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Abstract

Learning to capture long-range relations is fundamental to image/video recognition.
Existing CNN models generally rely on increasing depth to model such relations
which is highly inefficient. In this work, we propose the “double attention block™, a
novel component that aggregates and propagates informative global features from
the entire spatio-temporal space of input images/videos, enabling subsequent con-
volution layers to access features from the entire space efficiently. The component
is designed with a double attention mechanism in two steps, where the first step
gathers features from the entire space into a compact set through second-order
attention pooling and the second step adaptively selects and distributes features
to each location via another attention. The proposed double attention block is
easy to adopt and can be plugged into existing deep neural networks conveniently.
We conduct extensive ablation studies and experiments on both image and video
recognition tasks for evaluating its performance. On the image recognition task, a
ResNet-50 equipped with our double attention blocks outperforms a much larger
ResNet-152 architecture on ImageNet-1k dataset with over 40% less the number
of parameters and less FLOPs. On the action recognition task, our proposed model
achieves the state-of-the-art results on the Kinetics and UCF-101 datasets with
significantly higher efficiency than recent works.

1 Introduction

Deep Convolutional Neural Networks (CNNs) have been successfully applied in image and video
understanding during the past few years. Many new network topologies have been developed to
alleviate optimization difficulties [9, 10] and increase the learning capacities [26, 5], which benefit
recognition performance for both images [8, 2] and videos [23] significantly.

However, CNNss are inherently limited by their convolution operators which are dedicated to capturing
local features and relations, e.g. from a 7 x 7 region, and are inefficient in modeling long-range
interdependencies. Though stacking multiple convolution operators can enlarge the receptive field, it
also comes with a number of unfavorable issues in practice. First, stacking multiple operators makes
the model unnecessarily deep and large, resulting in higher computation and memory cost as well as
increased over-fitting risks. Second, features far away from a specific location have to pass through a
stack of layers before affecting the location for both forward propagation and backward propagation,
increasing the optimization difficulties during the training. Third, the features visible to a distant
location are actually “delayed” ones from several layers behind, causing inefficient reasoning. Though
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some recent works [ |, 25] can partially alleviate the above issues, they are either non-flexible [ 1]
or computationally expensive [25].

In this work, we aim to overcome these limitations by introducing a new network component
that enables a convolution layer to sense the entire spatio-temporal space” from its adjacent layer
immediately. The core idea is to first gather key features from the entire space into a compact set
and then distribute them to each location adaptively, so that the subsequent convolution layers can
sense features from the entire space even without a large receptive filed. We develop a generic
function for such purpose and implement it with an efficient double attention mechanism. The first
second-order attention pooling operation selectively gathers key features from the entire space, while
the second adopts another attention mechanism to adaptively distribute a subset of key features that
are helpful to complement each spatio-temporal location for high-level tasks. We denote our proposed
double-attention block as A2-block and its resultant network as A2-Net.

The double-attention block is related to a number of recent works, including the Squeeze-and-
Excitation Networks [1 1], covariance pooling [14], the Non-local Neural Networks [25] and the
Transformer architecture of [24]. However, compared with these existing works, it enjoys several
unique advantages: Its first attention operation implicitly computes second-order statistics of pooled
features and can capture complex appearance and motion correlations that cannot be captured by
the global average pooling used in SENet [11]. Its second attention operation adaptively allocates
features from a compact bag, which is more efficient than exhaustively correlating the features from
all the locations with every specific location as in [25, 24]. Extensive experiments on image and
video recognition tasks clearly validate the above advantages of our proposed method.

‘We summarize our contributions as follows:

e We propose a generic formulation for capturing long-range feature interdependencies via
universal gathering and distribution functions.

e We propose the double attention block for gathering and distributing long-range features, an
efficient architecture that captures second-order feature statistics and makes adaptive feature
assignment. The block can model long-range interdependencies with a low computational
and memory footprint and at the same time boost image/video recognition performance
significantly.

e We investigate the effect of our proposed A?-Net with extensive ablation studies and prove
its superior performance through comparison with the state-of-the-arts on a number of
public benchmarks for both image recognition and video action recognition tasks, including
ImageNet-1k, Kinetics and UCF-101.

The rest of the paper is organized as follows. We first motivate and present our approach in Section 2,
where we also discuss the relation of our approach to recent works. We then evaluate and report
results in Section 3 and conclude the paper with Section 4.

