
A Simple Proximal Stochastic Gradient Method for
Nonsmooth Nonconvex Optimization

Zhize Li
IIIS, Tsinghua University

zz-li14@mails.tsinghua.edu.cn

Jian Li
IIIS, Tsinghua University

lijian83@mail.tsinghua.edu.cn

Abstract

We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth
finite-sum problems. In particular, the objective function is given by the summation
of a differentiable (possibly nonconvex) component, together with a possibly non-
differentiable but convex component. We propose a proximal stochastic gradient
algorithm based on variance reduction, called ProxSVRG+. Our main contribution
lies in the analysis of ProxSVRG+. It recovers several existing convergence results
and improves/generalizes them (in terms of the number of stochastic gradient
oracle calls and proximal oracle calls). In particular, ProxSVRG+ generalizes
the best results given by the SCSG algorithm, recently proposed by [Lei et al.,
2017] for the smooth nonconvex case. ProxSVRG+ is also more straightforward
than SCSG and yields simpler analysis. Moreover, ProxSVRG+ outperforms the
deterministic proximal gradient descent (ProxGD) for a wide range of minibatch
sizes, which partially solves an open problem proposed in [Reddi et al., 2016].
Also, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG [Reddi
et al., 2016]. Moreover, for nonconvex functions satisfied Polyak-Łojasiewicz
condition, we prove that ProxSVRG+ achieves a global linear convergence rate
without restart unlike ProxSVRG. Thus, it can automatically switch to the faster
linear convergence in some regions as long as the objective function satisfies the
PL condition locally in these regions. Finally, we conduct several experiments and
the experimental results are consistent with the theoretical results.

1 Introduction

In this paper, we consider nonsmooth nonconvex finite-sum optimization problems of the form

min
x

Φ(x) := f(x) + h(x), (1)

where f(x) := 1
n

∑n
i=1 fi(x) and each fi(x) is possibly nonconvex with a Lipschitz continuous

gradient, while h(x) is nonsmooth but convex (e.g., l1 norm ‖x‖1 or indicator function IC(x) for
some convex set C). We assume that the proximal operator of h(x) can be computed efficiently.

This above optimization problem is fundamental to many machine learning problems, ranging from
convex optimization such as Lasso, SVM to highly nonconvex problem such as optimizing deep
neural networks. There has been extensive research when f(x) is convex (see e.g., [25, 7, 15, 1]).
In particular, if fis are strongly-convex, Xiao and Zhang [25] proposed the Prox-SVRG algorithm,
which achieves a linear convergence rate, based on the well-known variance reduction technique
SVRG developed in [12]. In recent years, due to the increasing popularity of deep learning, the
nonconvex case has attracted significant attention. See e.g., [9, 3, 23, 17] for results on the smooth
nonconvex case (i.e., h(x) ≡ 0). Very recently, Zhou et al. [27] proposed an algorithm with stochastic
gradient complexity Õ(1

ε3/2
∧ n1/2

ε), improving the previous results O(1
ε5/3

) [17] and O(n
2/3

ε) [3].
For the more general nonsmooth nonconvex case, the research is still somewhat limited.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Recently, for the nonsmooth nonconvex case, Reddi et al. [24] provided two algorithms called
ProxSVRG and ProxSAGA, which are based on the well-known variance reduction techniques SVRG
and SAGA [12, 7]. Also, we would like to mention that Aravkin and Davis [5] considered the case
when h can be nonconvex in a more general context of robust optimization. Before that, Ghadimi
et al. [10] analyzed the deterministic proximal gradient method (i.e., computing the full-gradient in
every iteration) for nonconvex nonsmooth problems. Here we denote it as ProxGD. Ghadimi et al.
[10] also considered the stochastic case (here we denote it as ProxSGD). However, ProxSGD requires
the batch sizes being a large number (i.e., Ω(1/ε)) or increasing with the iteration number t. Note
that ProxSGD may reduce to deterministic ProxGD after some iterations due to the increasing batch
sizes. Note that from the perspectives of both computational efficiency and statistical generalization,
always computing full-gradient (GD or ProxGD) may not be desirable for large-scale machine
learning problems. A reasonable minibatch size is also desirable in practice, since the computation
of minibatch stochastic gradients can be implemented in parallel. In fact, practitioners typically use
moderate minibatch sizes, often ranging from something like 16 or 32 to a few hundreds (sometimes
to a few thousands, see e.g., [11]).1 Hence, it is important to study the convergence in moderate and
constant minibatch size regime.

