Learning to Navigate in Cities Without a Map

Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann,
Keith Anderson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu,
Andrew Zisserman, Raia Hadsell
DeepMind
London, United Kingdom
{piotrmirowski, mkg, mateuszm, kmh, keithanderson, }@google.com
{teplyashin, simonyan, korayk, zisserman, raia}@google.com

Abstract

Navigating through unstructured environments is a basic capability of intelligent
creatures, and thus is of fundamental interest in the study and development of
artificial intelligence. Long-range navigation is a complex cognitive task that re-
lies on developing an internal representation of space, grounded by recognisable
landmarks and robust visual processing, that can simultaneously support continu-
ous self-localisation (“I am here”) and a representation of the goal (“I am going
there”). Building upon recent research that applies deep reinforcement learning to
maze navigation problems, we present an end-to-end deep reinforcement learning
approach that can be applied on a city scale. Recognising that successful nav-
igation relies on integration of general policies with locale-specific knowledge,
we propose a dual pathway architecture that allows locale-specific features to be
encapsulated, while still enabling transfer to multiple cities. A key contribution of
this paper is an interactive navigation environment that uses Google Street View
for its photographic content and worldwide coverage. Our baselines demonstrate
that deep reinforcement learning agents can learn to navigate in multiple cities and
to traverse to target destinations that may be kilometres away. The project webpage
http://streetlearn.cc contains a video summarizing our research and show-
ing the trained agent in diverse city environments and on the transfer task, the form
to request the StreetLearn dataset and links to further resources. The StreetLearn en-
vironment code is available at https://github. com/deepmind/streetlearn.

1 Introduction

The subject of navigation is attractive to various research disciplines and technology domains alike,
being at once a subject of inquiry from the point of view of neuroscientists wishing to crack the code
of grid and place cells [2, 12], as well as a fundamental aspect of robotics research. The majority
of algorithms involve building an explicit map during an exploration phase and then planning and
acting via that representation. In this work, we are interested in pushing the limits of end-to-end
deep reinforcement learning for navigation by proposing new methods and demonstrating their
performance in large-scale, real-world environments. Just as humans can learn to navigate a city
without relying on maps, GPS localisation, or other aids, it is our aim to show that a neural network
agent can learn to traverse entire cities using only visual observations. In order to realise this aim, we
designed an interactive environment that uses the images and underlying connectivity information
from Google Street View, and propose a dual pathway agent architecture that can navigate within the
environment (see Fig.[Ta).

Learning to navigate directly from visual inputs has been shown to be possible in some domains, by
using deep reinforcement learning (RL) approaches that can learn from task rewards — for instance,
navigating to a destination. Recent research has demonstrated that RL agents can learn to navigate

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

http://streetlearn.cc
https://github.com/deepmind/streetlearn

Harlem | ./ 2 R

Central
Park

Central London

NYU

Wall e
Srtreet"-‘ Paris Rive Gauche

(a) Diverse views and corresponding local maps in Street View. (b) Street View regions used in this study.

Figure 1: (a) Our environment is built of real-world places from Street View (we illustrate Times
Square and Central Park in New York City and St. Paul’s Cathedral in London). The green cone
represents the agent’s location and orientation. (b) We use large regions of London and Paris and in
New York we focus on 5 different regions to show transfer.

house scenes [43]42]], mazes (e.g. [33]]), and 3D games (e.g. [30])). These successes notwithstanding,
deep RL approaches are notoriously data inefficient and sensitive to perturbations of the environment,
and are more well-known for their successes in games and simulated environments than in real-world
applications. It is therefore not obvious that they can be used for large-scale visual navigation based
on real-world images, and hence this is the subject of our investigation.

The primary contributions of this paper are (a) to present a new RL challenge that features real world
visual navigation through city-scale environments, and (b) to propose a modular, goal-conditional
deep RL algorithm that can solve this task, thus providing a strong baseline for future research.
StreetLearrﬁs a new interactive environment for reinforcement learning that features real-world
images as agent observations, with real-world grounded content that is built on top of the publicly
available Google Street View. Within this environment we have developed a traversal task that
requires that the agent navigates from goal to goal within London, Paris and New York City.

To evaluate the feasibility of learning in such an environment, we propose an agent that learns a goal-
dependent policy with a dual pathway, modular architecture with similarities to the interchangeable
task-specific modules approach from [13]], and the target-driven visual navigation approach of [43].
The approach features a recurrent neural architecture that supports both locale-specific learning as
well as general, transferable navigation behaviour. Balancing these two capabilities is achieved by
separating a recurrent neural pathway from the general navigation policy of the agent. This pathway
addresses two needs. First, it receives and interprets the current goal given by the environment, and
second, it encapsulates and memorises the features and structure of a single city region. Thus, rather
than using a map, or an external memory, we propose an architecture with two recurrent pathways
that can effectively address a challenging navigation task in a single city as well as transfer to new
cities or regions by training only a new locale-specific pathway.

