
Supplementary Material

Analysis of transition matrices

The transition matrix K(τ) = [kij(τ)] ∈ R
m×m is defined as

kij(τ) = P(xt+τ ∈ state j|xt ∈ state i).

Then, according to (1), we have

kij(τ) =

∫

P(xt+τ = y|xt ∈ state i) · P(xt+τ ∈ state j|xt+τ = y)dy

=

∫

qi(y; τ)χj(y) dy,

and
kij(nτ) = [K(τ)n]ij .

If χ,q satisfy the conditions

χi(x) ≥ 0,
∑

j χj(x) = 1,
qi(x; τ) ≥ 0,

∫

qi(y; τ)dy = 1, ∀x, i,

we have kij(τ) ≥ 0 and
∑

j kij(τ) = 1, i.e., K(τ) computed from χ,q is a valid transition

probability matrix.

For the distribution µ defined in (4),
∫

P(xt+τ = y|xt = x) · µ(x)dx =

∫

q(y; τ)⊤χ(x) · q(x; τ)⊤πdx

= q(y; τ)⊤π

= µ(y),

which shows µ is the stationary distribution of model (1).

VAMP-E training of deep MSMs

An alternative to ML training is to employ a score from the Variational Approach of Markov Pro-
cesses (VAMP) [31]. The VAMP-E score has the advantage over other VAMP scores employed
previously [15] that we do not have to specify the rank of the model [31]. The VAMP-E score is
computed as

RE = tr
(

2C01Γ̄
−1
−C00Γ̄

−1
C11Γ̄

−1
)

(14)

which depends on covariance matrices estimated from the transformed data:

[C00]ij = Et[χi(xt)χj(xt)]

[C11]ij = Et[γi(xt+τ )γj(xt+τ )]

[C01]ij = Et[χi(xt)γj(xt+τ )]

Γ̄ = diag(γ̄1, . . . , γ̄m).

We can use the standard empirical estimators to compute Et. We can then train a deep MSM using
the structure shown in Fig. 1 by maximizing (14).

Using the Energy Distance to train generative networks

The Energy Distance (ED) [28] is a metric that measures the difference between the distributions of
two real valued random vectors x and y, and is defined as

DE(P(x),P(y)) = E [2 ‖x− y‖ − ‖x− x′‖ − ‖y − y′‖] . (15)

Here, x′, y′ are independently distributed according to the distributions of y, z. Therefore, the con-
ditional energy distance given in (12) is equal to the mean value of the energy distance between the
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conditional distributions P(xt+τ |xt) and P(x̂t+τ |xt) for all xt, and satisfies that D ≥ 0 and D = 0
if and only if P(xt+τ |xt) = P(x̂t+τ |xt) for all xt.

Noticing that E
[
∥

∥xt+τ − x′
t+τ

∥

∥

]

is a constant for a given system. We can therefore approximate D
as

D = E
[

‖x̂t+τ − xt+τ‖+
∥

∥x̂′

t+τ − xt+τ

∥

∥−
∥

∥x̂t+τ − x̂′

t+τ

∥

∥

]

+ const

= E[dt] + const

≈
1

N

∑

t

dt + const

where

dt = ‖G(eIt , ǫt)− xt+τ‖+
∥

∥G(eI′

t
, ǫ′t)− xt+τ

∥

∥−
∥

∥G(eIt , ǫt)−G(eI′

t
, ǫ′t)

∥

∥ (16)

Here, N = T − τ is the number of all transition pairs (xt, xt+τ ) present in the trajectory data, It, I
′
t

are discrete random variables with P(It = i) = P(I ′t = i) = χi(xt), and ǫt, ǫ
′
t are i.i.d random

vectors whose components have Gaussian normal distributions.

The gradient of D with respect to parameters WG of the generative model G can be unbias-
edly estimated by the mean value of ∂dt/∂WG. But for parameters Wχ of χ, ∂dt/∂Wχ does
not exist because It, I

′
t is discrete-valued. In order to overcome this problem, we assume here

χ(x) = SoftMax [o(x)] is modeled by a neural network with the softmax output layer. Then

∂

∂ok
E[dt|xt, xt+τ ] =

∑

i,j

χi(x)χj(x) (1i=k + 1j=k − 2χk(xt))

·E [‖G(ei, ǫt)− xt+τ‖+ ‖G(ej , ǫ
′

t)− xt+τ‖ − ‖G(ei, ǫt)−G(ej , ǫ
′

t)‖]

= E
[(

1It=k + 1I′

t
=k − 2χk(xt)

)

· dt
]

,

which leads to the estimation

∂D

∂Wχ

=
∑

k

∂ok
∂Wχ

∂D

∂ok

≈
1

N

∑

t

dt
∑

k

(

1It=k + 1I′

t
=k − 2χk(xt)

) ∂ok
∂Wχ

.