Reddi et al. [24] provided the first non-asymptotic convergence rates for ProxSVRG with minibatch
size at most O(n2/3), for the nonsmooth nonconvex problems. However, their convergence bounds
(using constant or moderate size minibatches) are worse than the deterministic ProxGD in terms of the
number of proximal oracle calls. Note that their algorithms (i.e., ProxSVRG/SAGA) outperform the
ProxGD only if they use quite large minibatch size b = O(n2/3). Note that in a typical application,
the number of training data is n = 106 ∼ 109, and n2/3 = 104 ∼ 106. Hence, O(n2/3) is a quite
large minibatch size. Finally, they presented an important open problem of developing stochastic
methods with provably better performance than ProxGD with constant minibatch size.

Our Contribution: In this paper, we propose a very straightforward algorithm called ProxSVRG+
to solve the nonsmooth nonconvex problem (1). Our main technical contribution lies in the new
convergence analysis of ProxSVRG+, which has notable difference from that of ProxSVRG [24].
We list our results in Table 1–3, and Figure 1–2. Our convergence results are stated in terms of the
number of stochastic first-order oracle (SFO) calls and proximal oracle (PO) calls (see Definition 2).
We would like to highlight the following results yielded by our new analysis:

1) ProxSVRG+ is
√
b (resp.

√
bεn) times faster than ProxGD in terms of #SFO when b ≤ n2/3 (resp.

b ≤ 1/ε2/3), and n/b times faster than ProxGD when b > n2/3 (resp. b > 1/ε2/3). Note that #PO
= O(1/ε) for both ProxSVRG+ and ProxGD. Obviously, for any super constant b, ProxSVRG+
is strictly better than ProxGD. Hence, we partially answer the open question (i.e. developing
stochastic methods with provably better performance than ProxGD with constant minibatch size b)
proposed in [24]. Also, ProxSVRG+ matches the best result achieved by ProxSVRG at b = n2/3,
and ProxSVRG+ is strictly better for smaller b (using less PO calls). See Figure 1 for an overview.

2) Assuming that the variance of the stochastic gradient is bounded, i.e. online/stochastic setting,
ProvSVRG+ generalizes the best result achieved by SCSG, recently proposed by Lei et al. [17]
for the smooth nonconvex case, i.e., h(x) ≡ 0 in form (1) (see Table 1, the 5th row). ProxSVRG+
is more straightforward than SCSG and yields simpler proof. Our results also match the results of
Natasha1.5 proposed by Allen-Zhu [2] very recently, in terms of #SFO, if there is no additional
assumption (see Footnote 2 for details). In terms of #PO, our algorithm outperforms Natasha1.5.
We also note that SCSG [17] and ProxSVRG [24] achieved their best convergence results with
b = 1 and b = n2/3 respectively, while ProxSVRG+ achieves the best result with b = 1/ε2/3 (see
Figure 1), which is a moderate minibatch size (which is not too small for parallelism and not too
large for better generalization). In our experiments, the best b for ProxSVRG and ProxSVRG+ in
the MNIST experiments is 4096 and 256, respectively (see the second row of Figure 4).

3) For the nonconvex functions satisfying Polyak-Łojasiewicz condition [22], we prove that Prox-
SVRG+ achieves a global linear convergence rate without restart, while Reddi et al. [24] used
PL-SVRG to restart ProxSVRG O(log(1/ε)) times to obtain the linear convergence rate. More-
over, ProxSVRG+ also improves ProxGD and ProxSVRG/SAGA, and generalizes the results of
SCSG in this case (see Table 3). Also see the remarks after Theorem 2 for more details.
1In fact, some studies argued that smaller minibatch sizes in SGD are very useful for generalization (e.g.,

[14]). Although generalization is not the focus of the present paper, it provides further motivation for studying
the moderate minibatch size regime.

2

Table 1: Comparison of the SFO and PO complexity

Algorithms Stochastic first-order Proximal oracle Additional
oracle (SFO) (PO) condition

ProxGD [10]
O(n/ε) O(1/ε) –(full gradient)

ProxSGD [10] O(b/ε) O(1/ε)
σ = O(1),
b ≥ 1/ε

ProxSVRG/SAGA [24] O
(
n
ε
√
b

+ n
)

O
(

n
εb3/2

)
b ≤ n2/3

SCSG [17]
O
(
b1/3

ε

(
n ∧ 1

ε

)2/3) NA σ = O(1)(smooth nonconvex,
i.e., h(x) ≡ 0 in (1))

Natasha1.5 [2] O(1/ε5/3) 2 O(1/ε5/3) σ = O(1)

O
(
n
ε
√
b

+ b
ε

)
O(1/ε) –ProxSVRG+

(this paper)
O
((
n ∧ 1

ε

)
1
ε
√
b

+ b
ε

)
O(1/ε) σ = O(1)

The ∧ denotes the minimum and b denotes the minibatch size. The definitions of SFO
and PO are given in Definition 2, σ (in the last column) is defined in Assumption 1.

