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Abstract

Continuous word representation (aka word embedding) is a basic building block
in many neural network-based models used in natural language processing tasks.
Although it is widely accepted that words with similar semantics should be close
to each other in the embedding space, we find that word embeddings learned in
several tasks are biased towards word frequency: the embeddings of high-frequency
and low-frequency words lie in different subregions of the embedding space, and
the embedding of a rare word and a popular word can be far from each other even
if they are semantically similar. This makes learned word embeddings ineffective,
especially for rare words, and consequently limits the performance of these neural
network models. In this paper, we develop FRequency-AGnostic word Embedding
(FRAGE) which is a neat, simple yet effective way to learn word representation
using adversarial training. We conducted comprehensive studies on ten datasets
across four natural language processing tasks, including word similarity, language
modeling, machine translation, and text classification. Results show that with
FRAGE, we achieve higher performance than the baselines in all tasks.

1 Introduction

Word embeddings, which are distributed and continuous vector representations for word tokens,
have been one of the basic building blocks for many neural network-based models used in natural
language processing (NLP) tasks, such as language modeling [18, 16], text classification [24, 7] and
machine translation [4, 5, 40, 38, 11]. Different from classic one-hot representation, the learned word
embeddings contain semantic information which can measure the semantic similarity between words
[28], and can also be transferred into other learning tasks [29, 3].

In deep learning approaches for NLP tasks, word embeddings act as the inputs of the neural network
and are usually trained together with neural network parameters. As the inputs of the neural network,
word embeddings carry all the information of words that will be further processed by the network,
and the quality of embeddings is critical and highly impacts the final performance of the learning task
[15]. Unfortunately, we find the word embeddings learned by many deep learning approaches are far
from perfect. As shown in Figure 1(a) and 1(b), in the embedding space learned by word2vec model,
the nearest neighbors of word “Peking” includes “quickest”, “multicellular”, and “epigenetic”, which
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are not semantically similar, while semantically related words such as “Beijing” and “China” are far
from it. Similar phenomena are observed from the word embeddings learned from translation tasks.

With a careful study, we find a more general problem which is rooted in low-frequency words in
the text corpus. Without any confusion, we also call high-frequency words as popular words and
call low-frequency words as rare words. As is well known [23], the frequency distribution of words
roughly follows a simple mathematical form known as Zipf’s law. When the size of a text corpus
grows, the frequency of rare words is much smaller than popular words while the number of unique
rare words is much larger than popular words. Interestingly, the learned embeddings of rare words
and popular words behave differently. (1) In the embedding space, a popular word usually has
semantically related neighbors, while a rare word usually does not. Moreover, the nearest neighbors
of more than 85% rare words are rare words. (2) Word embeddings encode frequency information.
As shown in Figure 1(a) and 1(b), the embeddings of rare words and popular words actually lie in
different subregions of the space. Such a phenomenon is also observed in [29].

We argue that the different behaviors of the embeddings of popular words and rare words are
problematic. First, such embeddings will affect the semantic understanding of words. We observe
more than half of the rare words are nouns or variants of popular words. Those rare words should
have similar meanings or share the same topics with popular words. Second, the neighbors of a large
number of rare words are semantically unrelated rare words. To some extent, those word embeddings
encode more frequency information than semantic information which is not good from the view
of semantic understanding. It will consequently limit the performance of down-stream tasks using
the embeddings. For example, in text classification, it cannot be well guaranteed that the label of a
sentence does not change when you replace one popular/rare word in the sentence by its rare/popular
alternatives.

To address this problem, in this paper, we propose an adversarial training method to learn FRequency-
AGnostic word Embedding (FRAGE). For a given NLP task, in addition to minimizing the task-specific
loss by optimizing the task-specific parameters together with word embeddings, we introduce another
discriminator, which takes a word embedding as input and classifies whether it is a popular/rare
word. The discriminator optimizes its parameters to maximize its classification accuracy, while word
embeddings are optimized towards a low task-dependent loss as well as fooling the discriminator
to misclassify the popular and rare words. When the whole training process converges and the
system achieves an equilibrium, the discriminator cannot well differentiate popular words from rare
words. Consequently, rare words lie in the same region as and are mixed with popular words in the
embedding space. Then FRAGE will catch better semantic information and help the task-specific
model to perform better.

