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Abstract

In dictionary selection, several atoms are selected from finite candidates that suc-
cessfully approximate given data points in the sparse representation. We propose
a novel efficient greedy algorithm for dictionary selection. Not only does our
algorithm work much faster than the known methods, but it can also handle more
complex sparsity constraints, such as average sparsity. Using numerical experi-
ments, we show that our algorithm outperforms the known methods for dictionary
selection, achieving competitive performances with dictionary learning algorithms
in a smaller running time.

1 Introduction

Learning sparse representations of data and signals has been extensively studied for the past decades in
machine learning and signal processing [16]. In these methods, a specific set of basis signals (atoms),
called a dictionary, is required and used to approximate a given signal in a sparse representation. The
design of a dictionary is highly nontrivial, and many studies have been devoted to the construction of
a good dictionary for each signal domain, such as natural images and sounds. Recently, approaches
to construct a dictionary from data have shown the state-of-the-art results in various domains. The
standard approach is called dictionary learning [3, 32, 1]. Although many studies have been devoted
to dictionary learning, it is usually difficult to solve, requiring a non-convex optimization problem
that often suffers from local minima. Also, standard dictionary learning methods (e.g., MOD [14] or
k-SVD [2]) require a heavy time complexity.

Krause and Cevher [22] proposed a combinatorial analogue of dictionary learning, called dictionary
selection. In dictionary selection, given a finite set of candidate atoms, a dictionary is constructed
by selecting a few atoms from the set. Dictionary selection could be faster than dictionary learning
due to its discrete nature. Another advantage of dictionary selection is that the approximation
guarantees hold even in agnostic settings, i.e., we do not need stochastic generating models of the
data. Furthermore, dictionary selection algorithms can be used for media summarization, in which
the atoms must be selected from given data points [8, 9].

The basic dictionary selection is formalized as follows. Let V be a finite set of candidate atoms and
n = |V |. Throughout the paper, we assume that the atoms are unit vectors in Rd without loss of
generality. We represent the candidate atoms as a matrix A ∈ Rd×n whose columns are the atoms in
V . Let yt ∈ Rd (t ∈ [T ]) be data points, where [T ] = {1, . . . , T}, and k and s be positive integers
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with k ≥ s. We assume that a utility function u : Rd×Rd → R+ exists, which measures the similarity
of the input vectors. For example, one can use the `2-utility function u(y,x) = ‖y‖22 − ‖y − x‖22 as
in Krause and Cevher [22]. Then, the dictionary selection finds a set X ⊆ V of size k that maximizes

h(X) =

T∑
t=1

max
w∈Rk : ‖w‖0≤s

u(yt,AXw), (1)

where ‖w‖0 is the number of nonzero entries in w and AX is the column submatrix of A with
respect to X . That is, we approximate a data point yt with a sparse representation in atoms in X ,
where the approximation quality is measured by u. Letting ft(Zt) := maxw u(yt,AZt

w) (t ∈ [T ]),
we can rewrite this as the following two-stage optimization: h(X) =

∑T
t=1 maxZt⊆X : |Zt|≤s ft(Zt).

Here Zt is the set of atoms used in a sparse representation of data point yt. The main challenges in
dictionary selection are that the evaluation of h is NP-hard in general [25], and the objective function
h is not submodular [17] and therefore the well-known greedy algorithm [27] cannot be applied. The
previous approaches construct a good proxy of dictionary selection that can be easily solved, and
analyze the approximation ratio.