2 Related Work

Reward-driven navigation in a real-world environment is related to research in various areas of deep
learning, reinforcement learning, navigation and planning.

Learning from real-world imagery. Localising from only an image may seem impossible, but
humans can integrate visual cues to geolocate a given image with surprising accuracy, motivating ma-
chine learning approaches. For instance, convolutional neural networks (CNNs) achieve competitive
scores on the geolocation task [41] and CNN+LSTM architectures improve on this [15,31]]. Several
methods [5} 28], including DeepNav [6], use datasets collected using Street View or Open Street
Maps and solve navigation-related tasks using supervision. RatSLAM demonstrates localisation and
path planning over long distances using a biologically-inspired architecture [32]. The aforementioned
methods rely on supervised training with ground truth labels: with the exception of the compass, we
do not provide labels in our environment.

1http ://streetlearn.cc|(dataset) and https://github.com/deepmind/streetlearn (code).

http://streetlearn.cc
https://github.com/deepmind/streetlearn

Deep RL methods for navigation. Many RL-based approaches for navigation rely on simulators
which have the benefit of features like procedurally generated variations but tend to be visually
simple and unrealistic [3} 26, 39]]. To support sparse reward signals in these environments, recent
navigational agents use auxiliary tasks in training [33} 125/ 30]. Other methods learn to predict future
measurements or to follow simple text instructions [[16} 2322} [11]]; in our case, the goal is designated
using proximity to local landmarks. Deep RL has also been used for active localisation [10]. Similar
to our proposed architecture, [45] show goal-conditional indoor navigation with a simulated robot
and environment.

To bridge the gap between simulation and reality, researchers have developed more realistic, higher-
fidelity simulated environments [17, 29, 38| 42]]. However, in spite of their increasing photo-realism,
the inherent problems of simulated environments lie in the limited diversity of the environments and
the antiseptic quality of the observations. Photographic environments have been used to train agents
on short navigation problem in indoor scenes with limited scale [9, |1, [7,135]. Our real-world dataset
is diverse and visually realistic, comprising scenes with vegetation, pedestrians or vehicles, diverse
weather conditions and covering large geographic areas. However, we note that there are obvious
limitations of our environment: it does not contain dynamic elements, the action space is necessarily
discrete as it must jump between panoramas, and the street topology cannot be arbitrarily altered.

Deep RL for path planning and mapping. Several recent approaches have used memory or other
explicit neural structures to support end-to-end learning of planning or mapping. These include
Neural SLAM [44] that proposes an RL agent with an external memory to represent an occupancy
map and a SLAM-inspired algorithm, Neural Map [36]] which proposes a structured 2D memory for
navigation, Memory Augmented Control Networks [27], which uses a hierarchical control strategy,
and MERLIN, a general architecture that achieves superhuman results in novel navigation tasks [40]].
Other work [8|[10] explicitly provides a global map that is input to the agent. The architecture in [21]
uses an explicit neural mapper and planner for navigation tasks as well as registered pairs of landmark
images and poses. Similar to [20) 44]], they use extra memory that represents the ego-centric agent
position. Another recent work proposes a graph network solution [37]]. The focus of our paper is
to demonstrate that simpler architectures can explore and memorise very large environments using
target-driven visual navigation with a goal-conditional policy.

3 Environment

This section presents an interactive environment, named StreetLearn, constructed using Google Street
View, which provides a public AP Street View provides a set of geolocated 360° panoramic images
which form the nodes of an undirected graph. We selected a number of large regions in New York
City, Paris and London that contain between 7,000 and 65,500 nodes (and between 7,200 and 128,600
edges, respectively), have a mean node spacing of 10m, and cover a range of up to Skm (see Fig. [Tb).
We do not simplify the underlying connectivity, thus there are congested areas with complex occluded
intersections, tunnels and footpaths, and other ephemera. Although the graph is used to construct the
environment, the agent only sees the raw RGB images (see Fig.[Ta)).

3.1 Agent Interface and the Courier Task

An RL environment needs to specify the start space, observations, and action space of the agent as
well as the task reward. The agent has two inputs: the image x¢, which is a cropped, 60° square, RGB
image that is scaled to 84 x 84 pixels (i.e. not the entire panorama), and the goal description g;. The
action space is composed of five discrete actions: “slow” rotate left or right (+22.5°), “fast” rotate
left or right (£67.5°), or move forward—this action becomes a noop if there is not an edge in view
from the current agent pose. If there are multiple edges in the view cone of the agent, then the most
central one is chosen.