Table 2: Some recommended minibatch sizes b
Algorithm Minibatch SFO PO Cond. Notes

ProxSVRG+

b = 1
O(n/ε) O(1/ε) – Same as ProxGD
O(1/ε2) O(1/ε) σ = O(1) Same as ProxSGD

b = 1
ε2/3

O
(
n
ε2/3

+ 1
ε5/3

)
O(1/ε) – Better than ProxGD,

does not need σ = O(1)

O
(

1
ε5/3

)
O(1/ε)

Better than ProxGD and
σ = O(1), ProxSVRG/SAGA,
n > 1/ε same as SCSG (in SFO)

b = n2/3 O
(
n2/3

ε

)
O(1/ε) – Same as

ProxSVRG/SAGA
b = n O(n/ε) O(1/ε) – Same as ProxGD

b

SFO

1
ε5/3

n
ε

n2/3 n

ProxGD

1

ProxSVRG/SAGA

1/ε1/ε2/3

ProxSVRG+

1
ε2

n2/3

ε

SCSG

(σ = O(1))

(σ = O(1))

(b ≤ n2/3)

ProxSVRG+ ProxSGD
(b ≥ 1/ε, σ = O(1))

Figure 1: SFO complexity in terms of minibatch b 3

b

PO

1
ε

n
ε

n2/3 n

ProxSVRG+
ProxSGD(b ≥ 1/ε)
ProxGD

1

ProxSVRG/SAGA(b ≤ n2/3)

Figure 2: PO complexity in terms of minibatch b

2Natasha 1.5 used an additional parameter, called strongly nonconvex parameter L̃ (L̃ ≤ L) and #SFO in [2]
is O(1

ε3/2
+ L̃1/3

ε5/3
). If L̃ is much smaller than L, the bound is better. Without any additional assumption, the

default value of L̃ is L. The result listed in the table is the L̃ = L case. Besides, one can verify that #PO of
Natasha1.5 is the same as its #SFO.

3Note that the curve of ProxSGD overlaps with ProxSVRG+ for b ≥ 1/ε, and the curve of ProxSVRG/SAGA
overlaps with ProxSVRG+ for b ≤ n2/3 in Figure 1. We did not plot Natasha 1.5 since it did not consider the
minibatch case, i.e., b ≡ 1 in Natasha 1.5.

3

2 Preliminaries

We assume that fi(x) in (1) has an L-Lipschitz continuous gradient for all i ∈ [n], i.e., there is a
constant L such that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, (2)
where ‖ · ‖ denotes the Eculidean norm ‖ · ‖2. Note that fi(x) does not need to be convex. We also
assume that the nonsmooth convex function h(x) in (1) is well structured, i.e., the following proximal
operator on h can be computed efficiently:

proxηh(x) := arg min
y∈Rd

(
h(y) +

1

2η
‖y − x‖2

)
. (3)

For convex problems, one typically uses the optimality gap Φ(x)−Φ(x∗) as the convergence criterion
(see e.g., [21]). But for general nonconvex problems, one typically uses the gradient norm as the
convergence criterion. E.g., for smooth nonconvex problems (i.e., h(x) ≡ 0), Ghadimi and Lan [9],
Reddi et al. [23] and Lei et al. [17] used ‖∇Φ(x)‖2 (i.e., ‖∇f(x)‖2) to measure the convergence
results. In order to analyze the convergence results for nonsmooth nonconvex problems, we need to
define the gradient mapping as follows (as in [10, 24]):

Gη(x) :=
1

η

(
x− proxηh

(
x− η∇f(x)

))
. (4)

We often use an equivalent but useful form of proxηh
(
x− η∇f(x)

)
as follows:

proxηh
(
x− η∇f(x)

)
= arg min

y∈Rd

(
h(y) +

1

2η
‖y − x‖2 + 〈∇f(x), y〉

)
. (5)

Note that if h(x) is a constant function (in particular, zero), this gradient mapping reduces to the
ordinary gradient: Gη(x) = ∇Φ(x) = ∇f(x). In this paper, we use the gradient mapping Gη(x) as
the convergence criterion (same as [10, 24]).

Definition 1 x̂ is called an ε-accurate solution for problem (1) if E[‖Gη(x̂)‖2] ≤ ε, where x̂ denotes
the point returned by a stochastic algorithm.

Note that the metric Gη(x) has already normalized the step-size η, i.e., it is independent of different
algorithms. Also it is indeed a convergence metric for Φ(x) = f(x) + h(x). Let x+ := proxηh

(
x−

η∇f(x)
)
, then Gη(x) := 1

η

(
x− x+

)
. If ‖Gη(x)‖ = 1

η‖x− x
+‖ = ‖∇f(x) + ∂h(x+)‖ ≤ ε, then

‖∂Φ(x+)‖ = ‖∇f(x+) + ∂h(x+)‖ ≤ L‖x − x+‖ + ‖∇f(x) + ∂h(x+)‖ ≤ Lηε + ε = O(ε).
Thus the next iteration point x+ is an ε-approximate stationary solution for the objection function
Φ(x) = f(x) + h(x).