1.1 Our contribution

Our main contribution is a novel and efficient algorithm called the replacement orthogonal matching
pursuit (Replacement OMP) for dictionary selection. This algorithm is based on a previous approach
called Replacement Greedy [30] for two-stage submodular maximization, a similar problem to
dictionary selection. However, the algorithm was not analyzed for dictionary selection. We extend
their approach to dictionary selection in the present work, with an additional improvement that exploits
techniques in orthogonal matching pursuit. We compare our method with the previous methods in
Table 1. Replacement OMP has a smaller running time than SDSOMP [10] and Replacement
Greedy. The only exception is SDSMA [10], which intuitively ignores any correlation of the atoms.
In our experiment, we demonstrate that Replacement OMP outperforms SDSMA in terms of
test residual variance. We note that the constant approximation ratios of SDSMA, Replacement
Greedy, and Replacement OMP are incomparable in general. In addition, we demonstrate that
Replacement OMP achieves a competitive performance with dictionary learning algorithms in a
smaller running time, in numerical experiments.

Generalized sparsity constraint Incorporating further prior knowledge on the data domain often
improves the quality of dictionaries [28, 29, 11]. A typical example is a combinatorial constraint
independently imposed on each support Zt. This can be regarded as a natural extension of the
structured sparsity [19] in sparse regression, which requires the support to satisfy some combinatorial
constraint, rather than a cardinality constraint. A global structure of supports is also useful prior
information. Cevher and Krause [6] proposed a global sparsity constraint called the average sparsity,
in which they add a global constraint

∑T
t=1|Zt| ≤ s′. Intuitively, the average sparsity constraint

requires that the most data points can be represented by a small number of atoms. If the data points
are patches of a natural image, most patches are a simple background, and therefore the number
of the total size of the supports must be small. The average sparsity has been also intensively
studied in dictionary learning [11]. To deal with these generalized sparsities in a unified manner,
we propose a novel class of sparsity constraints, namely p-replacement sparsity families. We prove
that Replacement OMP can be applied for the generalized sparsity constraint with a slightly worse
approximation ratio. We emphasize that the OMP approach is essential for efficiency; in contrast,
Replacement Greedy cannot be extended to the average sparsity setting because it can only handle
local constraints on Zt, and yields an exponential running time.

Online extension In some practical situations, it is not always feasible to store all data points yt,
but these data points arrive in an online fashion. We show that Replacement OMP can be extended
to the online setting, with a sublinear approximate regret. The details are given in Section 5.

1.2 Related work

Krause and Cevher [22] first introduced dictionary selection as a combinatorial analogue of dictionary
learning. They proposed SDSMA and SDSOMP, and analyzed the approximation ratio using the
coherence of the matrix A. Das and Kempe [10] introduced the concept of the submodularity ratio
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Table 1: Comparison of known methods with Replacement OMP. The constants ms, Ms, and
Ms,2 are the restricted concavity and smoothness constants of u(yt, ·) (t ∈ [T ]); see Section 2. The
running time is from the `2-utility function u and the individual sparsity constraint.

Method Approximation ratio Running time Generalized
sparsity

SDSMA [22] m1ms

M1Ms
(1− 1/e) [10] O((k + d)nT ) No

SDSOMP [22] O(1/k) [10] O((s+ k)sdknT ) No

Replacement Greedy [30]
(
m2s

Ms,2

)2 (
1− exp

(
−Ms,2

m2s

))
O(s2dknT ) No

Replacement OMP
(
m2s

Ms,2

)2 (
1− exp

(
−Ms,2

m2s

))
O((n+ ds)kT ) Yes

and refined the analysis via the restricted isometry property [5]. A connection to the restricted
concavity and submodularity ratio has been investigated by Elenberg et al. [13], Khanna et al. [21]
for sparse regression and matrix completion. Balkanski et al. [4] studied two-stage submodular
maximization as a submodular proxy of dictionary selection, devising various algorithms. Stan et al.
[30] proposed Replacement Greedy for two-stage submodular maximization. It is unclear that
these methods provide an approximation guarantee for the original dictionary selection.

To the best of our knowledge, there is no existing research in the literature that addresses online
dictionary selection. For a related problem in sparse optimization, namely online linear regression,
Kale et al. [20] proposed an algorithm based on supermodular minimization [23] with a sublinear
approximate regret guarantee. Elenberg et al. [12] devised a streaming algorithm for weak submodular
function maximization. Chen et al. [7] dealt with online maximization of weakly DR-submodular
functions.