There are many options for how to specify the goal to the agent, from images to agent-relative
directions, to text descriptions or addresses. We choose to represent the current goal in terms of
its proximity to a set £ of fixed landmarks: £ = {(Laty, Longy)}, specified using the Lat/Long
(latitude and longitude) coordinate system. To represent a goal at (Lat{, Long]) we take a softmax
over the distances to the £ landmarks (see Fig. , thus for distances {d{, }; the goal vector

https://developers.google.com/maps/documentation/streetview/

https://developers.google.com/maps/documentation/streetview/

7
c
conv
goal code g,
ApyB CguD uE
u u u D g(Xt al-l,rl-l gl xl al-l,rt-l gl xl al-l,rl-l

a. GoalNav agent b. CityNav agent c. MultiCityNav agent
(a) Goal description using landmarks. . .
(b) Comparison of architectures.
Figure 2: (a) In the illustration of the goal description, we show a set of 5 nearby landmarks and 4
distant ones; the code g; is a vector with a softmax-normalised distance to each landmark. (b) Left:
GoalNav is a convolutional encoder plus policy LSTM with goal description input. Middle: CityNav
is a single-city navigation architecture with a separate goal LSTM and optional auxiliary heading (6).
Right: MultiCityNav is a multi-city architecture with individual goal LSTM pathways for each city.

contains g;; = exp(—ady,)/ >}, exp(—ad{,) for the ith landmark with a = 0.002 (which we
chose through cross-validation). This forms a goal description with certain desirable qualities: it is a
scalable representation that extends easily to new regions, it does not rely on any arbitrary scaling of
map coordinates, and it has intuitive meaning—humans and animals also navigate with respect to
fixed landmarks. Note that landmarks are fixed per map and we used the same list of landmarks across
all experiments; g, is computed using the distance to all landmarks, but by feeding these distances
through a non-linearity, the contribution of distant landmarks is reduced to zero. In the Supplementary
material, we show that the locally-continuous landmark-based representation of the goal performs
as well as the linear scalar representation (Lat{, Long{). Since the landmark-based representation
performs well while being independent of the coordinate system and thus more scalable, we use this
representation as canonical. Note that the goal description is not relative to the agent’s position and
only changes when a new goal is sampled. Locations of the 644 manually defined landmarks in New
York, London and Paris are given in the Supplementary material, where we also show that the density
of landmarks does not impact the agent performance.

In the courier task, which we define as the problem of navigating to a series of random locations in a
city, the agent starts each episode from a randomly sampled position and orientation. If the agent
gets within 100m of the goal (approximately one city block), the next goal is randomly chosen and
input to the agent. Each episode ends after 1000 agent steps. The reward that the agent gets upon
reaching a goal is proportional to the shortest path between the goal and the agent’s position when
the goal is first assigned; much like a delivery service, the agent receives a higher reward for longer
journeys. Note that we do not reward agents for taking detours, but rather that the reward in a given
level is a function of the optimal distance from start to goal location. As the goals get more distant
during the training curriculum, per-episode reward statistics should ideally reach and stay at a plateau
performance level if the agent can equally reach closer and further goals.

4 Methods

We formalise the learning problem as a Markov Decision Process, with state space S, action space
A, environment &, and a set of possible goals G. The reward function depends on the current goal
and state: R : S X § X A — R. The usual reinforcement learning objective is to find the policy
that maximises the expected return defined as the sum of discounted rewards starting from state
so with discount . In this navigation task, the expected return from a state s; also depends on
the series of sampled goals {gx }x. The policy is a distribution over actions given the current state
st and the goal g:: w(als,g) = Pr(a; = a|s; = s,9: = g). We define the value function to be
the expected return for the agent that is sampling actions from policy 7 from state s; with goal g;:
V7(s,9) = B[R] = B[X7 *recnlse = s,9¢ = gl.

We hypothesise the courier task should benefit from two types of learning: general, and locale-specific.
A navigating agent not only needs an internal representation that is general, to support cognitive

processes such as scene understanding, but also needs to organise and remember the features and
structures that are unique to a place. Therefore, to support both types of learning, we focus on neural
architectures with multiple pathways.

4.1 Architectures

The policy and the value function are both parameterised by a neural network which shares all
layers except the final linear outputs. The agent operates on raw pixel images xy, which are passed
through a convolutional network as in [34]]. A Long Short-Term Memory (LSTM) [24] receives the
output of the convolutional encoder as well as the past reward ;1 and previous action a;_1. The
three different architectures are described below. Additional architectural details are given in the
Supplementary Material.

The baseline GoalNav architecture (Fig. [2bp) has a convolutional encoder and policy LSTM. The key
difference from the canonical A3C agent [34] is that the goal description g, is input to the policy
LSTM (along with the previous action and reward).

