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Abstract

We consider the problem of active feature acquisition where the goal is to sequen-
tially select the subset of features in order to achieve the maximum prediction
performance in the most cost-effective way at test time. In this work, we formu-
late this active feature acquisition as a joint learning problem of training both the
classifier (environment) and the reinforcement learning (RL) agent that decides
either to ‘stop and predict’ or ‘collect a new feature’ at test time, in a cost-sensitive
manner. We also introduce a novel encoding scheme to represent acquired subsets
of features by proposing an order-invariant set encoding at the feature level, which
also significantly reduces the search space for our agent. We evaluate our model
on a carefully designed synthetic dataset for the active feature acquisition as well
as several medical datasets. Our framework shows meaningful feature acquisition
process for diagnosis that complies with human knowledge, and outperforms all
baselines in terms of prediction performance as well as feature acquisition cost.

1 Introduction

Deep learning has shown remarkable growth in recent years mainly due to easier access to vast
amount of data from the internet, and demonstrated significant improvements over classical and
standard algorithms on diverse tasks such as visual recognition [1, 2] and machine translation [3],
to name a few. The fundamental assumption for training accurate deep networks is that data is
readily available at little or even no cost, such that the model can make predictions after observing
all available features (in other words, feature acquisition is considered as an independent process
against predictions). However, in some applications, information acquisition is not only affected by
the model (and vice versa) but it also incurs a cost. Consider, for instance, the task of diagnosing a
patient with diseases. A human doctor, in this case, will start the diagnosis by starting with only a
few symptoms that the patient initially reported. From there, the doctor will either ask about more
symptoms or conduct some medical examinations to narrow down the set of potential diseases the
patient might have until he or she has enough confidence to make the final diagnosis. Acquiring all
features (via all medical tests) in this problem may cause a financial burden to patients and more
seriously it may increase the risk of not receiving proper treatment at the right time. Furthermore,
collecting irrelevant features might add only noise and make the prediction unstable.

In this paper, we first formulate the feature acquisition problem that minimizes the prediction error as
well as the feature acquisition cost as an optimization problem.We then provide the sequential feature
acquisition framework with the classifier for predictions and the RL agent for feature acquisitions, in
order to systematically solve the proposed optimization problem. We can understand the sequential
feature acquisition with the following example. As a human doctor diagnoses a patient in the
previous healthcare example, we need to decide which unknown features should be discovered in
order to be sufficient confident about our prediction. Given a new data point with missing entries,
our RL agent sequentially chooses features to acquire based on the set of features acquired so far.
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At every examination (or feature acquisition), we pay the pre-defined inspection fee. This process
is sequentially repeated until we have collected sufficient but not redundant features to minimize
acquisition cost. Once the agent decides to end the acquisition phase, the classifier will make a
prediction given the acquired features by the RL agent thus far. At the same time, the final rewards
are set according to the prediction made by the classifier, to signal the agent whether the current
subset of features is adequate for prediction or not. Interestingly, it turns out that the classifier in our
optimization framework can be understood as the estimated environment for the RL agent, which is
intuitive in the sense that the reward to the RL agent should be based on how confident our classifier
is on its final decision.

It is worth noting that we do not assume a fixed classifier that is pre-trained during a separate
phase. Learning the optimal classifier beforehand only by pre-training is unrealistic since the optimal
classifier should be associated to the feature acquisition policy; if our acquisition policy changes,
the corresponding optimal classifier does as well. Actually, the RL approach for feature selection
problem is challenging because it has a huge search space that includes all the variable-sized subset
of features and each feature can be either discrete or continuous. To search this huge space efficiently
and stably, we carefully devise the architecture with the recently proposed set encoding method [4].
The feature-level set encoding method helps to reduce the state space effectively, by making feature
acquisition process to be order-invariant through the attention mechanism [3].