Organization The rest of this paper is organized as follows. Section 2 provides the basic concepts
and definitions. Section 3 formally defines dictionary selection with generalized sparsity constraints.
Section 4 presents our algorithm, Replacement OMP. Section 5 sketches the extension to the online
setting. The experimental results are presented in Section 6.

2 Preliminaries

Notation For a positive integer n, [n] denotes the set {1, 2, . . . , n}. The sets of reals and nonneg-
ative reals are denoted by R and R≥0, respectively. We similarly define Z and Z≥0. Vectors and
matrices are denoted by lower and upper case letters in boldface, respectively: a,x,y for vectors and
A,X,Y for matrices. The ith standard unit vector is denoted by ei; that is, ei is the vector such that
its ith entry is equal to one and all other entries are zero. For a matrix A ∈ Rd×n and X ⊆ [n], AX

denotes the column submatrix of A with respect to X . The maximum and minimum singular values
of a matrix A are denoted by σmax(A) and σmin(A), respectively. For a positive integer k, we define
σmax(A, k) := maxX⊆[n] : |X|≤k σmax(AX). We define σmin(A, k) in a similar way. For t ∈ [T ],
let ut(w) := u(yt,Aw). Let w(Zt)

t denote the maximizer of ut(w) subject to supp(w) ⊆ Zt.
Throughout the paper, V denotes the fixed finite ground set. For X ⊆ V and a ∈ V \X , we define
X + a := X ∪ {a}. Similarly, for a ∈ V \X and b ∈ X , we define X − b+ a := (X \ {b}) ∪ {a}.

2.1 Restricted concavity and smoothness

The following concept of restricted strong concavity and smoothness is crucial in our analysis.
Definition 2.1 (Restricted strong concavity and restricted smoothness [26]). Let Ω be a subset of
Rd × Rd and u : Rd → R be a continuously differentiable function. We say that u is restricted
strongly concave with parameter mΩ and restricted smooth with parameter MΩ if,

−mΩ

2
‖y − x‖22 ≥ u(y)− u(x)− 〈∇u(x),y − x〉 ≥ −MΩ

2
‖y − x‖22

for all (x,y) ∈ Ω.

We define Ωs,p := {(x,y) ∈ Rd×Rd : ‖x‖0, ‖y‖0 ≤ s, ‖x−y‖0 ≤ p} and Ωs := Ωs,s for positive
integers s and p. We often abbreviate MΩs

, MΩs,p
, and mΩs

as Ms, Ms,p, and ms, respectively.
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3 Dictionary selection with generalized sparsity constraints

In this section, we formalize our problem, dictionary selection with generalized sparsity constraints.
In this setting, the supports Zt for each t ∈ [T ] cannot be independently selected, but we impose
a global constraint on them. We formally write such constraints as a down-closed 1 family I ⊆∏T
t=1 2V . Therefore, we aim to find X ⊆ V with |X| ≤ k maximizing

h(X) = max
Z1,...,Zt⊆X : (Z1,...,Zt)∈I

T∑
t=1

ft(Zt) (2)

Since a general down-closed family is too abstract, we focus on the following class. First, we define
the set of feasible replacements for the current support Z1, · · · , ZT and an atom a as

Fa(Z1, · · · , ZT ) = {(Z ′1, · · · , Z ′T ) ∈ I : Z ′t ⊆ Zt + a, |Zt \ Z ′t| ≤ 1 (∀t ∈ [T ])} . (3)

That is, the set of members in I obtained by adding a and removing at most one element from each
Zt. Let F(Z1, · · · , ZT ) =

⋃
a∈V Fa(Z1, · · · , ZT ). If Z1, . . . , ZT are clear from the context, we

simply write it as Fa.