The CityNav architecture (Fig. 2bp) combines the previous architecture with an additional LSTM,
called the goal LSTM, which receives visual features as well as the goal description. The CityNav
agent also adds an auxiliary heading () prediction task on the outputs of the goal LSTM.

The MultiCityNav architecture (Fig. 2bf) extends the CityNav agent to learn in different cities. The
remit of the goal LSTM is to encode and encapsulate locale-specific features and topology such that
multiple pathways may be added, one per city or region. Moreover, after training on a number of
cities, we demonstrate that the convolutional encoder and the policy LSTM become general enough
that only a new goal LSTM needs to be trained for new cities, a benefit of the modular approach [13].

Figure [2b]illustrates that the goal descriptor g, is not seen by the policy LSTM but only by the locale-
specific LSTM in the CityNav and MultiCityNav architectures (the baseline GoalNav agent has
only one LSTM, so we directly input g,). This separation forces the locale-specific LSTM to interpret
the absolute goal position coordinates, with the hope that it then sends relative goal information
(directions) to the policy LSTM. This hypothesis is tested in section 2.3 of the supplementary material.

As shown in [25/ 33} 116, [30]], auxiliary tasks can speed up learning by providing extra gradients as
well as relevant information. We employ a very natural auxiliary task: the prediction of the agent’s
heading 6;, defined as an angle between the north direction and the agent’s pose, using a multinomial
classification loss on binned angles. The optional heading prediction is an intuitive way to provide
additional gradients for training the convnet. The agent can learn to navigate without it, but we
believe that heading prediction helps learning the geometry of the environment; the Supplementary
material provides a detailed architecture ablation analysis and agent implementation details.

To train the agents, we use IMPALA [[18]], an actor-critic implementation that decouples acting and
learning. In our experiments, IMPALA results in similar performance to A3C [34]. We use 256
actors for CityNav and 512 actors for MultiCityNav, with batch sizes of 256 or 512 respectively, and
sequences are unrolled to length 50.

4.2 Curriculum Learning

Curriculum learning gradually increases the complexity of the learning task by presenting progres-
sively more difficult examples to the learning algorithm [4, |19} 43]]. We use a curriculum to help the
agent learn to find increasingly distant destinations. Similar to RL problems such as Montezuma’s
Revenge, the courier task suffers from very sparse rewards; unlike that game, we are able to define a
natural curriculum scheme. We start by sampling each new goal to be within 500m of the agent’s
position (phase 1). In phase 2, we progressively grow the maximum range of allowed destinations to
cover the full graph (3.5km in the smaller New York areas, or Skm for central London or Paris).

5 Results

In this section, we demonstrate and analyse the performance of the proposed architectures on the
courier task. We first show the performance of our agents in large city environments, next their

generalisation capabilities on a held-out set of goals. Finally, we investigate whether the proposed
approach allows transfer of an agent trained on a set of regions to a new and previously unseen region.

800 L 1 800 r — 800 L 1
L s G BRZ00M s
Joo | — Citynav oracle) 70 ' ' L 700 4 Enzo-az Gracle]
— CityNavnoskip |l by o ER 400m
4 i it oOraclel . L
600 1 — GoalNav e PR L wi ur 600 1 — Eaigm i NM
' ' — om, 1% coins
500 + F 500 4 £ £ [300 1 — ER 200m, 5% coins r
S Jy
. _ ER 200m, 10% coins
400 4 400 4 S: 400 4 Eg 200m, curr [
300 + F 300 4 Y F 300 + F
200 o E 200 4 : i b 200 4 t
100 100 4 , , L 100 | et
Heuristic ' ' Hi Y e e e i
0o PR A g 0 R SRR U .- R ‘ . ; ‘
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.2 0.4 0.6 0.8 1.0
1e9 109 1e9
(a) NYU (New York City) (b) Central London (c) Effect of reward shaping

Figure 3: Average per-episode rewards (y axis) are plotted vs. learning steps (x axis) for the courier
task. We compare the GoalNav agent, the CityNav agent, and the CityNav agent without skip
connection on the NYU environment (a), and the CityNav agent in London (b). We also give Oracle
performance and a Heuristic agent. A curriculum is used in London—we indicate the end of phase 1
(up to 500m) and the end of phase 2 (5000m). (c¢) Results of the CityNav agent on NYU, comparing
radii of early rewards (ER) vs. ER with random coins vs. curriculum with ER 200m and no coins.