Our contribution is threefold:

• We formulate the feature acquisition problem as an optimization problem with cost-sensitive
penalty in the objective function and optimize with a joint framework that simultaneously
trains the classifier and the RL agent, for systematic learning of active feature acquisition
model, without requiring a probabilistic model or pre-defined classifier.

• We propose a novel method to encode the subset of features by appropriately modifying
[4] that can naturally handle missing entries and is shared by the classifier and the agent.
In addition, we apply a synchronous variant of n-step Q-learning [5] to handle real-valued
feature space in feature acquisition problems.

• We validate the superiority of the proposed framework on diverse simulated and medical
datasets and also verify the clinical significance of the results with clinicians, showing that
the set of features obtained by our model is similar to what a clinician would use in practice.

2 Related Work

As we mentioned in introduction section, we cannot guarantee that not all the features are given away,
so we should consider which features to use for testing. First of all, we can select features in static
manners, that is, examine same predictors across all instances. It can be done in several different
ways including sparsity-inducing regularization [6], greedy forward and backward selections [7].

Instead, we can perform active feature acquisition in more efficient way by considering the differences
across instances. Greiner et al. [8] investigate the problem of learning an optimal active classifier
based on a variant of the probably-approximately-correct (PAC) model. The following works consider
active classification under some constraint. Sheng et al. [9] propose sequential batch test algorithm
that acquires a batch of features iteratively until no more positive cost reduction occurs by utilizing
a pre-built cost-sensitive model. Kanani et al. [10] identify the data points whose missing features
will be completely acquired among all test instances with partially given features, based on the
expected utility. Kapoor et al. [11] bridge induction-time and test-time information acquisition in the
restrictive case that all attributes and labels are binary. They directly build a statistic model explaining
dependency of the test label on its features and also the training data with Bayesian treatment of
model parameters. Bilgic et al. [12] approach the problem by constructing graphical models to
get the value of subsets of features with the given bayesian network that helps reducing a search
space. Trapeznikov et al. [13] consider the budget constraint and suggest a framework to analyze a
multi-stage and multi-class sequential decision system such that the K classifiers make a prediction
or pass to the next with incrementally acquired features in fixed order. Nan et al. [14] present the
classification algorithm which acquires features greedily and sequentially by using partial margin
of the k-nearest neighbors defined with the pre-trained linear classifier. Xu et al. [15] construct and
train a cost-sensitive classification tree by using trained gradient boosted trees, who inspect different
subset of features, as weak learners.
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Some existing works formulate the dynamic feature acquisition problem as Markov Decision Process
(MDP) or partially observable MDP (POMDP) and try to learn the best feature acquisition policy
that gives maximum returns. Ruckstiess et al. [16] set this problem as partially observable MDP
(POMDP) with the assumption that pre-learned classifier and prediction result on each instance with
missing entries from this classifier as the observation of the state. They solve the POMDP by Fitted
Q-Iteration (FQI) but they fail to specify when to stop acquiring features. Dulac-Arnold et al. [17]
propose an MDP formulation by directly modeling the state space with acquired features only. They
also incorporate the additional special actions corresponding to predictions, which leads to training
the classifier (as well as when to stop) implicitly within MDP framework. [18, 19] follow similar
MDP setting with ours and they adopt imitation learning approach that train the agent to follow the
reference policy that is greedy policy of the oracle who exploit true labels and the classifier. This can
restrict the performance of the agent under the oracle’s performance that might be suboptimal. Our
framework does not assume pre-learned classifier to adapt classifier to the feature acquisition policy
and vice versa. Also, our framework learn its policy by directly interacting with and getting reward
from the data and the external classifier rather than imitate the suboptimal oracle. Due to the huge
search space that is of subset of features, systematic architecture should be designed.