We conduct experiments on four types of NLP tasks, including three word similarity tasks, two
language modeling tasks, three sentiment classification tasks, and two machine translation tasks to
test our method. In all tasks, FRAGE outperforms the baselines. Specifically, in language modeling
and machine translation, we achieve better performance than the state-of-the-art results on PTB, WT2
and WMT14 English-German datasets.

2 Background

2.1 Word Representation

Words are the basic units of natural languages, and distributed word representations (i.e., word
embeddings) are the basic units of many models in NLP tasks including language modeling [18, 16]
and machine translation [4, 5, 40, 38, 11]. It has been demonstrated that word representations learned
from one task can be transferred to other tasks and achieve competitive performance [3].

While word embeddings play an important role in neural network-based models in NLP and achieve
great success, one technical challenge is that the embeddings of rare words are difficult to train due
to their low frequency of occurrences. [35] develops a novel way to split each word into sub-word
units which is widely used in neural machine translation. However, the low-frequency sub-word units
are still difficult to train: [31] provides a comprehensive study which shows that the rare (sub)words
are usually under-estimated in neural machine translation: during inference step, the model tends to
choose popular words over their rare alternatives.
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2.2 Adversarial Training

The basic idea of our work to address the above problem is adversarial training, in which two or
more models learn together by pursuing competing goals. A representative example of adversarial
training is Generative Adversarial Networks (GANs) [13, 34] for image generation [33, 42, 2], in
which a discriminator and a generator compete with each other: the generator aims to generate images
similar to the natural ones, and the discriminator aims to detect the generated ones from the natural
ones. Recently, adversarial training has been successfully applied to NLP tasks [6, 22, 21]. [6, 22]
introduce an additional discriminator to differentiate the semantics learned from different languages
in non-parallel bilingual data. [21] develops a discriminator to classify whether a sentence is created
by human or generated by a model.

Our proposed method is under the adversarial training framework but not exactly the conventional
generator-discriminator approach since there is no generator in our scenario. For an NLP task and its
neural network model (including word embeddings), we introduce a discriminator to differentiate
embeddings of popular words and rare words; while the NN model aims to fool the discriminator and
minimize the task-specific loss simultaneously.

Our work is also weakly related to adversarial domain adaptation which attempts to mitigate the
negative effects of domain shift between training and testing [9, 36]. The difference between this
work and adversarial domain adaptation is that we do not target at the mismatch between training and
testing; instead, we aim to improve the effectiveness of word embeddings and consequently improve
the performance of end-to-end NLP tasks.

3 Empirical Study

In this section, we study the embeddings of popular words and rare words based on the models trained
from Google News corpora using word2vec 1 and trained from WMT14 English-German translation
task using Transformer [38]. The implementation details can be found in [12].

Experimental Design In both tasks, we simply set the top 20% frequent words in vocabulary as
popular words and denote the rest as rare words (roughly speaking, we set a word as a rare word if
its relative frequency is lower than 10−6 in WMT14 dataset and 10−7 in Google News dataset). We
have tried other thresholds such as 10% or 25% and found the observations are similar.

We study whether the semantic relationship between two words is reasonable. To achieve this, we
randomly sampled some rare/popular words and checked the embeddings trained from different
tasks. For each sampled word, we determined its nearest neighbors based on the cosine similarity
between its embeddings and others’.2 We also manually chose words which are semantically similar
to it. For simplicity, for each word, we call the nearest words predicted from the embeddings as
model-predicted neighbors, and call our chosen words as semantic neighbors.

Observation To visualize word embeddings, we reduce their dimensionalities by SVD and plot
two cases in Figure 1. More cases and other studies without dimensionality reduction can be found in
Section 5.

We find that the embeddings trained from different tasks share some common patterns. For both tasks,
more than 90% of model-predicted neighbors of rare words are rare words. For each rare word, the
model-predicted neighbor is usually not semantically related to this word, and semantic neighbors we
chose are far away from it in the embedding space. In contrast, the model-predicted neighbors of
popular words are very reasonable.

