial inputs because such distributions will depend specifically on the attack methods
that generate the adversarial training inputs. For the same reason, we do not try to build a model to
distinguish the hidden state distributions of a classifier presented with natural inputs from those of
the classifier presented with adversarial inputs. We do not try to model the input distribution because
the input space is of much higher dimension. In addition, the hidden state distributions encode the
generalization power of the model.

2 Related Works

2.1 Adversarial Attacks

Fast Gradient Sign Method (FGSM) [9] efficiently generates adversarial examples. The perturba-
tion ρ is computed along the direction in the input space which maximally increases a linearized cost
function under `∞ norm:

ρ = ε · sign(∇J(θ,x, l)) (1)
where ε is a scalar to restrict the norm of the perturbations, ∇J is the gradient of the cost function,
and x is the original input with its true class label as l. The perturbation generated by this method
usually is small with respect to the maximum value of the input.

Basic Iterative Method (BIM) [12] is an iterative method. At each iteration, it adds a small
perturbation decided by the gradient∇J at the current version of the perturbed input and clips the
modifications in the range of ε from the original input.

xi+1
adv = clipε{xiadv + α · sign(∇J(θ,xiadv, l))} (2)

where xiadv denotes the perturbed input generated at the i-th iteration. Usually, α is set to 1, and
the number of iterations is set to 10. Based on this approach, Metzen et al. [17] developed another
iterative method, which produces each perturbation in the direction of `2-normalized gradient and
project the perturbed version back to the ε ball around the original input if the `2 distance between
them exceeds ε.

xi+1
adv = projectε{xiadv + α

∇J(θ,xiadv, l)

||∇J(θ,xiadv, l)||2
} (3)

DeepFool Method [21] iteratively computes the minimal norm adversarial perturbation. Inputs
are assumed to reside in a region confined by the decision boundary of a classifier. In the i-th
iteration, the classifier is linearized around the perturbed input xiadv. The algorithm will find the
closest class boundary and take the minimal step to traverse the boundary accordingly to the lp-norm
distance from xiadv. The perturbations are accumulated to the original input until mis-classification
is achieved. DeepFool is able to achieve the same successful level of attack as FGSM while using
smaller perturbations.

2.2 Perturbation Detection Methods

Metzen et al. [17] proposed to augment a DNN with a subnetwork that focuses on adversarial
perturbation detection. The subnetwork connects each layer of the DNN and is trained separately

2

using a dataset containing both natural samples and adversarial samples generated by known attack
methods. Although this method can achieve certain degree of success, the trained subnetwork can
be easily fooled by adversarial examples generated by attack methods unseen during training [15].
Lu et al. [15] introduced SafetyNet that trains a Support Vector Machine [5] to detect the boundary
between natural and perturbed data in the space of the quantified features from a DNN. Similar to the
above subnetwork approach, SafetyNet is trained using certain attacking methods. Although it may
produce more robust results, it still suffers from unseen adversarial patterns. Samangouei et al. [27]
proposed Defense-GAN to leverage the expressive capability of Generative Adversarial Network [8]
to defend against attacks. Defense-GAN trains a generative model to model the distribution of natural
inputs. To detect adversarial inputs, Defense-GAN projects an input onto the range of the GAN
generator by a Gradient Descent (GD) procedure to minimize the Wasserstein distance between the
input and the sample generated by the GAN generator. The generator runs the GD procedure several
time with different seed inputs. An input will be detected as an attack if the minimal Wasserstein
distance between the input and the generated samples is larger than a threshold. To achieve a higher
accuracy, Defense-GAN needs to try more seed inputs and run more GD iterations, which will be
time-costly. Its performance also relies on the quality of its GAN, which can be challenging to train
for complex tasks.

3 I-defender

Figure 1: Hidden state distribution examples. The architecture of the DNN is specified in Section 4.2.
The DNN was trained on CIFAR-10. (a) The IHSDs of two classes (class 1: automobile and class 2:
bird) are plotted in the 2D subspace with the largest variances. (b) The intrinsic distribution (green)
of a hidden state of the airplane class versus the distribution (red) of the same hidden state when the
DNN misclassifies perturbed inputs as airplane.