Another recent line of work [20, 21, 22] reduces the computational cost to process the high dimen-
sional image data via the recurrent attention. [20, 21] use REINFORCE [23] to make the models
localize informative part and Ba et al. [22] improve these methods with an additional inference
network and reweighted wake-sleep algorithm. These models acquire and aggregate observed features
by using RNN and after fixed steps of acquisition they make a prediction. While these methods
also try to select the most informative subset of features (or area), the goal is different from active
feature acquisition: since these models are devised to reduce the computational cost, the number
of acquisitions is pre-defined and fixed, depending on the target computational budget, leading to
instance-independent feature acquisition costs. Moreover, they do not consider the heterogeneous
acquisitions costs across features since all features are in fact always available.

Reinforcement learning that is widely used to find an optimal policy in MDP is also be utilized for
information extraction problem that is filling the missing entries by extracting appropriate value from
appropriate sources [24, 25]. Kanani et al. [24] consider resource-bounded information extraction
(RBIE) as MDP with query, download, and extract as types of actions and learn Q-function by
temporal difference Q-learning. Narasimhan et al. [25] address two challenges of utilizing external
information that are retrieving suitable external information sources and reconciling extracted entities
by employing a deep Q-learning.

3 Joint Learning Framework for Sequential Feature Acquisition and the

Classification

Consider the standard K-class classification problem where we learn a function f✓ that maps data
point x = (x1, x2, . . . , xp) 2 Rp with p features to a label y 2 Y := {1, 2, . . . ,K}. The basic
assumption here is that the feature vector is fixed-dimensional, and given in full (but possibly with
missing entries). We instead consider the same problem under a slightly different condition.

For each data point x(i), we actively acquire the features in a sequential order. Specifically, at
t = 0 we start with an empty acquired set O0 := ;. At every time step t, we choose the subset of
unselected features, S(i)

t ✓ {1, . . . , p} \ O(i)
t�1 and examine the values of missing entries S(i)

t at the
cost c(i)t :=

P
j2S

(i)
t

cj . Hence, after the examination at time t, we have access to the values of

O
(i)
t := S

(i)
t [O

(i)
t�1. We repeatedly acquire features up to time T (i) (O(i)

T (i) is not necessarily equal
for all data points i = 1, . . . , n) and classify x(i) given only the observed features O(i)

T (i) . Note that
the order of feature acquisitions and corresponding costs can be different across samples, but we
suppress the sample index i when it is clear from the context.

In order to learn the model that minimizes the classification loss and the acquisition cost simultane-
ously, we formulate our framework in the following optimization problem:

minimize
✓,#

1

N

NX

i=1

L

⇣
f✓
�
x(i), z(i)

#

�
, y(i)

⌘
+ �c>z(i)

# (1)
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where L is the cross-entropy loss as in the standard classification problem and the binary vector
z# 2 {0, 1}p encodes whether each feature is acquired at the end (or at T (i)) when the sequential
selection is performed by policy #. Note also that the classifier f✓ is able to access only available
features with [z#]j = 1. The hyperparameter � controls the relative importances of the prediction
loss and the acquisition cost.

Natural way to solve (1) is to adopt an alternating minimization since the roles and properties of two
parameter sets ✓ and # are clearly distinguished in (1). Solving (1) with respect to ✓k given #k�1 is
trivial. Since the cost term c>z(i)

# is a constant w.r.t ✓, it is trained to minimize the prediction loss
given the subset of features acquired by #k�1. The only challenge here is to find a way of efficiently
handing missing features (since the unacquired features by #k�1 are missing to the classifier ✓k).

On the other hand, solving (1) with respect to #k given ✓k�1 is not trivial. In the following subsection,
we will detail how we define a Markov decision process (MDP) to solve (1) w.r.t. #.

3.1 RL construction to solve (1) w.r.t. #

Markov decision process (MDP) consists of an agent in the environment, a set of states S and a set of
actions A per state. In state st, the agent chooses the action according to its policy. Then the state
changes and environment gives a reward. The goal of the agent is to maximize the total rewards. In
this subsection, we construct an MDP corresponding to solving (1) w.r.t. # given ✓k�1.