As the patterns in rare words are different from that of popular words, we further check the whole
embedding matrix to make a general understanding. We also visualize the word embeddings using
SVD by keeping the two directions with top-2 largest eigenvalues as in [28, 30] and plot them in
Figure 1(c) and 1(d). From the figure, we can see that the embeddings actually encode frequencies to
a certain degree: the rare words and popular words lie in different regions after this linear projection,

1https://code.google.com/archive/p/word2vec/
2Cosine distance is the most popularly used metric in literature to measure semantic similarity [28, 32, 29].

We also have tried other metrics, e.g., Euclid distance, and the phenomena still exist.
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Figure 1: Case study of the embeddings trained from WMT14 translation task using Transformer
and trained from Google News dataset using word2vec is shown in (a) and (b). (c) and (d) show the
visualization of embeddings trained from WMT14 translation task using Transformer and trained
from Google News dataset using word2vec. Red points represent rare words and blue points represent
popular words. In (a) and (b), we highlight the semantic neighbors in bold.

and thus they occupy different regions in the original embedding space. This strange phenomenon is
also observed in other learned embeddings (e.g.CBOW and GLOVE) and mentioned in [30].

Explanation From the empirical study above, we can see that the occupied spaces of popular
words and rare words are different and here we intuitively explain a possible reason. We simply
take word2vec as an example which is trained by stochastic gradient descent. During training, the
sample rate of a popular word is high and the embedding of a popular word updates frequently. For
a rare word, the sample rate is low and its embedding rarely updates. According to our study, on
average, the moving distance of the embedding for a popular word is twice longer than that of a rare
word during training. As all word embeddings are usually initialized around the origin with a small
variance, we observe in the final model, the embeddings of rare words are still around the origin and
the popular words have moved far away.

Discussion We have strong evidence that the current phenomena are problematic. First, according
to our study,3 in both tasks, more than half of the rare words are nouns, e.g., company names, city
names. They may share some similar topics to popular entities, e.g., big companies and cities; around
10% percent of rare words include a hyphen (which is usually used to join popular words), and over
30% rare words are different PoSs of popular words. These words should have mixed or similar
semantics to some popular words. These facts show that rare words and popular words should lie
in the same region of the embedding space, which is different from what we observed. Second, as
we can see from the cases, for rare words, model-predicted neighbors are usually not semantically
related words but frequency-related words (rare words). This shows, for rare words, the embeddings
encode more frequency information than semantic information. It is not good to use such word
embeddings into semantic understanding tasks, e.g., text classification, language modeling, language
understanding, and translation.

4 Our Method

In this section, we present our method to improve word representations. As we have a strong prior that
many rare words should share the same region in the embedding space as popular words, the basic
idea of our algorithm is to train the word embeddings in an adversarial framework: We introduce
a discriminator to categorize word embeddings into two classes: popular ones or rare ones. We
hope the learned word embeddings not only minimize the task-specific training loss but also fool the
discriminator. By doing so, the frequency information is removed from the embedding and we call
our method frequency-agnostic word embedding (FRAGE).

We first define some notations and then introduce our algorithm. We develop three types of notations:
embeddings, task-specific parameters/loss, and discriminator parameters/loss.

Denote θemb ∈ Rd×|V | as the word embedding matrix to be learned, where d is the dimension of
the embedding vectors and |V | is the vocabulary size. Let Vpop denote the set of popular words and
Vrare = V \ Vpop denote the set of rare words. Then the embedding matrix θemb can be divided

3We use the POS tagger from Natural Language Toolkit, https://github.com/nltk.
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Figure 2: The proposed learning framework includes a task-specific predictor and a discriminator,
whose function is to classify rare and popular words. Both modules use word embeddings as the
input.

into two parts: θembpop for popular words and θembrare for rare words. Let θembw denote the embedding
of word w. Let θmodel denote all the other task-specific parameters except word embeddings. For
instance, for language modeling, θmodel is the parameters of the RNN or LSTM; for neural machine
translation, θmodel is the parameters of the encoder, attention module, and decoder.

Let LT (S; θmodel, θemb) denote the task-specific loss over a dataset S. Taking language modeling as
an example, the loss LT (S; θmodel, θemb) is defined as the negative log likelihood of the data:

LT (S; θ
model, θemb) = − 1

|S|
∑
y∈S

logP (y; θmodel, θemb), (1)

where y is a sentence.