To measure the efficiency of a stochastic algorithm, we use the following oracle complexity.

Definition 2 (1) Stochastic first-order oracle (SFO): given a point x, SFO outputs a stochastic
gradient∇fi(x) such that Ei∼[n][∇fi(x)] = ∇f(x).

(2) Proximal oracle (PO): given a point x, PO outputs the result of the proximal projection proxηh(x)
(see (3)).

Sometimes, the following assumption on the variance of the stochastic gradients is needed (see the
last column “additional condition" in Table 1). Such an assumption is necessary if one wants the
convergence result to be independent of n. People also denote this case as the online/stochastic
setting, in which the full gradient is not available (see e.g., [2, 16]).

Assumption 1 For ∀x, E[‖∇fi(x)−∇f(x)‖2] ≤ σ2, where σ > 0 is a constant and ∇fi(x) is a
stochastic gradient.

3 Nonconvex ProxSVRG+ Algorithm

In this section, we propose a proximal stochastic gradient algorithm called ProxSVRG+, which is
very straightforward (similar to nonconvex ProxSVRG [24] and convex Prox-SVRG [25]). The
details are described in Algorithm 1. We call B the batch size and b the minibatch size.

4

Algorithm 1 Nonconvex ProxSVRG+
Input: initial point x0, batch size B, minibatch size b, epoch length m, step size η
1: x̃0 = x0

2: for s = 1, 2, . . . , S do
3: xs0 = x̃s−1

4: gs = 1
B

∑
j∈IB ∇fj(x̃

s−1) 4

5: for t = 1, 2, . . . ,m do
6: vst−1 = 1

b

∑
i∈Ib

(
∇fi(xst−1)−∇fi(x̃s−1)

)
+ gs

7: xst = proxηh(xst−1 − ηvst−1) (call PO once)
8: end for
9: x̃s = xsm

10: end for
Output: x̂ chosen uniformly from {xst−1}t∈[m],s∈[S]

Compared with Prox-SVRG, ProxSVRG [24] analyzed the nonconvex functions while Prox-SVRG
[25] only analyzed the convex functions. The major difference of our ProxSVRG+ is that we avoid
the computation of the full gradient at the beginning of each epoch, i.e., B may not equal to n (see
Line 4 of Algorithm 1) while ProxSVRG and Prox-SVRG used B = n. Note that even if we choose
B = n, our analysis is more stronger than ProxSVRG [24]. Also, our ProxSVRG+ shows that
the “stochastically controlled” trick of SCSG [17] (i.e., the length of each epoch is a geometrically
distributed random variable) is not really necessary for achieving the desired bound.5 As a result,
our straightforward ProxSVRG+ generalizes the result of SCSG to the more general nonsmooth
nonconvex case and yields simpler analysis.

4 Convergence Results

Now, we present the main theorem for our ProxSVRG+ which corresponds to the last two rows in
Table 1 and give some remarks.

Theorem 1 Let step size η = 1
6L and m =

√
b, where b denotes the minibatch size. Then x̂ returned

by Algorithm 1 is an ε-accurate solution for problem (1) (i.e., E[‖Gη(x̂)‖2] ≤ ε). We distinguish the
following two cases:

1) We let batch size B = n. The number of SFO calls is at most

36L
(
Φ(x0)− Φ(x∗)

)(B

ε
√
b

+
b

ε

)
= O

(n

ε
√
b

+
b

ε

)
.

2) Under Assumption 1, we let batch size B = min{6σ2/ε, n}. The number of SFO calls is at most

36L
(
Φ(x0)− Φ(x∗)

)(B

ε
√
b

+
b

ε

)
= O

((
n ∧ 1

ε

) 1

ε
√
b

+
b

ε

)
,

where ∧ denotes the minimum.

In both cases, the number of PO calls equals to the total number of iterations T , which is at most

36L

ε

(
Φ(x0)− Φ(x∗)

)
= O

(
1

ε

)
.

Remark: The proof for Theorem 1 is notably different from that of ProxSVRG [24]. Reddi et al. [24]
used a Lyapunov function Rs+1

t = Φ(xs+1
t) + ct‖xs+1

t − x̃S‖2 and showed that Rs decreases by

4If B = n, ProxSVRG+ is almost the same as ProxSVRG (i.e., gs = 1
n

∑n
j=1∇fj(x̃

s−1) = ∇f(x̃s−1))
except some detailed parameter settings (e.g., step-size, epoch length).