State. Since the informative features can be different across classes, the subset of features our RL
agent should select will differ across data points. Without having any prior information on true class,
the importance of the missing features can be estimated from the currently available features Ot. To
this end, we construct the state st as the concatenation of zt and xt where the j-th entry of xt, [xt]j ,
is set to zero if j /2 Ot or to the value of the j-th feature otherwise. Note again that zt 2 {0, 1}p is
the binary indicator encoding which features are acquired until time t.

Action. The RL agent selects which features to examine. The set of all possible actions is defined
as the power set of {1, . . . , p} including the empty set ;, which means to stop acquiring any more
features. Throughout the paper, we mainly assume that the agent gets one feature at a time for
clarity, hence the size of action space is p+1 = |{1, . . . , p, ;}|. Some actions would be invalid if the
corresponding features have already been selected previously. ; is a special action that is valid at any
time corresponding to ‘stop and predict’ based on current state st.

Reward and environment. We naturally define the reward as the negative acquisition cost. Specifi-
cally, in the episode (s0, a0, r1, s1, . . . , sT , aT = ;, rT+1), rt+1 is set as ��cat for t = 0, . . . , T�1.
Note that although the state transition from (xt, zt) to (xt+1, zt+1) is deterministic given at, it is
still not trivial since a new acquisition is unknown before actually observing it.

Unlike ‘feature acquisition’ actions, the state transition by ; is trivial since no further feature value
will be revealed: i.e., (xt, zt) = (xt+1, zt+1). We also set the final reward rT+1 after selecting ; as
�L

�
f✓k�1(xT , zT ), y

�
where ✓k�1 is given in the alternating minimization scheme.

Then, we have the following result:
Theorem 1. Consider some policy ⇡#k parameterized by #. Suppose that this policy ⇡#k is the
optimal of Markov decision process described in Section 3.1, given the classifier parameter ✓k�1.
Then, ⇡#k is also the optimal solution of (1) with respect to # given ✓k�1.

The theorem can be simply proven as follows:

argmax
#

1

N

NX

i=1

T (i)
# +1X

t=1

rt
⇣
s(i)t�1,⇡#(s

(i)
t�1)

⌘
= argmax

#

1

N

NX

i=1


� L

⇣
f✓k�1

�
s(i)#

�
, y(i)

⌘
� �c>z(i)

#

�

= argmin
#

1

N

NX

i=1


L

⇣
f✓k�1

�
s(i)#

�
, y(i)

⌘
+ �c>z(i)

#

�

where s# and z# are respectively the final state and corresponding z by the policy ⇡#. The selection
of the final reward above is reasonable in the sense that it should measure how sufficient information
for ✓k�1 has been provided so far for a prediction.
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Learning policy. In order to find an optimal policy, we use Q-learning [26] for our agent. Q-
learning is a value-based RL method which finds the optimal policy by learning state-action value
Q(s, a) from experience. To handle continuous state space, we use deep Q-learning that has shown
to be successful in reinforcement learning with high dimensional, high order features and discrete
action space A. More specifically, we adopt n-step Q-learning [5] but in synchronous style. [5] makes
Q-learning more stable with delayed update of the target network and by running the multiple agents
simultaneously to decorrelate the running history. To avoid overestimation of state-action value, we
also adopt double Q-learning [27] instead of basic Q-learning.

4 Feature-level Set Encoding for Joint Learning

In our framework, we need to learn the state-action value function Q (parameterized by #) and the
classifier C (parameterized by ✓); note that we rename it from f✓ to match with Q.

Figure 1: Effect of sharing layers between Q and C:

We check the classification accuracy and average num-
ber of features collected on the CUBE with 90 dummy
features for varied the number of shared layers from 0
(completely separate) to 3 (completely shared). Both Q
and C are MLP with 3 hidden layers whose sizes are
50-30-50. The points and error bars are average and
first/third quartile of 100 runs.