Let fθD denote a discriminator with parameters θD , which takes a word embedding as input and
outputs a confidence score between 0 and 1 indicating how likely the word is a rare word. Let
LD(V ; θD, θemb) denote the loss of the discriminator:

LD(V ; θD, θemb) =
1

|Vpop|
∑

w∈Vpop

log fθD (θ
emb
w ) +

1

|Vrare|
∑

w∈Vrare

log(1− fθD (θembw )). (2)

Following the principle of adversarial training, we develop a minimax objective to train the task-
specific model (θmodel and θemb) and the discriminator (θD) as below:

min
θmodel,θemb

max
θD

LT (S; θ
model, θemb)− λLD(V ; θD, θemb), (3)

where λ is a coefficient to trade off the two loss terms. We can see that when the model parameter
θmodel and the embedding θemb are fixed, the optimization of the discriminator θD becomes

max
θD
−λLD(V ; θD, θemb), (4)

which is to minimize the classification error of popular and rare words. When the discriminator θD is
fixed, the optimization of θmodel and θemb becomes

min
θmodel,θemb

LT (S; θ
model, θemb)− λLD(V ; θD, θemb), (5)

i.e., to optimize the task performance as well as fooling the discriminator. We train θmodel, θemb and
θD iteratively by stochastic gradient descent or its variants. The general training process is shown in
Algorithm 1.

5 Experiment

We test our method on a wide range of tasks, including word similarity, language modeling, machine
translation, and text classification. For each task, we choose the state-of-the-art architecture together
with the state-of-the-art training method as our baseline 4.

4Code for our implementation is available at https://github.com/ChengyueGongR/FrequencyAgnostic
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Algorithm 1 Proposed Algorithm

1: Input: Dataset S, vocabulary V = Vpop ∪ Vrare, θmodel, θemb, θD.
2: repeat
3: Sample a minibatch Ŝ from S.
4: Sample a minibatch V̂ = V̂pop ∪ V̂rare from V .
5: Update θmodel, θemb by gradient descent according to Eqn. (5) with data Ŝ.
6: Update θD by gradient ascent according to Eqn. (4) with vocabulary V̂ .
7: until Converge
8: Output: θmodel, θemb, θD.

For fair comparisons, for each task, our method shares the same model architecture as the baseline.
The only difference is that we use the original task-specific loss function with an additional adversarial
loss as in Eqn. (3). Dataset description and hyper-parameter configurations can be found in [12].

5.1 Settings

We conduct experiments on the following tasks.

Word Similarity evaluates the performance of the learned word embeddings by calculating the word
similarity: it evaluates whether the most similar words of a given word in the embedding space are
consistent with the ground-truth, in terms of Spearman’s rank correlation. We use the skip-gram
model as our baseline model [28]5, and train the embeddings using Enwik96. We test the baseline
and our method on three datasets: RG65, WS, and RW. The RW dataset is a dataset for the evaluation
of rare words. Following common practice [28, 1, 32, 29], we use cosine distance while computing
the similarity between two word embeddings.

Language Modeling is a basic task in natural language processing. The goal is to predict the next
word conditioned on previous words and the task is evaluated by perplexity. We do experiments on
two widely used datasets [25, 26, 41], Penn Treebank (PTB) [27] and WikiText-2 (WT2) [26]. We
choose two recent works as our baselines: the AWD-LSTM model7 [25] and the AWD-LSTM-MoS
model,8 [41]. AWD-LSTM [25] is a weight-dropped LSTM which uses Drop Connect on hidden-to-
hidden weights as a means of recurrent regularization. The model is trained by NT-ASGD, which is a
variant of the averaged stochastic gradient method. The training process has two steps, in the second
step, the model is finetuned using another configuration of NT-ASGD. AWD-LSTM-MoS [41] uses
the Mixture of Softmaxes structure to the vanilla AWD-LSTM and achieves the state-of-the-art result
on PTB and WT2.

Machine Translation is a popular task in both deep learning and natural language processing. We
choose two datasets: WMT14 English-German and IWSLT14 German-English datasets, which are
evaluated in terms of BLEU score9. We use Transformer [38] as the baseline model. Transformer [38]
is a recently developed architecture in which the self-attention network is used during encoding and
decoding step. It achieves the best performances on several machine translation tasks, e.g. WMT14
English-German, WMT14 English-French datasets. We use transformer_base and transformer_big
configurations following tensor2tensor [37]10.