5A similar observation was also made in Natasha1.5 [2]. However, Natasha1.5 divides each epoch into
multiple sub-epochs and randomly chooses the iteration point at the end of each sub-epoch. In our ProxSVRG+,
the length of an epoch is deterministic and it directly uses the last iteration point at the end of each epoch.

5

the accumulated gradient mapping
∑m
t=1 ‖Gη(xst)‖2 in epoch s. In our proof, we directly show that

Φ(xs) decreases by
∑m
t=1 ‖Gη(xst)‖2 using a different analysis. This is made possible by tightening

the inequalities using Young’s inequality and Lemma 2 (which gives the relation between the variance
of stochastic gradient estimator and the inner product of the gradient difference and point difference).
Also, our convergence result holds for any minibatch size b ∈ [1, n] unlike ProxSVRG b ≤ n2/3 (see
Fig. 1). Moreover, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG (see Fig. 2).

For the online/stochastic Case 2), we avoid the computation of the full gradient at the beginning of
each epoch, i.e., B 6= n. Then, we use the similar idea in SCSG [17] to bound the variance term,
but we do not need the “stochastically controlled” trick of SCSG (as we discussed in Section 3) to
achieve the desired convergence bound which yields a much simpler analysis for our ProxSVRG+.

We defer the proof of Theorem 1 to Appendix A.1. Also, similar convergence results for other choices
of epoch length m 6=

√
b are provided in Appendix A.2.

5 Convergence Under PL Condition
In this section, we provide the global linear convergence rate for nonconvex functions under the
Polyak-Łojasiewicz (PL) condition [22]. The original form of PL condition is

∃µ > 0, such that ‖∇f(x)‖2 ≥ 2µ(f(x)− f∗), ∀x, (6)

where f∗ denotes the (global) optimal function value. It is worth noting that f satisfies PL condition
when f is µ-strongly convex. Moreover, Karimi et al. [13] showed that PL condition is weaker than
many conditions (e.g., strong convexity (SC), restricted strong convexity (RSC) and weak strong
convexity (WSC) [20]). Also, if f is convex, PL condition is equivalent to the error bounds (EB) and
quadratic growth (QG) condition [19, 4]. Note that PL condition implies that every stationary point
is a global minimum, but it does not imply there is a unique minimum unlike the strongly convex
condition.
Due to the nonsmooth term h(x) in problem (1), we use the gradient mapping (see (4)) to define a
more general form of PL condition as follows:

∃µ > 0, such that ‖Gη(x)‖2 ≥ 2µ(Φ(x)− Φ∗), ∀x. (7)

Recall that if h(x) is a constant function, the gradient mapping reduces to Gη(x) = ∇Φ(x) = ∇f(x).
Our PL condition is different from the one used in [13, 24]. See the Remark (3) after Theorem 2.

Further Motivation: In many cases, although the loss function is generally nonconvex, the local
region near a local minimum may satisfy the PL condition. In fact, there are some recent studies
showing the strong convexity in the neighborhood of the ground truth solution in some simple neural
networks [26, 8]. Such results provide further motivation for studying the PL condition. Moreover,
we argue that our ProxSVRG+ is particularly desirable in this case since it first converges sublinearly
O(1/ε) (according to Theorem 1) then automatically converges linearly O(log 1/ε) (according to
Theorem 2) in the regions as long as the loss function satisfies the PL condition locally in these
regions. We list the convergence results in Table 3 (also see the remarks after Theorem 2).

Table 3: Under the PL condition with parameter µ

Algorithms Stochastic first-order Proximal oracle Addi.
oracle (SFO) (PO) condition

ProxGD [13]
O(nµ log 1

ε) O(1
µ log 1

ε) –(full gradient)
ProxSVRG/SAGA O

(
n
µ
√
b

log 1
ε + n log 1

ε

)
O
(

n
µb3/2

log 1
ε

)
b ≤ n2/3

[24]
SCSG [17]

O
(
b
1
3

µ

(
n ∧ 1

µε

) 2
3 log 1

ε +
(
n ∧ 1

µε

)
log 1

ε

)
NA σ = O(1)(smooth nonconvex,

i.e., h(x) ≡ 0)

O
(

n
µ
√
b

log 1
ε + b

µ log 1
ε

)
O(1

µ log 1
ε) –ProxSVRG+

(this paper)
O
((
n ∧ 1

µε

)
1

µ
√
b

log 1
ε + b

µ log 1
ε

)
O(1

µ log 1
ε) σ = O(1)

The notation ∧ denotes the minimum. Similar to Table 2, ProxSVRG+ is better than ProxGD and
ProxSVRG/SAGA, and generalizes the SCSG by choosing different minibatch size b.