Definition 3.1 (p-replacement sparsity). A sparsity constraint I ⊆
∏T
t=1 2V is p-replacement

sparse if for any (Z1, . . . , ZT ), (Z∗1 , . . . , Z
∗
T ) ∈ I, there is a sequence of p feasible replacements

(Zp
′

1 , . . . , Z
p′

T ) ∈ F(Z1, . . . , ZT ) (p′ ∈ [p]) such that each element in Z∗t \ Zt appears at least once
in the sequence (Zp

′

t \ Zt)
p
p′=1 and each element in Zt \ Z∗t appears at most once in the sequence

(Zt \ Zp
′

t )pp′=1.

The following sparsity constraints are all p-replacement sparsity families. See Appendix B for proof.

Example 3.2 (individual sparsity). The sparsity constraint for the standard dictionary selection can
be written as I = {(Z1, · · · , ZT ) | |Zt| ≤ s (∀t ∈ [T ])}. We call it the individual sparsity constraint.
This constraint is a special case of an individual matroid constraint, described below.

Example 3.3 (individual matroids). This was proposed by [30] as a sparsity constraint for two-stage
submodular maximization. An individual matroid constraint can be written as I = {(Z1, · · · , ZT ) |
Zt ∈ It (∀t ∈ [T ])} where (V, It) is a matroid2 for each t ∈ [T ]. An individual sparsity constraint is
a special case of an individual matroid constraint where (V, It) is the uniform matroid for all t.

Example 3.4 (block sparsity). Block sparsity was proposed by Krause and Cevher [22]. This sparsity
requires that the support must be sparse within each prespecified block. That is, disjoint blocks
B1, · · · , Bb ⊆ [T ] of data points are given in advance, and an only small subset of atoms can be used
in each block. Formally, I = {(Z1, · · · , ZT ) | |

⋃
t∈Bb′

Zt| ≤ sb′ (∀b′ ∈ [b])} where sb′ ∈ Z≥0 for
each b′ ∈ [b] are sparsity parameters.

Example 3.5 (average sparsity [6]). This sparsity imposes a constraint on the average number of
used atoms among all data points. The number of atoms used for each data point is also restricted.
Formally, I = {(Z1, · · · , ZT ) | |Zt| ≤ st,

∑T
t=1 |Zt| ≤ s′} where st ∈ Z≥0 for each t ∈ [T ] and

s′ ∈ Z≥0 are sparsity parameters.

Proposition 3.6. The replacement sparsity parameters of individual matroids, block sparsity, and
average sparsity are upper-bounded by k, k, and 3k − 1, respectively.

4 Algortihms

In this section, we present Replacement Greedy [30] and Replacement OMP for dictionary
selection with generalized sparsity constraints.

1A set family I is said to be down-closed if X ∈ I and Y ⊆ X then Y ∈ I.
2A matroid is a pair of a finite ground set V and a non-empty down-closed family I ⊆ 2V that satisfy that

for all Z,Z′ ∈ I with |Z| < |Z′|, there is an element a ∈ Z′ \ Z such that Z ∪ {a} ∈ I
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4.1 Replacement Greedy

Replacement Greedy was first proposed as an algorithm for a different problem, two-stage sub-
modular maximization [4]. In two-stage submodular maximization, the goal is to maximize

h(X) =

T∑
t=1

max
Zt⊆X : Zt∈It

ft(Zt), (4)

where ft is a nonnegative monotone submodular function (t ∈ [T ]) and It is a matroid. Despite the
similarity of the formulation, in dictionary selection, the functions ft are not necessarily submodular,
but come from the continuous function ut. Furthermore, in two-stage submodular maximization, the
constraints on Zt are individual for each t ∈ [T ], while we pose a global constraint I . In the following,
we present an adaptation of Replacement Greedy to dictionary selection with generalized sparsity
constraints.

Replacement Greedy stores the current dictionary X and supports Zt ⊆ X such that
(Z1, . . . , ZT ) ∈ I, which are initialized as X = ∅ and Zt = ∅ (t ∈ [T ]). At each step, the
algorithm considers the gain of adding an element a ∈ V to X with respect to each function ft,
i.e., the algorithm selects a that maximizes max(Z′1,...,Z

′
T )∈Fa

∑T
t=1{ft(Z ′t) − f(Zt)}. See Algo-

rithm 1 for a pseudocode description. Note that for the individual matroid constraint I , the algorithm
coincides with the original Replacement Greedy [30].