5.1 Courier Navigation in Large, Diverse City Environments

We first show that the CityNav agent, trained with curriculum learning, succeeds in learning the
courier task in New York, London and Paris. We replicated experiments with 5 random seeds and
plot the mean and standard deviation of the reward statistic throughout the experimental results.
Throughout the paper, and for ease of comparison with experiments that include reward shaping, we
report only the rewards at the goal destination (goal rewards). Figure [3]compares different agents and
shows that the CityNav architecture with the dual LSTM pathways and the heading prediction task
attains a higher performance and is more stable than the simpler GoalNav agent. We also trained a
CityNav agent without the skip connection from the vision layers to the policy LSTM. While this
hurts the performance in single-city training, we consider it because of the multi-city transfer scenario
(see Section [5.4) where funeling all visual information through the locale-specific LSTM seems to
regularise the interface between the goal LSTM and the policy LSTM. We also consider two baselines
which give lower (Heuristic) and upper (Oracle) bounds on the performance. Heuristic is a random
walk on the street graph, where the agent turns in a random direction if it cannot move forward; if at

1000 I I I I I I
® Washington Square, New York (96/100)

0 W St Paul's Cathedral, London (80/98) - and
= | -
3 80O 4 ™ -
;] [] start
5 m B " Q S
B i m L
B e00 L s, 3 G
£ mtm 2
= I .
£ - - # 3
n 400 A ~
3 * .‘.o
7
= {]
5 200 k; m o 'o L
o
H L ‘r
0 T T T T
0 50 1000 1500 000 2500 000 3500

Initial straight-line distance to goal (m)

() (b)

Figure 4: (a) Number of steps required for the CityNav agent to reach a goal from 100 start locations
vs. the straight-line distance to the goal in metres. (b) CityNav performance in London (left panes)
and NYU (right panes). Top: examples of the agent’s trajectory during one 1000-step episode,
showing successful consecutive goal acquisitions. The arrows show the direction of travel of the
agent. Bottom: We visualise the agent’s value function over 100 trajectories with random starting
points and the same goal. Thicker and warmer colour lines correspond to higher value functions.

an intersection it will turn with a probability p = 0.95. Oracle uses the full graph to compute the
optimal path using breath-first search.

We visualise trajectories from the trained agent over two 1000 step episodes (Fig. [4b] (top row)). In
London, we see that the agent crosses a bridge to get to the first goal, then travels to goal 2, and the
episode ends before it can reach the third goal. Figure 4b|(bottom row) shows the value function
of the agent as it repeatedly navigates to a chosen destination (respectively, St Paul’s Cathedral in
London and Washington Square in New York).

To understand whether the agent has learned a policy over the full extent of the environment, we
plot the number of steps required by the agent to get to the goal. As the number grows linearly with
the straight-line distance to that goal, this result suggests that the agent has successfully learnt the
navigation policy on both cities (Fig. @al).

5.2 TImpact of Reward Shaping and Curriculum Learning

To better understand the environment, we present further experiments on reward, curriculum. Ad-
ditional analysis, including architecture ablations, the robustness of the agent to the choice of goal
representations, and position and goal decoding, are presented in the Supplementary Material.

Our navigation task assigns a goal to the agent; once the agent successfully navigates to the goal, a
new goal is given to the agent. The long distance separating the agent from the goal makes this a
difficult RL problem with sparse rewards. To simplify this challenging task, we investigate giving
early rewards (reward shaping) to the agent before it reaches the goal (we define goals with a 100m
radius), or to add random rewards (coins) to encourage exploration [3|33]]. Figure [3c|suggests that
coins by themselves are ineffective as our task does not benefit from wide explorations. At the same
time, large radii of reward shaping help as they greatly simplify the problem. We prefer curriculum
learning to reward shaping on large areas because the former approach keeps agent training consistent
with its experience at test time and also reduces the risk of learning degenerate strategies such as
ascending the gradient of increasing rewards to reach the goal, rather than learn to read the goal
specification g;.

As a trade-off between task realism and feasibility, and guided by the results in Fig. we decide
to keep a small amount of reward shaping (200m away from the goal) combined with curriculum
learning. The specific reward function we use is: ; = max (0, min(1, (dgg —dJ)/100)) x r9, where
df is the distance from the current position of the agent to the goal, dgr = 200 and 79 is the reward
that the agent will receive if it reaches the goal. Early rewards are given only once per panorama /
node, and only if the distance d} to the goal is decreasing (in order to avoid the agent developing a
behavior of harvesting early rewards around the goal rather than going directly towards the goal).

We choose a curriculum that starts by sampling the goal within a radius of 500m from the agent’s
location, and progressively grows that disc until it reaches the maximum distance an agent could travel
within the environment (e.g., 3.5km, and Skm in the NYU and London environments respectively) by
the end of the training. Note that this does not preclude the agent from going astray in the opposite
direction several kilometres away from the goal, and that the goal may occasionally be sampled close
to the agent. Hence, our curriculum scheme naturally combines easy with difficult cases [43], with
the latter becoming more common over the period of time.