Since both components share the input s, train-
ing them simultaneously can be understood as
multi-task learning. Intuitively, Q and C should
share certain degree of information between
them, since both aims to optimize a single joint
learning objective in (1). However, too much
sharing could result in reducing the flexibility
of each model, and we should find the appro-
priate level of information sharing between the
two. For instance, in case where Q and C are
multi-layer perceptrons (MLP), they may share
the first few layers. From our preliminary ex-
periment on the effects of information sharing
in Figure 1 (see Section 5 for the detail exper-
imental setup), we found out that the partially
sharing model outperforms two other extremes
(no sharing or complete sharing) in terms of ac-
curacy and the number of observed features, and
also experiences less variance. These shared layers can also be considered as a shared encoder,
Enc(s), whose output is fed both into Q and C. Hence, our Enc-Q-C framework be formulated in the
following way. At every time t, the state st := (xt, zt) is fed to the shared encoder: ht := Enc(st).
Then, the encoded representation ht is given to Q and C:

qt := Q(ht), Q(st, a) := [qt]a for every action a,

pt := C(ht), P(y|st) := softmax(pt).

As an example of the feature encoding Enc in our framework, we devise the feature-level set encoder
based on the recently proposed set encoding method [4]. It is composed of two main parts: i) MLP
called reading block, which maps each set element xi to the real vector mi and ii) a process block that
processes mi repeatedly with LSTM and the attention mechanism to produce the final set embedding.

We adopt this method to encode each state st, and individually treat the pair of feature index and
its value, (j : xj), as the set element. We first represent each observed feature as uj = (xj , I(j))
where I(j) = (0, ..., 0, 1, 0, ..., 0) is the one-hot vector with 1 for j-th coordinate and 0 elsewhere in
order to incorporate the coordinate information. Then, via the set encoding mechanism (through the
reading block to make {mj}j2Ot , followed by the process block) introduced above, we produce the
set embedding of the observed features. The set encoding is well suited to Enc since it is invariant
according to feature acquisition order and naturally distinguishes two ambiguous cases: j-th entry is
i) unexplored or ii) discovered but zero value.

4.1 Learning and inference

In this subsection, we provide the details on how we can actually train Q and C equipped with the
feature-level set embedding Enc jointly in an end-to-end manner. Due to the space constraint, the
pseudocode that summarizes the learning algorithm is deferred to the supplementary material.
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We follow the n-step Q-learning procedure described in [5] with two key mechanisms: running
multiple agents in parallel and delayed update of target Q-network Q0 to prevent perturbation.
Specifically, in a training phase, each agent runs for n steps according to its policy based on current
Q and gets the experience (st, at, rt, st+1, at+1, . . . , st+n). Q-values of invalid actions of each state
are manually set to �1.

After n steps running, Q and C are updated based on the running history. First, the target Q-
value R of each state is computed by summing all given rewards after that state plus the approx-
imated Q-value of the last state unless it is the terminal state (with discount factor 1). To avoid
overestimation, we use double Q-learning method, so the approximated Q-value is defined as
Q(st+n, argmaxa Q(st+n, a;#);#0) with the target Q network parametrized by #0 that only updated
for every Itarget steps to # for stability. All parameters of Q are updated by the gradient descent
method to minimize the squared error (Q(st, at)�R)2.

While Q is trained, C is also jointly trained. Since C is supposed to perform a classification task with
missing values, it would be helpful to train it with incomplete dataset. Toward this, C is trained on
the experienced states that might be incomplete by the gradient descent method to minimize the cross
entropy loss: � logCytrue(st) where Cytrue(st) is the output (or probability after softmax layer)
corresponding to the true label. Q and C are alternatively updated until the stopping criteria are
satisfied. While Q and C have their own loss functions, the shared function Enc can be learned both
by Q and C, or only by one of them, depending on applications.