Szegedy et al. [34] interpreted adversarial examples as the low probability pockets in the manifold
which are never or rarely seen during training. There are too many of them so that attackers can easily
explore them to fool the trained classifier. Typically, adversarial attacks can be generated by traversing
the high dimension decision space along the direction of gradient to reach those pockets. Adversarial
training can be viewed as a method to fill those pockets with adversarial examples generated by
known attack methods. However, when dealing with complex applications, this strategy may not be
effective because there can be infinite number of low probability pockets. Instead of trying to fill
those pockets, Defense-GAN tries to model the input distribution, which however can be too complex
to deal with. On the other hand, given natural data, the distributions of the hidden states (i.e., outputs
of hidden neurons) of a DNN classifier can be much simpler (e.g., Figure 1a). The dimensions of the
hidden state spaces are often much lower than that of the input space, which can make the hidden state
distributions much easier to model than the input distribution. We call a hidden state distribution of a
DNN presented with natural data as an intrinsic hidden state distribution (IHSD), which characterizes
certain intrinsic properties of the DNN. I-defender uses the IHSDs of a classifier to reject adversarial
inputs because they tend to produce hidden states lying in the low density regions of the IHSDs (e.g.,
see Figure 1b). I-defender can be easily attached to any models that produce internal representations.

3

In our current implementation, I-defender uses Gaussian Mixture Model (GMM) to approximate the
IHSD of each class as the following:

p(H(x)|θ, c) =

K∑
k=1

wiN (H(x)|µck,Σck) (4)

whereH(x) denotes the hidden state of an input x ∈ the c-th class, θ denotes the DNN classifier of
interest (or its parameters), and µck and Σck are the mean and covariance matrix of the k-th Gaussian
component in the mixture model of the c-th class. After training the DNN classifier, we feed all
training samples into it and collect the corresponding hidden states for training a GMM for each class
using the EM algorithm [16].

In this study, all DNN classifiers consisted of convolutional layers followed by fully connected layers.
The states of the convolutional layers are position-dependent, which make it non-trivial to model
directly. Thus, we choose to only model the state of the fully connected hidden layers. For each class
c, a threshold THc is chosen to reject inputs by checking if their likelihoods are lower than THc.

Reject(x, c) = p(H(x)|θ, c) < THc (5)

4 Experiments

We evaluated I-defender on standard datasets (MNIST, F-MNIST, CIFAR-10) against several attack
methods including `∞− norm Iterative, `2− norm Iterative, FGSM, and DeepFool. The number of
iterations was set to 10 for iterative attack methods (`∞ and `2). The results are organized accordingly
to the following attack types:

1. Black-box Attack: Attackers know nothing about the defense strategy and use a substitute
network to generate adversarial samples.

2. Semi White-box Attack: Attackers know all details of the DNN classifier, but however have
no knowledge of its defense strategy. Attackers use the gradients from the DNN to generate
adversarial samples.

3. Gray-box Attack: Attackers know the architecture of the DNN classifier and its defense
strategy, but have no knowledge of their parameters. Attackers use a network of the same
architecture and the same defense strategy to generate adversarial samples.

4.1 Black-box Attack

In this experiment, we used two datasets: the MNIST dataset [14] and the F-MNIST dataset [35], a
more challenging replacement of the MNIST dataset. It was shown that the Defense-GAN detection
method outperformed previous approaches on these two datasets under the FGSM attack. Hence, we
first compared I-defender only with the Defense-GAN detection under the FGSM attack. We used the
same experiment settings to those used by in the Defense-GAN detection experiment [27]. Attackers
generated adversarial examples using model E, and used them to attack model F (see Table 1 for
details of models E and F). The results are summarized in Tables 2-5 (the results of the Defense-GAN
detection are copied from [27]).

Table 1: Architectures of Models E and F. The architectures are the same to those used in the adversary
detection experiment in [27]. FC(n) denotes a fully connected layer with n neurons. Conv(k,w×h, s)
denotes a convolutional layer with k output features, filter size of w × h and stride as s. ReLU is the
Rectified Linear Unit activation.

Model E Model F

FC(200) Conv(64, 8× 8, 2)
ReLU ReLU

FC(200) Conv(128, 6× 6, 2)
ReLU ReLU

FC(10)+Softmax FC(10)+Softmax

4

Table 2: I-defender vs Defense-GAN of different settings. The FGSM attack used ε = 0.3. The
MNIST data was used.

Method Detection AUC Number of GD runs Iteration number in each GD run

I-defender 0.993 N/A N/A
Defense-GAN 1.0 10 800
Defense-GAN 1.0 10 400
Defense-GAN 0.985 10 50
Defense-GAN 0.982 5 100
Defense-GAN 0.922 2 100
Defense-GAN 0.836 1 100

Table 3: I-defender vs Defense-GAN (10 GD runs and 400 iterations in each run) under the FGSM
attack on the MNIST data. The detection AUC is used as the measurement. The ROC curves of
I-defender are shown in Figure 2

ε Defense-GAN I-defender

0.1 0.914 0.964
0.15 0.975 0.979
0.2 0.989 0.988
0.25 0.998 0.991
0.3 0.999 0.993

Table 4: I-defender vs Defense-GAN of different settings under the FGSM attack with ε = 0.3. The
F-MNIST data was used.