5.3 Generalization on Held-out Goals

Navigation agents should, ideally, be able to generalise to unseen environments [[14]. While the nature
of our courier task precludes zero-shot navigation in a new city without retraining, we test the CityNav
agent’s ability to exploit local linearities of the goal representation to handle unseen goal locations.
We mask 25% of the possible goals and train on the remaining ones (Fig. . At test time we evaluate
the agent only on its ability to reach goals in the held-out areas. Note that the agent is still able to
traverse through these areas, it just never samples a goal there. More precisely, the held-out areas are
squares sized 0.01°, 0.005° or 0.0025° of latitude and longitude (roughly 1km x 1km, 0.5kmx0.5km
and 0.25km x0.25km). We call these grids respectively coarse (with few and large held-out areas),
medium and fine (with many small held-out areas).

In the experiments, we train the CityNav agent for 1B steps, and next freeze the weights of the
agent and evaluate its performance on held-out areas for 100M steps. Table |1| shows decreasing

TEST

. GRID | TRAIN
REwW FAIL T%

S1ZE REW

% S
ﬁ

%}\ J’#

% m ﬁ 5& MEDIUM | 637 293 20% 184

COARSE 623 164 38% 243

é §
% ﬁ. FINE 655 567 11% 229

Figure 5: Illustration of medium-sized held-out Table 1: CityNav agent generalization perfor-
grid with gray corresponding to training destina- mance (reward and fail metrics) on a set of
tions, black corresponding to held-out test desti- held-out goal locations. We also compute the
nations. Landmark locations are marked in red. half-trip time (T%), to reach halfway to the goal.

performance of the agents as the held-out area size increases. We believe that the performance
drops on the large held-out areas (medium and coarse grid size) because the model cannot process
new or unseen local landmark-based goal specifications, which is due to our landmark-based goal
representation: as Figure [5]shows, some coarse grid held-out areas cover multiple landmarks. To gain
further understanding, in addition to the Test Reward metric, we also use missed goals (Fail) and
half-trip time (T%) metrics. The missed goals metric measures the percentage of times goals were not
reached. The half-trip time measures the number of agent steps necessary to cover half the distance
separating the agent from the goal. While the agent misses more goal destinations on larger held-out
grids, it still manages to travel half the distance to the goal within a similar time, which suggests that
the agent has an approximate held-out goal representation that enables it to head towards it until it
gets close to the goal and the representation is no longer useful for the final approach.

5.4 Transfer in Multi-city Experiments

A critical test for our proposed method is to demonstrate that it can provide a mechanism for transfer
to new cities. By definition, the courier task requires a degree of memorization of the map, and
what we focused on was not zero-shot transfer, but rather the capability of models to generalize
quickly, learning to separate general ability from local knowledge when migrating to a new map. Our
motivation for transfer learning experiments comes from the goal of continual learning, which is
about learning new skills without forgetting older skills. As with humans, when our agent visits a
new city we would expect it to have to learn a new set of landmarks, but not have to re-learn its visual
representation, its behaviours, etc. Specifically, we expect the agent to take advantage of existing
visual features (convnet) and movement primitives (policy LSTM). Therefore, using the MultiCityNav
agent, we train on a number of cities (actually regions in New York City), freeze both the policy
LSTM and the convolutional encoder, and then train a new locale-specific pathway (the goal LSTM)
on a new city. The gradient that is computed by optimising the RL loss is passed through the policy
LSTM without affecting it and then applied only to the new pathway.

We compare the performance using three different training regimes, illustrated in Fig. [6a} Training on
only the target city (single training); training on multiple cities, including the target city, together
(joint training); and joint training on all but the target city, followed by training on the target city
with the rest of the architecture frozen (pre-train and transfer). In these experiments, we use the
whole Manhattan environment as shown in Figure|lb] and consisting of the following regions “Wall
Street”, “NYU”, “Midtown”, “Central Park” and “Harlem”. The target city is always the Wall Street
environment, and we evaluate the effects of pre-training on 2, 3 or 4 of the other environments. We
also compare performance if the skip connection between the convolutional encoder and the policy
LSTM is removed.

We can see from the results in Figure [6b]that not only is transfer possible, but that its effectiveness
increases with the number of the regions the network is trained on. Remarkably, the agent that is
pre-trained on 4 regions and then transferred to Wall Street achieves comparable performance to
an agent trained jointly on all the regions, and only slightly worse than single-city training on Wall
Street aloneﬂ This result supports our intuition that training on a larger set of environments results in
successful transfer. We also note that in the single-city scenario it is better to train an agent with a

3We observed that we could train a model jointly on 4 cities in fewer steps than when training 4 single-city
models.