Before learning Q and C jointly, we pretrain our classifier C with fully observed features and also
randomly dropped features with probability 0.5 to simulate random feature acquisition policy. This
initialization of C lets joint learning time until convergence be effectively reduced.

Inference. At test phase, the start state might be completely empty or partially known. Our RL
agent determines which features to acquire by greedily selecting the action with the maximum
Q-value until ; is chosen. When ; is selected, C makes a prediction based on the acquired features.

5 Experiments

Our code is available at https://github.com/OpenXAIProject/Joint-AFA-Classification.
To validate the versatility of our model, we perform the extensive experiments on simulated and
medical datasets.

Experimental setup Throughout all experiments, we use Adam optimizer [28] with 0.001 learning
rate and train the models for fixed number of iterations.

5.1 Simulated dataset: CUBE-�

We first experiment on a synthetic dataset CUBE-� to see if the agent can identify few important
features that are relevant to the given classification task. See Fig 2a and [29] for detailed description
of the dataset. We train our model on CUBE dataset with 20 features, setting the Gaussian noise
� = 0.1 for the informative features. We train Q, C and Enc for 10000 iterations on 10, 000 training
instances. It is trained by 4-step Q-learning. Per iteration, 128 agents run in parallel for 4 steps.
Instead of updating at once, we do mini-batch update with the size of 128 for 1 epoch (4 times update).
We assume uniform acquisition cost �0.05 and the final reward as the negative classification loss
�L based on C. Both C and Q has two hidden layers of 32-32 units, and Enc consists of the MLP
with two hidden layers of 32-32 units which maps features to 16 dimensional real-valued vectors and
LSTM whose hidden size is 16. For ✏-greedy exploration, ✏ linearly decreases from 1 to 0.1 for the
first 5000 iterations.

The overall results show that the agent can successfully learn which features are informative and
hence it mostly selects the features from the ten informative ones. It consumes only 4.19 features on
average while obtaining 96.4% accuracy (even without fine-tuning), which is comparable to the MLP
classifier that uses all features (96.98%).

Effect of Set encoding. We also evaluate the effect of using proposed feature level set encoding.
Given the same structure of C and Q, we compare the performances of the proposed set encoding
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(a) The CUBE dataset
(b) CUBE-0.3 with 20 features (c) CUBE-0.3 with 100 features

Figure 2: (a) The CUBE dataset consists of p-dimensional real valued vectors in 8 classes. The first 10 features
only carry class information with three normally distributed entries in the different locations (dimmed in the
figure with written mean values) according to the classes. The rest of them are just uniformly random. (b),(c)
Comparisons of RAM, our proposed model and its variant on CUBE-0.3. We report averages with 1st and 3rd
quantile as error bars of 10 times run.

(a) Mortality (b) Length of stay < 3 (c) Cardiac condition (d) Recovery from surgery
Figure 3: The comparison on Physionet 2012 data. We report averages with 1st and 3rd quantile as
error bars of 10 times run. The black dotted line indicates the result of MLP with group norm.

against the use of naive encoding with shared MLP which takes (x, z) as its input. We again use
the 20/100-dimensional CUBE data with � = 0.3. Fig 2 (b), (c) show the accuracy and the number
of features acquired for both encodings. We use cross-validation to select the best setting, and
repeat the training ten times with different random seeds. The model with the proposed set encoding
outperforms both in terms of accuracy and the number of acquired features, showing the resilience
against the increase of dummy features.We conjecture that set encoding can reduce the noise coming
from dummy features by attention mechanism so is accompanied by stable policy learning.

Many previous works just assume that the pre-trained classifier is given. However, this is not
appropriate for dynamic feature acquisition problem because we need to consider the connection
between the feature acquisition policy and the classifier. We compare the jointly learned model with
the pre-trained classifier variant in the Fig 2a. We train the classifier with the partial information in
the trivial way that simply decides to choose features or not with equal probability and also with the
full feature. The result shows that this pre-trained variant has low accuracy with almost the same or
more amount of features meaning the classifier cannot perfectly understand the agent’s choice.