6

Similar to Theorem 1, we provide the convergence result of ProxSVRG+ (Algorithm 1) under PL-
condition in the following Theorem 2. Note that under PL condition (i.e. (7) holds), ProxSVRG+ can
directly use the final iteration x̃S as the output point instead of the randomly chosen one x̂. Similar
to [24], we assume the condition number L/µ >

√
n for simplicity. Otherwise, one can choose

different step size η which is similar to the case where we deal with other choices of epoch length m
(see Appendix A.2).

Theorem 2 Let step size η = 1
6L and b denote the minibatch size. Then the final iteration point x̃S

in Algorithm 1 satisfies E[Φ(x̃S)− Φ∗] ≤ ε under PL condition. We distinguish the following two
cases:

1) We let batch size B = n. The number of SFO calls is bounded by

O
(n

µ
√
b

log
1

ε
+
b

µ
log

1

ε

)
.

2) Under Assumption 1, we let batch size B = min{ 6σ2

µε , n}. The number of SFO calls is bounded
by

O
((
n ∧ 1

µε

) 1

µ
√
b

log
1

ε
+
b

µ
log

1

ε

)
,

where ∧ denotes the minimum.

In both cases, the number of PO calls equals to the total number of iterations T which is bounded by

O
(1

µ
log

1

ε

)
.

Remark:

(1) We show that ProxSVRG+ directly obtains a global linear convergence rate without restart by a
nontrivial proof. Note that Reddi et al. [24] used PL-SVRG/SAGA to restart ProxSVRG/SAGA
O(log(1/ε)) times to obtain the linear convergence rate under PL condition.
Moreover, similar to Table 2, if we choose b = 1 or n for ProxSVRG+, then its convergence result
is O(nµ log 1

ε), which is the same as ProxGD [13]. If we choose b = n2/3 for ProxSVRG+, then

the convergence result isO(n
2/3

µ log 1
ε), the same as the best result achieved by ProxSVRG/SAGA

[24]. If we choose b = 1/(µε)2/3 (assuming 1/(µε) < n) for ProxSVRG+, then its convergence
result is O(1

µ5/3ε2/3
log 1

ε) which generalizes the best result of SCSG [17] to the more general
nonsmooth nonconvex case and is better than ProxGD and ProxSVRG/SAGA. Also note that our
ProxSVRG+ uses much less proximal oracle calls than ProxSVRG/SAGA if b < n2/3.

(2) Another benefit of ProxSVRG+ is that it can automatically switch to the faster linear convergence
rate in some regions as long as the loss function satisfies the PL condition locally in these regions.
This is impossible for ProxSVRG [24] since it needs to be restarted many times.

(3) We want to point out that [13, 24] used the following form of PL condition:

∃µ > 0, such that Dh(x, α) ≥ 2µ(Φ(x)− Φ∗), ∀x, (8)

whereDh(x, α) := −2αminy
{
〈∇f(x), y−x〉+ α

2 ‖y−x‖
2 +h(y)−h(x)

}
. Our PL condition

is arguably more natural. In fact, one can show that if α = 1/η, our new PL condition (7) implies
(8). For a direct comparison with prior results, we also provide the proof of the same result of
Theorem 2 using the previous PL condition (8) in the appendix.

The proofs of Theorem 2 under PL form (7) and (8) are provided in Appendix B.1 and B.2, respectively.
Recently, Csiba and Richtárik [6] proposed a novel weakly PL condition. The (strongly) PL condition
(7) or (8) serves as a generalization of strong convexity as we discussed in the beginning of this
section. One can achieve linear convergence under (7) or (8). However, the weakly PL condition [6]
may be considered as a generalization of (weak) convexity. Although one only achieves the sublinear
convergence under this condition, it is still interesting to figure out similar (sublinear) convergence
(for ProxSVRG+, ProxSVRG, etc.) under their weakly PL condition.

7

6 Experiments

In this section, we present the experimental results. We compare the nonconvex ProxSVRG+ with
nonconvex ProxGD, ProxSGD [10], ProxSVRG [24]. We conduct the experiments using the non-
negative principal component analysis (NN-PCA) problem (same as [24]). In general, NN-PCA is
NP-hard. Specifically, the optimization problem for a given set of samples (i.e., {zi}ni=1) is:

min
‖x‖≤1,x≥0

−1

2
xT
(n∑
i=1

ziz
T
i

)
x. (9)

Note that (9) can be written in the form (1), where f(x) =
∑n
i=1 fi(x) =

∑n
i=1−

1
2 (xT zi)

2 and
h(x) = IC(x) where set C = {x ∈ Rd|‖x‖ ≤ 1, x ≥ 0}. We conduct the experiment on the
standard MNIST and ‘a9a’ datasets. 6 The experimental results on both datasets (corresponding to
the first row and second row in Figure 3–5) are almost the same.