Method Detection AUC Number of GD runs Iteration number in each GD run

I-defender 0.985 N/A N/A
Defense-GAN 0.987 10 800
Defense-GAN 0.983 10 400
Defense-GAN 0.965 10 100
Defense-GAN 0.945 5 100
Defense-GAN 0.935 10 25
Defense-GAN 0.876 2 100
Defense-GAN 0.794 1 100

Table 5: I-defender vs Defense-GAN (10 GD runs and 200 iterations in each run) under the FGSM
attack. The F-MNIST data was used. The detection AUC is used as the measurement. The ROC
curves of I-defender are shown in Figure 3

ε Defense-GAN I-defender

0.1 0.775 0.9302
0.15 0.884 0.9587
0.2 0.940 0.9722
0.25 0.969 0.9807
0.3 0.985 0.9850

5

Figure 2: The ROC curves of I-defender
attacked by FSGM with different ε on the
MNIST dataset.

Figure 3: The ROC curves of I-defender at-
tacked by FSGM with different ε on the F-
MNIST dataset.

Figure 4: The ROC curves of I-defender at-
tacked by various methods on the MNIST
dataset

Figure 5: The ROC curves of I-defender at-
tacked by various methods on the F-MNIST
dataset.

The performance of Defense-GAN detection highly depends on its hyper-parameters (i.e., the number
of GD runs and the number of GD iterations). Tables 2 and 4 show that I-defender outperforms
Defense-GAN with less than 10 GD runs and less than 400 GD iterations. Although Defense-GAN is
able to produce a slightly better result than I-defender by trying more GD runs (e.g., 10) and more
GD iterations (e.g., 800), we estimated that the running time of Defense-GAN (reported in [27]) was
105 times slower than I-defender. Tables 3 and 5 summarize the effects of changing the attacking
power (ε) of FGSM, and the corresponding ROC curves are shown in Figures 2 and 3. I-defender
suffers much less than Defense-GAN when the perturbation level is more subtle. We think this is
due to that I-defender models the hidden state distributions while Defense-GAN models the input
distribution. It is explained in [9] that small input perturbations can be amplified across layers and
cause a hidden state to grow by ωT η, where ω means weight vector and η means perturbation. Thus,
even if a perturbation is small, the hidden states can be altered significantly and be easily detected
by I-defender. We also tested I-defender using other attacking methods. The ROC curves and AUC
values show that I-defender is robust (see Figures 4 and 5).

4.2 Semi White-box Attack

In this experiment, we used the CIFAR-10 dataset [10], which is more complex than MNIST and
F-MNIST. We trained a 34-layer wide residual network [36] with k = 8 as the classifier. Since
Defense-GAN did not report their results on CIFAR-10, we compared I-defender with two supervised
detection methods, SafetyNet[15] and Subnetwork[17]. The experiment settings (e.g., the attack
methods, the attack strengths, the balanced data for evaluate detection accuracy, etc.) were the same
to those reported in [15]. The results are summarized in Table 6. Supervised methods perform better
against the attack methods/strengths that are used in their training phases. Their performances drop

6

significantly when facing unseen attack methods/strengths. I-defender performs more consistently
across different attack methods/strengths, and significantly outperforms supervised methods on
unseen attack methods/strengths.

Table 6: Semi white-box attack results measured by detection AUC. The results of SafetyNet (SVM
and mSVM) and Subnetwork are incorporated from [15]. The column headers denote the attack
methods (Iter-`∞: Iterative-`∞; Iter-`2: Iterative-`2) and their attack strengths indicated by "Adv
Acc" (i.e., accuracy of classifier on classifying adversarial samples). The parameters of the attacking
methods were set to match with the Adv Acc’s specified in [15]. Both SafetyNet and Subnetwork
were trained by Iterative `∞ with Adv Acc = 13.14% (i.e., the attack in the first column), and then
were generalized to other attacks in the rest columns. The results of I-defender ID-95 and ID-99
were obtained by setting the likelihood thresholds to keep 95% and 99% of the natural training data,
respectively.