2 Method

s

Convolutional operators are designed to focus on local neighborhoods and therefore fail to “sense’
the entire spatial and/or temporal space, e.g. the entire input frame or one location across multiple

frames. A CNN model thus usually employs multiple convolution layers (or recurrent units [6, 17]) in
order to capture global aspects of the input. Meanwhile, self-attentive and correlation operators like
second-order pooling have been recently shown to work well in a wide range of tasks [24, 14, 15]. In

this section we present a component capable of gathering and distributing global features to each
spatial-temporal location of the input, helping subsequent convolution layers sense the entire space
immediately and capture complex relations. We first formally describe this desired component by
providing a generic formulation and then introduce our double attention block, a highly efficient
instantiation of such a component. We finally discuss the relation of our approach to other recent
related approaches.

’Here by “space” we mean the entire feature maps of an input frame and the complete spatio-temporal
features from a video sequence.
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Figure 1: Illustration of the double-attention mechanism. (a) An example on a single frame input
for explaining the idea of our double attention method, where the set of global featues is computed
only once and then shared by all locations. Meanwhile, each location ¢ will generate its own attention
vector based on the need of its local feature v; to select a desired subset of global features that is
helpful to complement current location and form the feature z;. (b) The double attention operation on
a three dimensional input array A. The first attention step is shown on the top and produces a set of
global features. At location ¢, the second attention step generates the new local feature z;, as shown
at the bottom.

Let X € ReX4Xhxw denote the input tensor for a spatio-temporal (3D) convolutional layer, where
¢ denotes the number of channels, d denotes the temporal dimension® and h, w are the spatial
dimensions of the input frames. For every spatio-temporal input location ¢ = 1, ..., dhw with local
feature v;, let us define

z; = Fistr (Ggather(X)a Vi) , (D

to be the output of an operator that first gathers features in the entire space and then distributes them
back to each input location ¢, taking into account the local feature v; of that location. Specifically,
G gather adaptively aggregates features from the entire input space, and F g, distributes the gathered
information to each location ¢, conditioned on the local feature vector v;.

The idea of gathering and distributing information is motivated by the squeeze-and-excitation network
(SENet) [ 1]. Eqn. (1), however, presents it in a more general form that leads to some interesting
insights and optimizations. In [1 1], global average pooling is used in the gathering process, while the
resulted single global feature is distributed to all locations, ignoring different needs across locations.
Seeing these shortcomings, we introduce this genetic formulation and propose the Double Attention
block, where global information is first gathered by second-order attention pooling (instead of first-
order average pooling), and the gathered global features are adaptively distributed conditioned on the
need of current local feature v;, by a second attention mechanism. In this way, more complex global
relations can be captured by a compact set of features and each location can receive its customized
global information that is complementary to the exiting local features, facilitating learning more
complex relations. The proposed component is illustrated in Figure 1 (a). At below, we first describe
its architecture in details and then discuss some instantiations and its connections to other recent
related approaches.

2.1 The First Attention Step: Feature Gathering

A recent work [15] used bilinear pooling to capture second-order statistics of features and generate
global representations. Compared with the conventional average and max pooling which only
compute first-order statistics, bilinear pooling can capture and preserve complex relations better.
Concretely, bilinear pooling gives a sum pooling of second-order features from the outer product of
all the feature vector pairs (a;, b;) within two input feature maps A and B:

Gbilinear(Av B) = ABT = Z aibz—'rv (2)
Vi

3For a spatial (2D) convolution, i.e. when the input is an image, d = 1.



where A = [ay, -+, agny] € R™*¥ and B = [by, -, banw] € R"*¥™ In CNNs, A and B can
be the feature maps from the same layer, i.e. A = B, or from two different layers, i.e. A = ¢(X;Wy)
and B = 0(X; Wy), with parameters W, and Wj.