We additionally analyze how our agent acts on the CUBE dataset and the results are in the supplement.

Comparison against RAM Recurrent attention model (RAM) and its variations DRAM,
WS_RAM [20, 21, 22] reduce the computational cost while obtaining high performance by tak-
ing only the informative parts of an image sequentially. Especially, RAM use REINFORCE to make
the models localize informative parts. However, they take glimpses for predefined n steps. It may
lead redundant consumption for some cases. We compare RAM on CUBE-0.3 with 20/100 features.
The input of RAM is given in the form of uj = (xj , I(j)). We can observe in Fig 2(b), (c) that our
jointly trained model with set encoding can achieve higher accuracy with less features on average
because our agent stops with enough informations and this is not the case for RAM.

5.2 Case study: Medical Diagnosis

As our main motivation of this work is to make cost-effective predictions in the medical diagnosis,
we further examine how our model operates on real-world medical datasets.
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Table 1: Statistics of Physionet 2012 data (# false: # true).

task
data train validation test

Mortality 2586 : 414 443 : 57 417 : 83
Length of stay < 3 2917 : 83 485 : 15 487 : 13
Cardiac condition 2333 : 667 401 : 99 392 : 108
Recovery from surgery 2209 : 791 363 : 137 360 : 140

Table 2: Result on the check-up data. We report prediction AUC (top) and the average number of
acquired features (bottom) and cost (USD; in brackets).

task
model Baselines Joint w/ Naive Encoding Pre-trained w/ Set Encoding Joint w/ Set Encoding

MLP uniform cost real cost uniform cost real cost uniform cost real cost

Fatty Liver 0.812 0.775 0.785 0.774 0.779 0.795 0.792
35 (577.7) 6.81 (167.0) 8.7 (20.1) 6.2 (127.9) 4.8 (9.2) 10.3 (149.8) 7.5 (13.8)

IMT 0.755 0.742 0.704 0.721 0.760 0.756 0.750
22 (1,629.8) 5.12 (109.9) 14.22 (11.3) 3.94 (191.5) 23.71 (83.8) 5.57(309.8) 4.79 (10.0)

PhysioNet challenge 2012 dataset First, we conduct the experiment on EHR dataset from Phy-
sionet challenge 2012 [30]. It has four binary classification tasks, namely in-hospital mortality,
whether length-of-stay was less than 3 days, whether the patient had a cardiac condition, and whether
the patient was recovering from surgery. We only use the training set whose labels are available and
take the features only in the last timestep and split the data randomly into the training/validation/test
set by 3000/500/500 ratio. The data is imbalanced (see Table 1), hence we use weighted cross entropy
as a loss of C.

As baselines, we compare an MLP with group `1-norm regularizer for weights in the first layer,
DWSC [17], joint training model with naive MLP encoding and the pre-trained classifier variant with
our model. DWSC is the model whose action space includes not only feature acquisition but also
classification. We omit the result of DWSC in Fig 3 because they often fail to handle the imbalanced
data and just learn to predict as the majority. Fig 3 shows the ROC AUC and the number of acquired
features. MLP with regularizer also implicitly select features in a static manner. We report the number
of nonzero columns of the first layer weight matrix as the number of acquired features shown as a
dotted line in the figure. The model in our framework achieves AUC close to that of MLP while
acquiring fewer features and outperforms all the others for prediction task of length of stay. This
shows that our model is able to select informative, task-related features well.

For in-hospital mortality prediction task, the first feature selected is Glasgow coma scale (GCS),
which represents the level of consciousness. GCS is a decisive feature as having a very low GCS
means that the patient is almost unconsciousness. Thus in such a case, the agent stop the examination
and predicts that mortality is true. The other major features are blood urea nitrogen, serum creatine,
gender and age.