Method
Adv Acc

Iter-`∞
13.14%

Iter-`2
10.80%

FGSM
27.84%

DeepFool
24.53%

Iter-`∞
29.56%

FGSM
45.68%

SVM 83.6 84.840 75.545 78.305 76.330 61.755
mSVM 92.52 93.915 74.480 86.635 76.670 60.895
Subnet 98.235 98.660 68.980 49.270 49.295 49.27
ID-95 81.28 79.398 87.464 87.636 78.730 85.024
ID-99 79.04 74.173 90.485 90.709 74.580 87.596

4.3 Gray-box Attack

In a gray-box attack, an attacker knows the structure and defense strategy of a DNN classifier, but
has no knowledge of its parameters. Adversarial training is able to increase the robustness of a DNN
classifier when attacked by single-step gray-box methods, but not by iterative gray-box methods.
To test the robustness of I-defender under gray-box attacks, we trained two deep networks with
same structure independently on the same natural training data, and tested I-defender on three attack
methods: FGSM, Iterative `∞, and Iterative `2. We let the attackers maximize the following function
to derive a perturbed input x,

arg max
x

J(x, ys|θ) + α
∏
k 6=s

Reject(x, yk)×max
k 6=s

logP (H(x)|yk) (6)

where the first term J(.) denotes the cross entropy loss of classifying x into its true label ys by a
classifier with parameter θ (this term encourages finding a perturbation x that will lead to misclassi-
fication), and the second term penalizes x if it is detected by our defense mechanism (i.e., it is not
accepted by any classes other than ys because its likelihoods from any other classes are lower than the
corresponding thresholds). The second term will encourage moving x towards the most promising
class other than its true class ys.

Our first experiment was on CIFAR-10, and the results (Tables 7 and 8) indicate the following.
Although an attacker can successfully exploit the weakness in an I-defender, which is fully exposed to
the attacker, the attacker can hardly affect the detection power of another I-defender whose parameters
are unknown to the attacker. This is because two classifiers are trained independently and can have
very different hidden state spaces/distributions. Moreover, the change of DNN architecture (more
complex ones) should not greatly influence the performance of our approach. We also carried out an
experiment on ImageNet by setting α to 1. Without deploying I-defender, the adversarial accuracy
of a "Target" DNN can easily drop to around 10%. I-defender made it significantly harder for an
attacker to succeed (Table 9). In addition, the lower the adversarial accuracy of the "Target" DNN,
the higher the detection AUC. This indicates that I-defender can be used to effectively defend attacks.
We think this is because a DNN architecture appropriate for a more difficult task (e.g., ImageNet)
is sophisticated and has many distinct local minimals. Hence, if trained twice independently, it
will produce two DNN instances with very different hidden state spaces/distributions. Therefore, a
perturbed input generated accordingly to a "Source" DNN can easily lead to a remarkably different
hidden state configuration in a "Target" DNN, which means it is challenging for attackers to rely on a
"Source" DNN to successfully attack a "Target" DNN.

7

Table 7: Defense against gray-box attacks on CIFAR-10. Adversarial examples were generated from
the "Source" DNN (WRN34-8 [36]) and tested on both the "Source" and "Target" DNNs (WRN34-8).
Performances are measured by detection AUC.

α Iterative-`∞ (ε = 0.013) Iterative-`2 (ε = 0.47)
Target / Source Target / Source

1e-3 85.203 / 76.450 86.249 / 75.786
1e-2 83.261 / 58.967 84.740 / 69.243
1e-1 83.875 / 59.459 85.406 / 71.179
1 83.945 / 59.554 85.576 / 72.027

α Iterative-`∞ (ε = 0.0085) FGSM (ε = 0.075)
Target / Source Target / Source

1e-3 86.130 / 74.463 94.472 / 93.564
1e-2 85.485 / 63.151 94.480 / 93.387
1e-1 85.777 / 63.598 94.450 / 93.359
1 85.745 / 63.590 94.457 / 93.355

Table 8: Evaluate the effects of DNN size on the performance of I-defender. We compared WRN34-8
and WRN46-8 in this experiment.

α Iterative-`∞ (ε = 0.013) Iterative-`2 (ε = 0.47)
WRN-34 / WRN-46 WRN-34 / WRN-46

1e-3 85.203 / 87.549 86.249 / 86.23
1e-2 83.261 / 87.555 84.740 / 86.215
1e-1 83.875 / 87.637 85.406 / 85.844
1 83.945 / 87.553 85.576 / 85.528

α Iterative-`∞ (ε = 0.0085) FGSM (ε = 0.075)
WRN-34 / WRN-46 WRN-34 / WRN-46

1e-3 86.130 / 85.960 94.472 / 94.060
1e-2 85.485 / 86.084 94.480 / 94.159
1e-1 85.777 / 85.969 94.450 / 94.174
1 85.745 / 86.113 94.457 / 94.111

Table 9: Defense against gray-box attacks on ImageNet. Both the "Source" and "Target" DNNs
used VGG19 [31]. Note that the accuracy of the "Target" DNN on the natural data is 71.028%. The
"Adv Acc" represents the adversarial accuracy of the "Target" DNN under attacks. Performances are
measured by detection AUC.