1 A -

700 o > =

i
E -
& 600 i s 3
= B —
£ 500 =
[
© 400 -
% 300 Single-city
z - 1T Single-city, no skip [
= 00 4 + Train jointly |
L g X g Goal-less agent - Train jointly, no skip
& e M i
c. Heuristic —a— Transfer, no skip
0 I ;
(a) Diagram of transfer learning experiments. 3 4 5

‘Numher of cities in MultiCityMav agent)
(b) Transfer learning performance.

Figure 6: Left: Illustration of training regimes: (a) training on a single city (equivalent to CityNav);
(b) joint training over multiple cities with a dedicated per-city pathway and shared convolutional net
and policy LSTM; (c) joint pre-training on a number of cities followed by training on a target city
with convolutional net and policy LSTM frozen (only the target city pathway is optimised). Right:
Joint multi-city training and transfer learning performance of variants of the MultiCityNav agent,
evaluated only on the target city (Wall Street).

skip-connection, but this trend is reversed in the multi-city transfer scenario. We hypothesise that
isolating the locale-specific LSTM as a bottleneck is more challenging but reduces overfitting of the
convolutional features and enforces a more general interface to the policy LSTM. While the transfer
learning performance of the agent is lower than the stronger agent trained jointly on all the areas, the
agent significantly outperforms the baselines and demonstrates goal-dependent navigation.

6 Conclusion

Navigation is an important cognitive task that enables humans and animals to traverse a complex world
without maps. We have presented a city-scale real-world environment for training RL navigation
agents, introduced and analysed a new courier task, demonstrated that deep RL algorithms can
be applied to problems involving large-scale real-world data, and presented a multi-city neural
network agent architecture that demonstrates transfer to new environments. A multi-city version
of the Street View based RL environment, with carefully processed images provided by Google
Street View (i.e., blurred faces and license plates, with a mechanism for enforcing image take-
down requests) has been released for Manhattan and Pittsburgh and is accessible from http://
streetlearn.ccand https://github.com/deepmind/streetlearn. The project webpage at
http://streetlearn. cc also contains resources on how to build and train an agent. Future work
will involve learning landmarks from images and scaling up the navigation and path-planning thanks
to hierarchical RL approaches.

Acknowledgements

The authors wish to acknowledge Andras Banki-Horvath for open-sourcing the StreetLearn envi-
ronment, Lasse Espeholt and Hubert Soyer for technical help with the IMPALA algorithm, Razvan
Pascanu, Ross Goroshin, Pushmeet Kohli and Nando de Freitas for their feedback, Chloe Hillier,
Razia Ahamed and Vishal Maini for help with the project, and the Google Street View team (Tilman
Reinhardt, Wenfeng Li, Ben Mears, Karen Guo, Oliver Metzger, Jayanth Nayak) as well as Richard
Ives and Ashwin Kakarla for their support in accessing the data.

References

[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Siinderhauf, Tan
Reid, Stephen Gould, and Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real environments. arXiv preprint
arXiv:1711.07280, 2017.

http://streetlearn.cc
http://streetlearn.cc
https://github.com/deepmind/streetlearn
http://streetlearn.cc

[2] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al.
Vector-based navigation using grid-like representations in artificial agents. Nature, page 1,
2018.

[3] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Kiittler, Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, et al. Deepmind lab. arXiv
preprint arXiv:1612.03801, 2016.

[4] Yoshua Bengio, Jérdme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41—48.
ACM, 2009.

[5] Rodrigo F Berriel, Lucas Tabelini Torres, Vinicius B Cardoso, Ranik Guidolini, Claudine Badue,
Alberto F De Souza, and Thiago Oliveira-Santos. Heading direction estimation using deep
learning with automatic large-scale data acquisition. 2018.

[6] Samarth Brahmbhatt and James Hays. Deepnav: Learning to navigate large cities. arXiv
preprint arXiv:1701.09135, 2017.

[7] Jake Bruce, Niko Siinderhauf, Piotr Mirowski, Raia Hadsell, and Michael Milford. One-shot rein-
forcement learning for robot navigation with interactive replay. arXiv preprint arXiv:1711.10137,
2017.

[8] Gino Brunner, Oliver Richter, Yuyi Wang, and Roger Wattenhofer. Teaching a machine to read
maps with deep reinforcement learning. arXiv preprint arXiv:1711.07479, 2017.

[9] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Nie3ner, Manolis
Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in
indoor environments. arXiv preprint arXiv:1709.06158, 2017.

[10] Devendra Singh Chaplot, Emilio Parisotto, and Ruslan Salakhutdinov. Active neural localization.
International Conference on Learning Representations, 2018.