By introducing the output variable G = [g1,- - - , gn] € R™*™ of the bilinear pooling and rewriting
the second feature B as B = [by;- - - ; b,,] where each b; is a dhw-dimensional row vector, we can
reformulate Eqn. (2) as

g = Ab/ = ZBz‘jajo 3)
vj

Eqn. (3) gives a new perspective on the bilinear pooling result: instead of just computing second-
order statistics, the output of bilinear pooling G is actually a bag of visual primitives, where each
primitive g; is calculated by gathering local features weighted by b;. This inspires us to develop
a new attention-based feature gathering operation. We further apply a softmax onto B to ensure
> j b;; = 1, i.e. a valid attention weighting vector, which gives following second-order attention
pooling process:

g; = A softmax(b;) . %)
The first row in Figure 1 (b) shows the second-order attention pooling that corresponds to Eqn. (4),
where both A and B are outputs of two different convolution layers transforming the input X. In
implementation, we let A = ¢(X; W) and B = softmax (6(X; Wpy)). The second-order attention
pooling offers an effective way to gather key features: it captures the global features, e.g. texture
and lighting, when b; is densely attended on all locations; and it captures the existence of specific
semantic, e.g. an object and parts, when b; is sparsely attended on a specific region. We note that
similar understandings were presented in [7], in which they proposed a rank-1 approximation of a
bilinear pooling operation associated with a fully connected classifier. However, in our work, we
propose to apply attention pooling to gather visual primitives at different locations into a bag of
global descriptors using softmax attention map and do not apply any low-rank constraint.

2.2 The Second Attention Step: Feature Distribution

The next step after gathering features from the entire space is to distribute them to each location of
the input, such that the subsequent convolution layer can sense the global information even with a
small convolutional kernel.

Instead of distributing the same summarized global features to all locations like SENet [11], we
propose to get more flexibility by distributing an adaptive bag of visual primitives based on the need
of feature v; at each location. In this way, each location can select features that are complementary to
the current feature which can make the training easier and help capture more complex relations. This
is achieved by selecting a subset of feature vectors from G ganer (X) With soft attention:

z;, = Zvijgj = Ggather(X)via where ZVZ‘]‘ =1. (5)
Vi Vi

Eqn. (5) formulates the proposed soft attention for feature selection. In our implementation, we
apply the softmax function to normalize v; into the one with unit sum, which is found to give better
convergence. The second row in Figure 1 (b) shows the above feature selection step. Similar to
the way we generate the attention map, the set of attention weight vectors is also generated by a
convolution layer follow by a softmax normalizer, i.e. V = softmax (p(X; W,)) where W, contains
parameters for this layer.

2.3 The Double Attention Block

We combine the above two attention steps to form our proposed double-attention block, with its
computation graph in deep neural networks is given in Figure 2. To formulate the double attention
operation, we substitute Eqn. (4) and Eqn. (5) into Eqn. (1) and obtain

Z = Fdistr (Ggather (X)7 V)
= Ggather (X)softmax (p(X; W,))) (6)

- [¢(X; W,)softmax (0(X; Wy)) " | softmax (p(X; W,)).
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Figure 2: The computational graph of the proposed double attention block. All convolution kernel
sizeis 1 x 1 x 1. We insert this double attention block to existing convolutional neural network, e.g.
residual networks [9], to form the A2-Net.

Figure 1 (b) shows the combined double attention operation and Figure 2 shows the corresponding
computational graph, where the feature arrays A, B and V' are generated by three different convolution
layers operating on the input feature array X followed by softmax normalization if necessary. The
output result Z is given by conducting two matrix multiplications with necessary reshape and
transpose operations. Here, an additional convolution layer is added at the end to expand the number
of channels for the output Z, such that it can be encoded back to the input X via element-wise
addition. During the training process, gradient of the loss function can be easily computed using
auto-gradient [3, 18] with the chain rule.

There are two different ways to implement the computational graph of Eqn. (6). One is to use the left
association as given in Eqn. (6) with computation graph is shown in Figure 2. The other is to conduct
the right association, as formulate below:

Z = $(X; W) |softmax (0(X; Wy)) " softmax (p(X; W,,))] . )

We note these two different associations are mathematically equivalent and thus will produce the
same output. However, they have different computational cost and memory consumption. The
computational complexity of the second matrix multiplication in “left association” in Eqn. (6) is
O(mndhw), while “right association” in Eqn. (7) has complexity of O(m(dhw)?). As for the
memory cost*, storing the output of the results of the first matrix multiplication costs mn/2'*MB
and (dhw)? /2'8MB for the left and right associations respectively. In practice, an input data array X
with 32 28 x 28 frames and 512 channel size can easily cost more than 2GB memory when adopting
the right association, much more expensive than 1MB cost of the left association. In this case, left
association is also more computationally efficient than the right one. Therefore, for common cases
where (dhw)? > nm, we suggest implementation in Eqn. (6) with left association.