α FGSM (ε = 0.3) Iter-`∞
(ε = 0.019)

Iterative-`2 (ε = 12, 5)

Adv Acc / AUC Adv Acc / AUC Adv Acc / AUC

1e-2 70.892 / 62.685 62.636 / 97.201 59.032 / 93.832
1e-1 70.892 / 62.801 62.646 / 97.211 59.016 / 93.837
1 70.892 / 62.612 62.648 / 97.215 59.010 / 93.834

8

5 Conclusion and Discussion

We show that modeling the intrinsic properties of a DNN classifier can be a reliable strategy to detect
adversarial attacks. This strategy does not need any knowledge about attack methods. Hence, it does
not suffer from attack methods unseen during training and is able to robustly defense against various
of black-box and gray-box attacks, which is sufficient for most application scenarios. Our implemen-
tation of this strategy uses GMM to approximate the hidden state distribution of a DNN classifier.
Experiment results validate that our implementation achieves state-of-the-art performance among
unsupervised methods and generalizes better than supervised ones. Our method is straightforward
and can be easily incorporated into any DNN-based classifiers and can also be easily combined with
any existing defense strategies. Depending on applications, one can replace GMM with other more
appropriate models to approximate hidden state distributions. Since our method models the hidden
states of a DNN instead of the inputs, it can be directly applied to other modalities (such as text).

References
[1] E. Ackerman. How drive. ai is mastering autonomous driving with deep learning. IEEE Spectrum, March,

2017.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort,
U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[3] N. Carlini and D. Wagner. Defensive distillation is not robust to adversarial examples. arXiv preprint
arXiv:1607.04311, 2016.

[4] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In Security and Privacy
(SP), 2017 IEEE Symposium on, pages 39–57. IEEE, 2017.

[5] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

[6] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun. Dermatologist-level
classification of skin cancer with deep neural networks. Nature, 542(7639):115, 2017.

[7] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodríguez, F. Fontana, M. Faessler, C. Forster, J. Schmid-
huber, G. Di Caro, et al. A machine learning approach to visual perception of forest trails for mobile robots.
IEEE Robotics and Automation Letters, 1(2):661–667, 2016.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. In Advances in neural information processing systems, pages 2672–2680,
2014.

[9] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[10] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[12] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. arXiv preprint
arXiv:1607.02533, 2016.

[13] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

[14] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[15] J. Lu, T. Issaranon, and D. Forsyth. Safetynet: Detecting and rejecting adversarial examples robustly.
CoRR, abs/1704.00103, 2017.

[16] G. McLachlan and T. Krishnan. The EM algorithm and extensions, volume 382. John Wiley & Sons, 2007.

[17] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversarial perturbations. arXiv
preprint arXiv:1702.04267, 2017.

9

[18] T. Miyato, S.-i. Maeda, M. Koyama, K. Nakae, and S. Ishii. Distributional smoothing with virtual
adversarial training. arXiv preprint arXiv:1507.00677, 2015.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller. Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[21] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard. Deepfool: a simple and accurate method to fool deep
neural networks. In Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), number EPFL-CONF-218057, 2016.

[22] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturbations. arXiv
preprint, 2017.

[23] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical black-box attacks
against deep learning systems using adversarial examples. arXiv preprint, 2016.

[24] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep
learning in adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium on,
pages 372–387. IEEE, 2016.

[25] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to adversarial perturbations
against deep neural networks. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 582–597.
IEEE, 2016.

[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,
M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[27] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-gan: Protecting classifiers against adversarial
attacks using generative models. In International Conference on Learning Representations, volume 9,
2018.

[28] D. Shen, G. Wu, and H.-I. Suk. Deep learning in medical image analysis. Annual review of biomedical
engineering, 19:221–248, 2017.

[29] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484–489, 2016.

[30] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai,
A. Bolton, et al. Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[31] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

[32] J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fooling deep neural networks. arXiv preprint
arXiv:1710.08864, 2017.

[33] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition with very deep neural networks. arXiv
preprint arXiv:1502.00873, 2015.

[34] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

[35] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms, 2017.

[36] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

10