[11] Devendra Singh Chaplot, Kanthashree Mysore Sathyendra, Rama Kumar Pasumarthi, Dheeraj
Rajagopal, and Ruslan Salakhutdinov. Gated-attention architectures for task-oriented language
grounding. arXiv preprint arXiv:1706.07230, 2017.

[12] Christopher J Cueva and Xue-Xin Wei. Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization. arXiv preprint arXiv:1803.07770,
2018.

[13] Coline Devin, Abhishek Gupta, Trevor Darrell, Pieter Abbeel, and Sergey Levine. Learning
modular neural network policies for multi-task and multi-robot transfer. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 2169-2176. IEEE, 2017.

[14] Vikas Dhiman, Shurjo Banerjee, Brent Griffin, Jeffrey M Siskind, and Jason J Corso. A critical
investigation of deep reinforcement learning for navigation. arXiv preprint arXiv:1802.02274,
2018.

[15] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini
Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2625-2634, 2015.

[16] Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future. arXiv preprint
arXiv:1611.01779, 2016.

[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lépez, and Vladlen Koltun. Carla:
An open urban driving simulator. arXiv preprint arXiv:1711.03938, 2017.

[18] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, Shane Legg, and Koray Kavukcuoglu.
Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv
preprint arXiv:1802.01561, 2018.

10

[19] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Auto-
mated curriculum learning for neural networks. arXiv preprint arXiv:1704.03003, 2017.

[20] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra Malik. Cogni-
tive mapping and planning for visual navigation. arXiv preprint arXiv:1702.03920, 2017.

[21] Saurabh Gupta, David Fouhey, Sergey Levine, and Jitendra Malik. Unifying map and landmark
based representations for visual navigation. arXiv preprint arXiv:1712.08125, 2017.

[22] Karl Moritz Hermann, Felix Hill, Simon Green, Fumin Wang, Ryan Faulkner, Hubert Soyer,
David Szepesvari, Wojtek Czarnecki, Max Jaderberg, Denis Teplyashin, et al. Grounded
language learning in a simulated 3d world. arXiv preprint arXiv:1706.06551, 2017.

[23] Felix Hill, Karl Moritz Hermann, Phil Blunsom, and Stephen Clark. Understanding grounded
language learning agents. arXiv preprint arXiv:1710.09867, 2017.

[24] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[25] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[26] Michat Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaskowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In Computational
Intelligence and Games (CIG), 2016 IEEE Conference on, pages 1-8. IEEE, 2016.

[27] Arbaaz Khan, Clark Zhang, Nikolay Atanasov, Konstantinos Karydis, Vijay Kumar, and
Daniel D Lee. Memory augmented control networks. arXiv preprint arXiv:1709.05706,
2017.

[28] Aditya Khosla, Byoungkwon An An, Joseph J Lim, and Antonio Torralba. Looking beyond
the visible scene. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3710-3717, 2014.

[29] Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi.
Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

[30] Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforcement
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[31] Mateusz Malinowski, Marcus Rohrbach, and Mario Fritz. Ask your neurons: A deep learning
approach to visual question answering. International Journal of Computer Vision, 125(1-3):110-
135, 2017.

[32] Michael J Milford, Gordon F Wyeth, and David Prasser. Ratslam: a hippocampal model
for simultaneous localization and mapping. In Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, volume 1, pages 403—408. IEEE, 2004.

[33] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia
Hadsell. Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673,
2016.

[34] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine Learning, pages 1928-1937,
2016.

[35] Kaichun Mo, Haoxiang Li, Zhe Lin, and Joon-Young Lee. The adobeindoornav dataset: Towards
deep reinforcement learning based real-world indoor robot visual navigation. arXiv preprint
arXiv:1802.08824, 2018.

[36] Emilio Parisotto and Ruslan Salakhutdinov. Neural map: Structured memory for deep reinforce-
ment learning. arXiv preprint arXiv:1702.08360, 2017.

11

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological
memory for navigation. arXiv preprint arXiv:1803.00653, 2018.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity visual
and physical simulation for autonomous vehicles. In Field and Service Robotics, pages 621-635.
Springer, 2018.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. A deep
hierarchical approach to lifelong learning in minecraft. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised
predictive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

Tobias Weyand, Ilya Kostrikov, and James Philbin. Planet-photo geolocation with convolutional
neural networks. In European Conference on Computer Vision, pages 37-55. Springer, 2016.

Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

Jingwei Zhang, Lei Tai, Joschka Boedecker, Wolfram Burgard, and Ming Liu. Neural slam:
Learning to explore with external memory. arXiv preprint arXiv:1706.09520, 2017.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement learning. In
2017 IEEE International Conference on Robotics and Automation, ICRA, pages 3357-3364,
2017.

12