Algorithm 1 Replacement Greedy & Replacement OMP
1: Initialize X ← ∅ and Zt ← ∅ for t = 1, . . . , T .
2: for i = 1, . . . , k do
3: Pick a∗ ∈ V that maximizes{

max(Z′1,··· ,Z′T )∈Fa∗

∑T
t=1 {ft(Z ′t)− ft(Zt)} (Replacement Greedy)

max(Z′1,··· ,Z′T )∈Fa∗

{
1

Ms,2

∑T
t=1‖∇ut(w

(Zt)
t )Z′t\Zt

‖2 −Ms,2

∑T
t=1‖(w

(Zt)
t )Zt\Z′t‖

2
}

(Replacement OMP)
and let (Z ′1, · · · , Z ′T ) be a replacement achieving a maximum.

4: Set X ← X + a∗ and Zt ← Z ′t for each t ∈ [T ].
5: return X .

Stan et al. [30] showed that Replacement Greedy achieves an ((1 − 1/
√
e)/2)-approximation

when ft are monotone submodular. We extend their analysis to our non-submodular setting. The
proof can be found in Appendix C.
Theorem 4.1. Assume that ut is m2s-strongly concave on Ω2s and Ms,2-smooth on Ωs,2 for t ∈ [T ]
and that the sparsity constraint I is p-replacement sparse. Let (Z∗1 , · · · , Z∗T ) ∈ I be optimal supports
of an optimal dictionary X∗. Then the solution (Z1, · · · , ZT ) ∈ I of Replacement Greedy after
k′ steps satisfies

T∑
t=1

ft(Zt) ≥
m2

2s

M2
s,2

(
1− exp

(
−k
′

p

Ms,2

m2s

)) T∑
t=1

ft(Z
∗
t )

4.2 Replacement OMP

Now we propose our algorithm, Replacement OMP. A down-side of Replacement Greedy is its
heavy computation: in each greedy step, we need to evaluate

∑T
t=1 ft(Z

′
t) for each (Z ′1, . . . , Z

′
t) ∈

Fa(Z1, . . . , Zt), which amounts to solving linear regression problems snT times if u is the `2-utility
function. To avoid heavy computation, we propose a proxy of this quantity by borrowing an idea
from orthogonal matching pursuit. Replacement OMP selects an atom a ∈ V that maximizes

max
(Z′1,··· ,Z′T )∈Fa(Z1,··· ,ZT )

{
1

Ms,2

T∑
t=1

‖∇ut(w(Zt)
t )Z′t\Zt

‖2 −Ms,2

T∑
t=1

‖(w(Zt)
t )Zt\Z′t‖

2

}
. (5)

This algorithm requires the smoothness parameter Ms,2 before the execution. Computing Ms,2

is generally difficult, but this parameter for the squared `2-utility function can be bounded by
σ2

max(A, 2). This value can be computed in O(n2d) time.
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Theorem 4.2. Assume that ut is m2s-strongly concave on Ω2s and Ms,2-smooth on Ωs,2 for t ∈ [T ]
and that the sparsity constraint I is p-replacement sparse. Let (Z∗1 , · · · , Z∗T ) ∈ I be optimal
supports of an optimal dictionary X∗. Then the solution (Z1, · · · , ZT ) ∈ I of Replacement OMP
after k′ steps satisfies

T∑
t=1

ft(Zt) ≥
m2

2s

M2
s,2

(
1− exp

(
−k
′

p

Ms,2

m2s

)) T∑
t=1

ft(Z
∗
t ).

4.3 Complexity

Now we analyze the time complexity of Replacement Greedy and Replacement OMP. In general,
Fa has O(nT ) members, and therefore it is difficult to compute Fa. Nevertheless, we show that
Replacement OMP can run much faster for the examples presented in Section 3.