Text Classification is a conventional machine learning task and is evaluated by accuracy. Following
the setting in [20], we implement a Recurrent CNN-based model11 and test it on AG’s news corpus
(AGs), IMDB movie review dataset (IMDB) and 20 Newsgroups (20NG). RCNN [20] contains both

5https://github.com/tensorflow/models/blob/master/tutorials/embedding
6http://mattmahoney.net/dc/textdata.html
7https://github.com/salesforce/awd-lstm-lm
8https://github.com/zihangdai/mos
9https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl

10To improve the training for imbalanced labeled data, a common method is to adjust loss function by
reweighting the training samples; To regularize the parameter space, a common method is to use l2 regularization.
We tested these methods in machine translation and found the performance is not good. Detailed analysis is
provided in [12]

11https://github.com/brightmart/text_classification
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recurrent and convolutional layers to catch the key components in texts and is widely used in text
classification tasks.

In all tasks, we simply set the top 20% frequent words in vocabulary as popular words and denote the
rest as rare words, which is the same as our empirical study. For all the tasks except training skip-gram
model, we use full-batch gradient descent to update the discriminator. For training skip-gram model,
mini-batch stochastic gradient descent is used to update the discriminator with a batch size 3000,
since the vocabulary size is large. For language modeling and machine translation tasks, we use
logistic regression as the discriminator. For other tasks, we find using a shallow neural network with
one hidden layer is more efficient and we set the number of nodes in the hidden layer as 1.5 times
embedding size. In all tasks, we set the hyper-parameter λ to 0.1.

RG65 WS RW
Orig. with FRAGE Orig. with FRAGE Orig. with FRAGE
75.63 78.78 66.74 69.35 52.67 58.12

Table 1: Results on three word similarity datasets.

Paras Orig. with FRAGE
Validation Test Validation Test

PTB

AWD-LSTM w/o finetune[25] 24M 60.7 58.8 60.2 58.0
AWD-LSTM[25] 24M 60.0 57.3 58.1 56.1
AWD-LSTM + continuous cache pointer[25] 24M 53.9 52.8 52.3 51.8
AWD-LSTM-MoS w/o finetune[41] 24M 58.08 55.97 57.55 55.23
AWD-LSTM-MoS[41] 24M 56.54 54.44 55.52 53.31
AWD-LSTM-MoS + dynamic evaluation[41] 24M 48.33 47.69 47.38 46.54

WT2

AWD-LSTM w/o finetune[25] 33M 69.1 67.1 67.9 64.8
AWD-LSTM[25] 33M 68.6 65.8 66.5 63.4
AWD-LSTM + continuous cache pointer[25] 33M 53.8 52.0 51.0 49.3
AWD-LSTM-MoS w/o finetune[41] 35M 66.01 63.33 64.86 62.12
AWD-LSTM-MoS[41] 35M 63.88 61.45 62.68 59.73
AWD-LSTM-MoS + dynamic evaluation[41] 35M 42.41 40.68 40.85 39.14

Table 2: Perplexity on validation and test sets on Penn Treebank and WikiText2. Smaller the
perplexity, better the result. Baseline results are obtained from [25, 41]. “Paras” denotes the number
of model parameters.

5.2 Results

In this subsection, we provide the experimental results of all tasks. For simplicity, we use “with
FRAGE” as our proposed method in the tables.

Word Similarity The results on three word similarity tasks are listed in Table 1. From the table,
we can see that our method consistently outperforms the baseline on all datasets. In particular, we
outperform the baseline for about 5.4 points on the rare word dataset RW. This result shows that our
method improves the representation of words, especially the rare words.

Language Modeling The results of language modeling on PTB and WT2 datasets are presented in Ta-
ble 2. We test our model and the baselines at several checkpoints used in the baseline papers: without
finetune, with finetune, with post-process (continuous cache pointer [14] or dynamic evaluation [19]).
In all these settings, our method outperforms the two baselines. On PTB dataset, our method improves
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the AWD-LSTM and AWD-LSTM-MoS baseline by 0.8/1.2/1.0 and 0.76/1.13/1.15 points in test set
at different checkpoints. On WT2 dataset, which contains more rare words, our method achieves
larger improvements. We improve the results of AWD-LSTM and AWD-LSTM-MoS by 2.3/2.4/2.7
and 1.15/1.72/1.54 in terms of test perplexity, respectively.