2.4 Discussion

It is interesting to observe that the implementation in Eqn. (7) with right association can be further
explained by the recent NL-Net [25], where the first multiplication captures pair-wise relations
between local features and gives an output relation matrix in R%w>dmw  The resulted relation
matrix is then applied to linearly combine the transformed features ¢(X) into the output feature
Z. The difference is apparent in the design of the pair-wise relation function, where we propose

a new relation function, i.e. softmax (8(X))' softmax (p(X)) rather than using the Embedded
Gaussian formulation [24] to capture the pair-wise relations. Meanwhile, as discussed above, any
such a method practically suffers from high computational and memory costs, and relies on the some
subsampling tricks to reduce the cost which may potentially hurts the accuracy. Since NL-Net is the
current state-of-the-art for video recognition tasks and also closely related, we directly compare and
extensively discuss performance between the two in the Experiments section. The results clearly
show that our proposed method not only outperforms NL-Net, but does so with higher efficiency
and accuracy. As the Embedded Gaussian NL-Net formulation that we compare in the experiments
is mathematically equivalent to the self-attention formulation of [24], conclusions/comparisons to
NL-Net extend to the transformer networks as well.

* All values are stored in 32-bit float.



Table 1: Three backbone Residual Networks for the video tasks. The input size for ResNet-26 and
ResNet-29 are 16 112x 112, while the input size for ResNet-50 is 8 x224 x224. We follow [25] and
setk =[3,1,3],[3,1,3,1,3,1],[1, 3, 1] for ResNet-50 in last three stages and decrease the temporal
size to reduce computational cost.

stage ‘ ResNet-26 ‘ ResNet-29 ‘ output ‘ ‘ ResNet-50 ‘ output
convl 3%5%35, 16, stride (1,2,2) 3%5%5, 16, stride (1,2.2) | 16X 56X 56 3X5x5,32, swide (122) | g 56 56
max pooling, stride (1,2,2)

[ I1x1x1, 32 ] [ Ix1x1, 32 ] Ix1x1, 64

conv2 3Xx3x%x3, 32 X 2 3Xx3x%x3, 32 X 2 8X56%x56 3X3x%x3, 64 X 3 8X56%x56
L Ix1x1,128 ] L 1x1x1,128 ] 1x1x1,256
[ 1x1x1, 64 ] [ 1x1x1, 64 ] Ix1x1,128

conv3 3X3x%x3, 64 X 2 3X3x%x3, 64 X 2 8x28x28 kx3x3,128 X 4 4x28x28
L 1x1x1,256 ] L 1x1x1,256 ] 1x1x1,512
[ 1x1x1,128 ] [ 1x1x1,128 ] Ix1x1, 256

conv4 3Xx3x3,128 X 2 3Xx3x%x3,128 X 3 8§x14x14 kx3x3, 256 X6 |4x14x14
| Ix1x1,512 | | Ix1x1,512 | 1x1x1,1024
Ix1x1, 256 Ix1x1, 256 Ix1x1, 512

conv5 3x3x3, 256 X 2 3x3x3, 256 X 2 8X7TX17 kx3x3, 512 X 3 4XTXT
1x1x1,1024 I1x1x1,1024 1x1x1,2048

‘ global average pool, fc, softmax ‘ global average pool, fc, softmax ‘ Ix1x1 H global average pool, fc, softmax ‘ Ix1x1

(#Params, FLOPs) | (7.0M, 83 G) \ (7.6 M,9.2G) \ [| (334M,31.3G) \

3 Experiments

In this section, we first conduct extensive ablation studies to evaluate the proposed A2-Nets on the
Kinetics [12] video recognition dataset and compare it with the state-of-the-art NL-Net [25]. Then
we conduct more experiments using deeper and wider neural networks on both image recognition
and video recognition tasks and compare it with state-of-the-art methods.

3.1 Implementation Details

Backbone CNN We use the residual network [10] as our backbone CNN for all experiments.
Table 1 shows architecture details of the backbone CNNs for video recognition tasks, where we use
ResNet-26 for all ablation studies and ResNet-29 as one of the baseline methods. The computational
cost is measured by FLOPs, i.e. floating-point multiplication-adds, and the model complexity is
measured by #Params, i.e. total number of trained parameters. The ResNet-50 is almost 2x deeper
and wider than the ResNet-26 and thus only used for last several experiments when comparing with
the state-of-the-art methods. For the image recognition task, we use the same ResNet-50 but without
the temporal dimension for both the input/output data and convolution kernels.