In Replacement Greedy, it is difficult to find an atom with the largest gain at each step. This
is because we need to maximize a nonlinear function

∑T
t=1 ft(Z

′
t). Conversely, in Replacement

OMP, if we can calculate w
(Zt)
t and∇ut(w(Zt)

t ) for all t ∈ [T ], the problem of calculating gain of
each atom is reduced to maximizing a linear function.

In the following, we consider the `2-utility function and average sparsity constraint because it is the
most complex constraint. A similar result holds for the other examples. In fact, we show that this
task reduces to maximum weighted bipartite matching. The Hungarian method returns the maximum
weight bipartite matching in O(T 3) time. We can further improve the running time to O(T log T )
time by utilizing the structure of this problem. Due to the limitation of space, we defer the details to
Appendix C. In summary, we obtain the following:
Theorem 4.3. Assume that the assumption of Theorem 4.2 holds. Further assume that u is the
`2-utility function and I is the average sparsity constraint. Then Replacement OMP finds the
solution (Z1, · · · , ZT ) ∈ I

T∑
t=1

ft(Zt) ≥
(
σ2

max(A, 2s)

σ2
min(A, 2)

)2(
1− exp

(
−1

3

σ2
min(A, 2)

σ2
max(A, 2s)

)) T∑
t=1

ft(Z
∗
t )

in O(Tk(n log T + ds)) time.
Remark 4.4. If finding an atom with the largest gain is computationally intractable, we can add an
atom whose gain is no less than τ times the largest gain. In this case, we can bound the approximation
ratio with replacing k′ with τk′ in Theorem 4.1 and 4.2.

5 Extensions to the online setting

Our algorithms can be extended to the following online setting. The problem is formalized as a
two-player game between a player and an adversary. At each round t = 1, . . . , T , the player must
select (possibly in a randomized manner) a dictionary Xt ⊆ V with |Xt| ≤ k. Then, the adversary
reveals a data point yt ∈ Rd and the player gains ft(Xt) = maxw∈Rk:‖w‖0≤s u(yt,AXw). The
performance measure of a player’s strategy is the expected α-regret:

regretα(T ) = α max
X∗:|X∗|≤k

T∑
t=1

ft(X
∗)−E

[
T∑
t=1

ft(Xt)

]
,

where α > 0 is a constant independent from T corresponding to the offline approximation ratio, and
the expectation is taken over the randomness in the player.

For this online setting, we present an extension of Replacement Greedy and Replacement OMP
with sublinear α-regret, where α is the corresponding offline approximation ratio. The details are
provided in Appendix D.

6 Experiments

In this section, we empirically evaluate our proposed algorithms on several dictionary selection
problems with synthetic and real-world datasets. We use the squared `2-utility function for all
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Figure 1: The experimental results for the offline setting. In all figures, the horizontal axis indicates
the size of the output dictionary. (a), (b), and (c) are the results for T = 100. (d), (e), and (f) are
the results for T = 1000. (g), (h), and (i) are the results for T = 1000 with an average sparsity
constraint. For each setting, we provide the plot of the running time for the synthetic dataset, test
residual variance for the synthetic dataset, and test residual variance for VOC2006 image dataset.

of the experiments. Since evaluating the value of the objective function is NP-hard, we plot the
approximated residual variance obtained by orthogonal matching pursuit.

Ground set We use the ground set consisting of several orthonormal bases that are standard choices
in signal and image processing, such as 2D discrete cosine transform and several 2D discrete wavelet
transforms (Haar, Daubechies 4, and coiflet). In all of the experiments, the dimension is set to d = 64,
which corresponds to images of size 8× 8 pixels. The size of the ground set is n = 256.

Machine All the algorithms are implemented in Python 3.6. We conduct the experiments in a
machine with Intel Xeon E3-1225 V2 (3.20 GHz and 4 cores) and 16 GB RAM.