The samples from each dataset are normalized, i.e., ‖zi‖ = 1 for all i ∈ n. The parameters of
the algorithms are chosen as follows: L can be precomputed from the data samples {zi}ni=1 in the
same way as in [18]. The step sizes η for different algorithms are set to be the ones used in their
convergence results: For ProxGD, it is η = 1/L (see Corollary 1 in [10]); for ProxSGD, η = 1/(2L)
(see Corollary 3 in [10]); for ProxSVRG, η = b3/2/(3Ln) (see Theorem 6 in [24]). The step size
for our ProxSVRG+ is 1/(6L) (see our Theorem 1). We did not further tune the step sizes. The
batch size B (in Line 4 of Algorithm 1) is equal to n/5 (i.e., 20% data samples). We also considered
B = n/10, the performance among these algorithms are similar to the case B = n/5. In practice,
one can tune the step size η and parameter B.

Regarding the comparison among these algorithms, we use the number of SFO calls (see Definition
2) to evaluate them since the number of PO calls of them are the same except ProxSVRG (which is
already clearly demonstrated by Figure 2). Note that we amortize the batch size (n or B in Line 4 of
Algorithm 1) into the inner loops, so that the curves in the figures are smoother, i.e., the number of
SFO calls for each iteration (inner loop) of ProxSVRG and ProxSVRG+ is counted as b+ n/m and
b+B/m, respectively. Note that ProxGD uses n SFO calls (full gradient) in each iteration.

0 1 2 3 4 5 6
#SFO/n

7000

6000

5000

4000

3000

2000

1000

0

Fu
nc

tio
n

va
lu

e

a9a (b=4)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

0 1 2 3 4 5 6
#SFO/n

7000

6000

5000

4000

3000

2000

1000

0

Fu
nc

tio
n

va
lu

e

a9a (b=64)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

0 1 2 3 4 5 6
#SFO/n

7000

6000

5000

4000

3000

2000

1000

0

Fu
nc

tio
n

va
lu

e

a9a (b=256)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

0 1 2 3 4 5 6
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST (b=4)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

0 1 2 3 4 5 6
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST (b=64)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

0 1 2 3 4 5 6
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST (b=256)
ProxGD
ProxSGD
ProxSVRG
ProxSVRG+

Figure 3: Comparison among algorithms with different minibatch size b

In Figure 3, we compare the performance of these four algorithms as we vary the minibatch size b.
In particular, the first column (b = 4) shows that ProxSVRG+ and ProxSVRG perform similar to
ProxSGD and ProxGD respectively, which is quite consistent with the theoretical results (Figure
1). Then, ProxSVRG+ and ProxSVRG both get better as b increases. Note that our ProxSVRG+
performs better than ProxGD, ProxSGD and ProxSVRG.

6The datasets can be downloaded from https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/

8

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#SFO/n

7000

6000

5000

4000

3000

2000

1000

Fu
nc

tio
n

va
lu

e

a9a (ProxSVRG+)
b=1
b=16
b=64
b=256
b=512
b=1024
b=2048
b=4096
b=8192
b=16384

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#SFO/n

7000

6000

5000

4000

3000

2000

1000

Fu
nc

tio
n

va
lu

e

a9a (ProxSVRG)
b=1
b=16
b=64
b=256
b=512
b=1024
b=2048
b=4096
b=8192
b=16384

0 1 2 3 4 5 6
#SFO/n

7000

6000

5000

4000

3000

2000

1000

0

Fu
nc

tio
n

va
lu

e

a9a
ProxGD
ProxSGD
ProxSVRG (b=2048)
ProxSVRG+ (b=256)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST (ProxSVRG+)
b=1
b=16
b=64
b=256
b=512
b=1024
b=2048
b=4096
b=8192
b=16384

0.0 0.5 1.0 1.5 2.0 2.5 3.0
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST (ProxSVRG)
b=1
b=16
b=64
b=256
b=512
b=1024
b=2048
b=4096
b=8192
b=16384

Figure 4: ProxSVRG+ and ProxSVRG under different b

0 1 2 3 4 5 6
#SFO/n

12000

10000

8000

6000

4000

2000

Fu
nc

tio
n

va
lu

e

MNIST
ProxGD
ProxSGD
ProxSVRG (b=4096)
ProxSVRG+ (b=256)

Figure 5: Under the best b

Figure 4 demonstrates that our ProxSVRG+ prefers smaller minibatch sizes than ProxSVRG (see
the curves with dots). Then, in Figure 5, we compare the algorithms with their corresponding best
minibatch size b.