Training and Testing Settings We use MXNet [3] to experiment on the image classification task,
and PyTorch [18] on video classification tasks. For image classification, we report standard single
model single 224 x 224 center crop validation accuracy, following [9, 10]. For experiments on video
datasets, we report both single clip accuracy and video accuracy. All experiments are conducted
using a distributed K80 GPU cluster and the networks are optimized by synchronized SGD. Code
and trained models will be released on GitHub soon.

3.2 Ablation Studies

For the ablation studies on Kinetics [1], we use 32 GPUs per experiment with a total batch size of
512 training from scratch. All networks take 16 frames with resolution 112 x 112 as input. The
base learning rate is set to 0.2 and is reduced with a factor of 0.1 at the 20k-th, 30k-th iterations, and
terminated at the 37k-th iteration. We set the number of output channels for three convolution layers
0(), ¢(-) and p(-) to be 1/4 of the number of input channels. Note that sub-sampling trick is not
adopted for all methods for fair comparison.

Single Block Table 2 shows the results when only one extra block is added to the backbone network.
The block is placed after the second residual unit of a certain stage. As can be seen from the last
three rows, our proposed A2-block constantly improves the performance compared with both the



Table 2: Comparisons between single nonlocal block [25] and single double attention block on the
Kinetics dataset. The performance of vanilla residual networks without extra block is shown in the
top row.

Model + 1 Block #Params | FLOPs A FLOPs | Clip@l A Clip@l | VideoQ1
ResNet-26 None 7.043M 83G - 50.4 % - 60.7 %
ResNet-29 None 7.620 M 9.2G 900 M 50.8 % +0.5 % 61.6 %

@ Conv2 7.061M | 490G 40.69G - - -
ResNet-26 + NL [25] @ Conv3 7.112M | 137G 545G | 515% +1.1 % 62.0 %
@ Conv4 7312M 9.3G 1.04G | 51.7% +1.3 % 62.3 %

@ Conv2 7.061 M 87G 463 M 512 % +0.8 % 61.8 %
ResNet-26 + A? @ Conv3 7.112M 8.7G 463 M 51.9 % +1.5 % 62.0 %
@ Conv4 7312M 87G 463 M 523 % +1.9 % 62.6 %

Table 3: Comparisons between performance from multiple nonlocal blocks [25] and multiple double
attention blocks on Kinetics dataset. We report both top-1 clips accuracy and top-1 video accuracy
for all the methods. The vanilla residual networks without extra blocks are shown in the top row.

Model +N Blocks ~ #Params | FLOPs A FLOPs | Clip@l A Clip@] | Video @1
ResNet-26 None 7.043 M 83G - 50.4 % - 60.7 %
ResNet-29 None 7.620 M 92G 900 M 50.8 % +0.5 % 61.6 %

1 @ Conv4 7.312M 93G 1.04G 51.7 % +1.3 % 62.3 %
ResNet-26 + NL [25] 2 @ Conv4 7581 M | 104G 2.08G 52.0 % +1.6 % 62.9 %
4@ Conv3&4 7.719M | 213G 1297G 524 % +2.0 % 62.8 %

1 @ Conv4 7.312M 8.7G 463 M 523 % +1.9 % 62.6 %
ResNet-26 + A2 2 @ Conv4 7581 M 92G 925 M 525 % +2.1 % 63.1 %
4@Conv3&4 17.719M | 101G 185G 53.0 % +2.6 % 63.5 %

baseline ResNet-26 and the deeper ResNet-29. Notably the extra cost is very little. We also find that
the performance gain from placing A2-block on top layers is more significant than placing it at lower
layers. This may be because the top layers give more semantically abstract representations that are
suitable for extracting global visual primitives. Comparatively, the Nonlocal Network [25] shows less
accuracy gain and more computational cost than ours. Since the computational cost for Nonlocal
Network is increased quadratically on bottom stage, we are even unable to finish the training when
the block is placed at Conv2.

Multiple Blocks Table 3 shows the performance gain when multiple blocks are added to the
backbone networks. As can be seen from the results, our proposed A2-Net monotonically improves
the accuracy when more blocks are added and costs less #FLOPs compared with its competitor. We
also find that adding blocks to different stages can lead to more significant accuracy gain than adding
all blocks to the same stage.

3.3 Experiments on Image Recognition

We evaluate the proposed A2-Net on ImageNet-1k [13] image classification dataset, which contains
more than 1.2 million high resolution images in 1, 000 categories. Our implementation is based on
the code released by [5] using 64 GPUs with a batch size of 2, 048. The base learning rate is set to

v/0.1 and decreases with a factor of 0.1 when training accuracy is saturated.