Medical check-up data In order to evaluate our model under a more realistic diagnosis situations
where cost comes to play, we perform an additional experiment on check-up data provided by a major
hospital. We consider two different binary classification tasks: prediction of 1) fatty liver and 2)
intima-media thickness (IMT). We label patents that have steatosis (dB/m) value larger than 280 as
having fatty liver (1), and 0 otherwise. For IMT prediction, we label the patients with left or right
thickness greater than or equal to 0.8 as positive, and 0 otherwise. Among a total of 3937 data points,
steatosis is available for all the data but IMT labels are only available for 1358 instances. Both tasks
have 96 features associated with different costs, including body measurement, blood test and CT
calcium score, etc. For reality, we consider some features examined together from the one test (such
as blood test) as a one multidimensional feature and so make them achieved at the same time. We
randomly split the data into three folds with the ratio of 64:16:20 for train:validation:test.

We first compare the AUC to the MLPs with group `1-norm regularizer on the weight of the first
layer to leverage static feature selection effect. We here report the results selected by cross validation.
Since we are concerned with cost-sensitive feature acquisition in this experiment, we report not only
the average number of examined features but also the average examine cost. We also compare two
different cost settings: 1) A uniform constant across all the features and 2) Actual examine cost
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multiplied by a constant �. Examination costs of the features determining the labels are about 80 and
1,564 USD for fatty liver and IMT respectively, and thus our aim is to make diagnosis with lower
costs. As shown in Table 2, an MLP and our model both achieve comparable AUC, while our model
use significantly less cost (13.8 USD for fatty liver and 10 USD for IMT).

Now, we briefly describe the detail of diagnosis process of our model. The followings are verified
by the clinicians. MLP incurs large examination cost because it leverages coronary calcium score
and Echo E/E’ for prediction, and so does our model with uniform cost setting as it selects Echo
EF value which are all expensive. However, our cost-sensitive model effectively acquires relatively
cheaper and relevant features for fatty liver prediction such as age, BMI, low-density lipoprotein
(LDL), etc. Similarly in the IMT prediction task, rather than taking expensive features such as Echo
E/E’ and steatosis (it is chosen because IMT is known as to be related to fatty liver disease) as done
by MLP or our model with uniform cost, our cost-sensitive model makes a decision based on age,
smoking history, genetic factors, weight, BMI (obesity), glucose (diabetes), blood pressure, LDL
cholesterol, TG (cholesterol). This result is meaningful because all these are well-known risk factors
of atherosclerosis that are also often used by doctors.

6 Conclusion

A cost-aware sequential feature selection can be used in situations where the features are not provided
in full and each collection of features incurs variable cost, such as with medical examination. To
solve this problem, we formulated it into an optimization problem of simultaneously minimizing
the prediction loss and the feature acquisition costs, and derived a joint learning framework for the
classifier and the RL agent. We validated our model on both synthetic and real medical datasets to
confirm the superiority of proposed feature level set embedding under our joint learning framework.

However, there is still room for improvement of our model. First of all, in the synthetic dataset
experiment, we found that features are overly acquired for a few instances whose class is indistin-
guishable because of the data generation rule. This problem may be due to the intrinsic overestimation
behavior of Q-learning because Q-learning update uses maximum approximated action value as a
target. Therefore, Q-values of feature acquisition actions which are nonterminal are overestimated
compared to stop action. We plan to explore some tricks or other reinforcement learning methods to
alleviate this problem as future work. Secondly, we can take model uncertainty into account, so that
our agent collects the features that can help to reduce uncertainty as well as increase classification
performance with as small as possible amounts of cost.

When it comes to running time, training time is less than 20 minutes for reported experiments, and for
testing, it takes about 0.5 sec to evaluate 500 instances (on GTX 1070). In training phase, convergence
is affected by decaying schedule for ✏ of ✏-greedy policy in Q-learning algorithm. We found that
decaying it linearly from 1 to 0.1 from the first half of total iterations generally works well.
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