In conclusion, the experimental results are quite consistent with the theoretical results, i.e., different
algorithms favor different minibatch sizes (see Figure 1). Concretely, our ProxSVRG+ achieves its
best performance with a moderate minibatch size b = 256 unlike ProxSVRG with b = 2048/4096.
Besides, choosing b = 64 is already good enough for ProxSVRG+ by comparing the second column
and last column of Figure 3, however ProxSVRG is only as good as ProxSGD with such a minibatch
size. Moreover, ProxSVRG+ uses much less proximal oracle calls than ProxSVRG if b < n2/3 (see
Figure 2). Note that small minibatch size also usually provides better generalization in practice. Thus,
we argue that our ProxSVRG+ might be more attractive in certain applications due to its moderate
minibatch size.

7 Conclusion

In this paper, we propose a simple proximal stochastic method called ProxSVRG+ for nonsmooth
nonconvex optimization. We prove that ProxSVRG+ improves/generalizes several well-known
convergence results (e.g., ProxGD, ProxSGD, ProxSVRG/SAGA and SCSG) by choosing proper
minibatch sizes. In particular, ProxSVRG+ is

√
b (or

√
bεn if n > 1/ε) times faster than ProxGD,

which partially answers the open problem (i.e., developing stochastic methods with provably better
performance than ProxGD with constant minibatch size b) proposed in [24]. Also, ProxSVRG+
generalizes the results of SCSG [17] to this nonsmooth nonconvex case, and it is more straightforward
than SCSG and yields simpler analysis. Moreover, for nonconvex functions satisfying Polyak-
Łojasiewicz condition, we prove that ProxSVRG+ achieves the global linear convergence rate without
restart. As a result, ProxSVRG+ can automatically switch to the faster linear convergence rate (i.e.,
O(log 1/ε)) from sublinear convergence rate (i.e., O(1/ε)) in some regions (e.g., the neighborhood of
a local minimum) as long as the objective function satisfies the PL condition locally in these regions.
This is impossible for ProxSVRG [24] since it needs to be restarted O(log 1/ε) times.

Acknowledgments

This research is supported in part by the National Basic Research Program of China Grant
2015CB358700, the National Natural Science Foundation of China Grant 61772297, 61632016,
61761146003, and a grant from Microsoft Research Asia. The authors would like to thank Rong Ge
(Duke), Xiangliang Zhang (KAUST) and the anonymous reviewers for their useful suggestions.

9

References
[1] Zeyuan Allen-Zhu. Katyusha: the first direct acceleration of stochastic gradient methods. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1200–1205. ACM, 2017.

[2] Zeyuan Allen-Zhu. Natasha 2: Faster non-convex optimization than sgd. arXiv preprint
arXiv:1708.08694, 2017.

[3] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International Conference on Machine Learning, pages 699–707, 2016.

[4] Mihai Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

[5] Aleksandr Aravkin and Damek Davis. A smart stochastic algorithm for nonconvex optimization
with applications to robust machine learning. arXiv preprint arXiv:1610.01101, 2016.

[6] Dominik Csiba and Peter Richtárik. Global convergence of arbitrary-block gradient methods
for generalized polyak-łojasiewicz functions. arXiv preprint arXiv:1709.03014, 2017.

[7] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[8] Haoyu Fu, Yuejie Chi, and Yingbin Liang. Local geometry of one-hidden-layer neural networks
for logistic regression. arXiv preprint arXiv:1802.06463, 2018.

[9] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[10] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-
2):267–305, 2016.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

[13] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[14] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[15] Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv
preprint arXiv:1507.02000, 2015.

[16] Guanghui Lan and Yi Zhou. Random gradient extrapolation for distributed and stochastic
optimization. SIAM Journal on Optimization, 28(4):2753–2782, 2018.

[17] Lihua Lei, Cheng Ju, Jianbo Chen, and Michael I Jordan. Non-convex finite-sum optimization
via scsg methods. In Advances in Neural Information Processing Systems, pages 2345–2355,
2017.

[18] Qunwei Li, Yi Zhou, Yingbin Liang, and Pramod K Varshney. Convergence analysis of proximal
gradient with momentum for nonconvex optimization. In International Conference on Machine
Learning, pages 2111–2119, 2017.

10

[19] Zhi-Quan Luo and Paul Tseng. Error bounds and convergence analysis of feasible descent
methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993.

[20] Ion Necoara, Yurii Nesterov, and Francois Glineur. Linear convergence of first order methods
for non-strongly convex optimization. arXiv preprint arXiv:1504.06298, 2015.

[21] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, 2004.

[22] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychisli-
tel’noi Matematiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

[23] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine learning,
pages 314–323, 2016.

[24] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alexander J Smola. Proximal stochastic
methods for nonsmooth nonconvex finite-sum optimization. In Advances in Neural Information
Processing Systems, pages 1145–1153, 2016.

[25] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[26] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

[27] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for nonconvex
optimization. arXiv preprint arXiv:1806.07811, 2018.

11