Table 4: Comparison with state-of-the- Table 5: Comparisons with state-of-the-arts results on Ki-

arts on ImageNet- 1k. netics. Only RGB information is used for input.
Model Backbone | Top-1 | Top-5 Model #Frames FLOPs | Video @1 | Video @5
ResNet [0] lizﬁett—goz ‘ ;gggz ggg‘;/z ConvNet+LSTM [1] - - | 633% | -
. . I3D [1] 64 1079G | 711 % 89.3 %
SENet [11]  ResNet-50 ‘ 76.7 % ‘ 93.4 % R(2+1)D [23] 32 1524 G ‘ 72.0 % ‘ 90.0 %
A%Net  ResNet-50 | 77.0% | 93.5% A2-Net 8 408G | 746% | 915%




Table 6: Comparisons with state-of-the-arts results on UCF-101. The averaged Top-1 video accuracy
on three train/test splits is reported.

Method | Backbone | FLOPs | Video @1
C3D [21] VGG 385G 82.3 %
Res3D [22] ResNet-18 193G 85.8 %
I3D-RGB [1] Inception 1079 G 95.6 %
R(2+1)D-RGB [23] ResNet-34 1524 G 96.8 %
A2-Net | ResNet-50 | 41.6 G | 96.4 %

As can be seen from Table 4, a ResNet-50 equipped with 5 extra A2-blocks at Conv3 and Conv4
outperforms a much larger ResNet-152 architecture. We note that the A2-blocks embedded ResNet-
50 is also over 40% more efficient than ResNet-152 and only costs 6.5 GFLOPs and 33.0 M
parameters. Compared with the SENet [ 1 1], the A2-Net also achieves better accuracy which proves
the effectiveness of the proposed double attention mechanism.

3.4 Experiment Results on Video Recognition

In this subsection, we evaluate the proposed method on learning video representations. We consider
the scenario where static image features are pretrained but motion features are learned from scratch by
training a model on the large-scale Kinetics [ 1] dataset, and the scenario where well-trained motion
features are transfered to small-scale UCF-101 [20] dataset.

Learning Motion from Scratch on Kinetics We use ResNet-50 pretrained on ImageNet and add 5
randomly initialized A2-blocks to build the 3D convolutional network. The corresponding backbone
is shown in Table 1. The network takes 8 frames (sampling stride: 8) as input and is trained for
32k iterations with a total batch size of 512 using 64 GPUs. The initial learning rate is set to 0.04
and decreased in a stepwise manner when training accuracy is saturated. The final result is shown
in Table 5. Compared with the state-of-the-art I3D [1] and R(2+1)D [23], our proposed model
shows higher accuracy even with a less number of sampled frames, which once again confirms the
superiority of the proposed double-attention mechanism.

Transfer the Learned Feature to UCF-101 The UCF-101 contains about 13, 320 videos from
101 action categories and has three train/test splits. The training set of UCF-101 is several times
smaller than the Kinetics dataset and we use it to evaluate the generality and robustness of the features
learned by our model pre-trained on Kinetics. The network is trained with a base learning rate of 0.01
which is decreased for three times with a factor 0.1, using 8 GPUs with a batch size of 104 clips and
tested with 224 x 224 input resolution on single scale. Table 6 shows results of our proposed model
and comparison with state-of-the-arts. Consistent with above results, the A2-Net achieves leading
performance with significantly lower computational cost. This shows that the features learned by
A2-Net are robust and can be effectively transfered to new dataset in very low cost compared with
existing methods.

4 Conclusions

In this work, we proposed a double attention mechanism for deep CNNs to overcome the limitation
of local convolution operations. The proposed double attention method effectively captures the
global information and distributes it to every location in a two-step attention manner. We well
formulated the proposed method and instantiated it as an light-weight block that can be easily
inserted into to existing CNNs with little computational overhead. Extensive ablation studies and
experiments on a number of benchmark datasets, including ImageNet-1k, Kinetics and UCF-101,
confirmed the effectiveness of the proposed A2-Net on both 2D image recognition tasks and 3D video
recognition tasks. In the future, we want to explore integrating the double attention in recent compact
network architectures [19, 16, 4], to leverage the expressiveness of the proposed method for smaller,
mobile-friendly models.
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