WMT En→De IWSLT De→En
Method BLEU Method BLEU
ByteNet[17] 23.75 DeepConv[10] 30.04
ConvS2S[11] 25.16 Dual transfer learning [39] 32.35
Transformer Base[38] 27.30 ConvS2S+SeqNLL [8] 32.68
Transformer Base with FRAGE 28.36 ConvS2S+Risk [8] 32.93
Transformer Big[38] 28.40 Transformer 33.12
Transformer Big with FRAGE 29.11 Transformer with FRAGE 33.97

Table 3: BLEU scores on test set on WMT2014 English-German and IWSLT German-English tasks.

Machine Translation The results of neural machine translation on WMT14 English-German and
IWSLT14 German-English tasks are shown in Table 3. We outperform the baselines for 1.06/0.71 in
the term of BLEU in transformer_base and transformer_big settings in WMT14 English-German
task, respectively. The model learned from adversarial training also outperforms the original one
in IWSLT14 German-English task by 0.85. These results show improving word embeddings can
achieve better results in more complicated tasks and larger datasets.

AG’s IMDB 20NG
Orig. with FRAGE Orig. with FRAGE Orig. with FRAGE

90.47% 91.73% 92.41% 93.07% 96.49%[20] 96.93%

Table 4: Accuracy on test sets of AG’s news corpus (AG’s), IMDB movie review dataset (IMDB)
and 20 Newsgroups (20NG) for text classification.

Text Classification The results are listed in Table 4. Our method outperforms the baseline method
for 1.26%/0.66%/0.44% on three different datasets.

As a summary, our experiments on four different tasks with 10 datasets verify the effectiveness of our
method. We provide case study and qualitative analysis of the model with and without our method in
Table 5 and Figure 3. By comparing the cases, we find that, with our method, the word similarities
are improved and popular/rare words are better mixed together. More cases are shown in [12].

(a) (b)

Figure 3: These figures show that, in different tasks, the embeddings of rare and popular words are
better mixed together after applying our method.
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Orig. Orig.
Word: citizens Word: citizenship* Word: accepts* Word: bacterial*

Model-predicted neighbor
clinicians* bliss* announces* multicellular*
astronomers* pakistanis* digs* epigenetic*
westliche dismiss* externally* isotopic*
adults reinforces* empowers* conformational*

Semantic neighbor + Model-predicted Ranking
citizen*:771 citizen*:10745 accepted*:21109 bacteria*:116
citizenship*:832 citizens:11706 accept:30612 chemical:233

Orig. with FRAGE Orig. with FRAGE
Word: citizens Word: citizenship* Word: accepts* Word: bacterial*

Model-predicted neighbor
homes population registered myeloproliferative*

citizen* städtischen* tolerate* metabolic*
bürger dignity recognizing* bacteria*
population bürger accepting* apoptotic*

Semantic neighbor + Model-predicted Ranking
citizen*:2 citizen*:79 accepted*:26 bacteria* : 3
citizenship*:40 citizens:7 accept:29 chemical: 8

Table 5: Case study for the original model and our method. Rare words are marked by “*”. For each
word, we list its model-predicted neighbors. Moreover, we also show the ranking positions of the
semantic neighbors based on cosine similarity. As we can see, the ranking positions of the semantic
neighbors are very low for the original model.

6 Conclusion

In this paper, we find that word embeddings learned in several tasks are biased towards word
frequency: the embeddings of high-frequency and low-frequency words lie in different subregions of
the embedding space. This makes learned word embeddings ineffective, especially for rare words,
and consequently limits the performance of these neural network models. We propose a neat, simple
yet effective adversarial training method to improve the model performance which is verified in a
wide range of tasks.

We will explore several directions in the future. First, we will investigate the theoretical aspects
of word embedding learning and our adversarial training method. Second, we will study more
applications which have the similar problem even beyond NLP.
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