Datasets We conduct experiments on two types of datasets. The first one is a synthetic dataset. In
each trial, we randomly pick a dictionary with size k out of the ground set, and generate sparse linear
combinations of the columns of this dictionary. The weights of the linear combinations are generated
from the standard normal distribution. The second one is a dataset of real-world images extracted
from PASCAL VOC2006 image datasets [15]. In each trial, we randomly select an image out of 2618
images and divide it into patches of 8× 8 pixels, then select T patches uniformly at random. All the
patches are normalized to zero mean and unit variance. We make datasets for training and test in the
same way, and use the training dataset for obtaining a dictionary and the test dataset for measuring
the quality of the output dictionary.
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Figure 2: The experimental results for the online setting. In both figures, the horizontal axis indicates
the number of rounds. (a) is the result with synthetic datasets, and (b) is the result with VOC2006
image datasets.

6.1 Experiments on the offline setting

We implement our proposed methods, Replacement Greedy (RG) and Replacement OMP
(RepOMP), as well as the existing methods for dictionary selection, SDSMA and SDSOMP. We also
implement a heuristically modified version of RepOMP, which we call RepOMPd. In RepOMPd,
we replace Ms,2 with some parameter that decreases as the size of the current dictionary grows,
which prevents the gains of all the atoms from being zero. Here we use Ms,2/

√
i as the decreasing

parameter where i is the number of iterations so far. In addition, we compare these methods with
standard methods for dictionary learning, MOD [14] and KSVD [2], which is set to stop when the
change of the objective value becomes no more than 10−6 or 200 iterations are finished. Orthogonal
matching pursuit is used as a subroutine in both methods.

First, we compare the methods for dictionary selection with small datasets of T = 100. The parameter
of sparsity constraints is set to s = 5. The results averaged over 20 trials are shown in Figure 1(a),
(b), and (c). The plot of the running time for VOC2006 datasets is omitted as it is much similar to that
for synthetic datasets. In terms of running time, SDSMA is the fastest, but the quality of the output
dictionary is unsatisfactory. RepOMP is several magnitudes faster than SDSOMP and RG, but its
quality is almost the same with SDSOMP and RG. In Figure 1(b), test residual variance of SDSOMP,
RG, and RepOMP are overlapped, and in Figure 1(c), test residual variance of RepOMP is slightly
worse than that of SDSOMP and RG. From these results, we can conclude that RepOMP is by far
the most practical method for dictionary selection.

Next we compare the dictionary selection methods with the dictionary learning methods with larger
datasets of T = 1000. SDSOMP and RG are omitted because they are too slow to be applied to
datasets of this size. The results averaged over 20 trials are shown in Figure 1(d), (e), and (f). In
terms of running time, RepOMP and RepOMPd are much faster than MOD and KSVD, but their
performances are competitive with MOD and KSVD.

Finally, we conduct experiments with the average sparsity constraints. We compare RepOMP and
RepOMPd with Algorithm 2 in Appendix C with a variant of SDSMA proposed for average sparsity
in Cevher and Krause [6]. The parameters of constraints are set to st = 8 for all t ∈ [T ] and s′ = 5T .
The results averaged over 20 trials are shown in Figure 1(g), (h), and (i). RepOMP and RepOMPd
outperform SDSMA both in running time and quality of the output.

In Appendix E, We provide further experimental results. There we provide examples of image
restoration, in which the average sparsity works better than the standard dictionary selection.

6.2 Experiments on the online setting

Here we give the experimental results on the online setting. We implement the online version of
SDSMA, RG and RepOMP, as well as an online dictionary learning algorithm proposed by Mairal
et al. [24]. For all the online dictionary selection methods, the hedge algorithm is used as the
subroutines. The parameters are set to k = 20 and s = 5. The results averaged over 50 trials are
shown in Figure 2(a), (b). For both datasets, Online RepOMP shows a better performance than
Online SDSMA, Online RG, and the online dictionary learning algorithm.
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