By using the stochastic gradient over mini-batch over the entire data, we can train the generative
MSM as follows the subsequent algorithm:

1. Randomly choose a mini-batch {(x(n), y(n))}
B
i=1 ⊂ {(xt, xt+τ )} with batch size B.

2. Draw I(n), I
′

(n) with

P(I(n) = i) = P(I ′(n) = i) = χi(x̃(n)), (17)

and draw ǫ(n), ǫ
′

(n) according to the Gaussian distribution for n = 1, . . . , B.

3. Compute

δWG =
1

B

B
∑

n=1

∂d(n)

∂WG

δWχ =
1

B

B
∑

i=1

d(n) ·
m
∑

k=1

(

1I(n)=k + 1I′

(n)
=k − 2χk(x(n))

) ∂ok(x(n))

∂Wχ

(18)

with

d(n) =
∥

∥G(eI(n)
, ǫ(n))− y(n)

∥

∥+
∥

∥

∥
G(eI′

(n)
, ǫ′(n))− y(n)

∥

∥

∥
−
∥

∥

∥
G(eI(n)

, ǫ(n))−G(eI′

(n)
, ǫ′(n))

∥

∥

∥

(19)
and χ = SoftMax [o].

4. Update

WG ←WG − ηδWG

WP ←WP − ηδWP

with a learning rate η.
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Motivation of Energy Distance as the training metric

The major advantages of ED are:

1. It can be unbiasedly estimated from the data without an extra “adversarial” network as in
GANs.

2. Unlike the KL divergence (see example 1 in [1]), ED does not diverge in the case of few
data points (small batch sizes) or low populated probability density areas.

3. As a specific Maximum Mean Discrepancy (MMD), ED can avoid the problem of popular
kernel-MMDs that the gradients of cost functions are vanished if the generated samples
are far away from the training data, and therefore achieve higher efficiency when learning
generative models.

Network architecture and training procedure

All neural networks representing the functions χ, γ and G for the Prinz potential are using 64
nodes in all 4 hidden layers and batch normalization after each layer [9]. Rectified linear activation
functions (ReLUs) are used, except for the output layer of χ which uses SoftMax and the output
layer of G which has a linear activation function. Both χ and γ have 4 output nodes, and G receives
a four-dimensional 1-hot-encoding of the metastable state plus a four-dimensional noise vector as
inputs. Optimization is done using Adam [10], with early stopping checking if the validation score
is not increasing over 5 epochs. The learning rate for the training of χ, γ is λ = 10−3, and for G
λ = 10−5 with a batchsize of 100. We are using a time-lag of τ = 5 frames.

For alanine dipeptide, χ and γ consist both of 3 residual blocks [7] built of 3 layers all having 100
nodes, with exponential linear units (ELUs) [5], and batch normalization for each layer. The output
layer has 6 output nodes, where χ uses a softmax activation function and γ a RELU, respectively.
In order to find all slow processes, it was necessary to pre-train χ with the VAMPnet method [15].
The generator G uses 6 noise inputs and a six-dimensional 1-hot-encoding of the metastable state
and the ML-ED scheme. Networks are trained with Adam until the validation score converges with
a learning rate of λ = 10−5 for χ, γ using 8000 as batchsize and λ = 10−4 for G using 1500 frames
for a batch. All subsequent analyses that use a fixed lag time employ τ = 1ps.

For finding the hyperparameter we performed a restricted grid search, which showed comparing the
KL divergence between the modeled distributions that the result does only marginally depend on the
choice of the parameters (see 1 for an example).

Supplementary Figures

a b c d e

Supplementary Fig. 1: χ(x) of the Prinz potential (a) Potential energy as a function of position x.
(b) Maximum Likelihood (c) four state MSM (d) 10 state MSM (e) energy distance.
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depth width dim random KL div. / 10−2

2 16 1 1.7
2 16 2 2.2
2 16 4 2.3
2 32 1 2.2
2 32 2 2.2
2 32 4 2.5
2 64 1 2.4
2 64 2 2.7
2 64 4 2.8
2 128 1 2.7
2 128 2 3.2
2 128 4 3.8
4 16 1 2.0
4 16 2 1.6
4 16 4 2.8
4 32 1 1.7
4 32 2 3.4
4 32 4 3.2
4 64 1 2.3
4 64 2 2.9
4 64 4 3.5
4 128 1 1.8
4 128 2 2.8
4 128 4 1.8
6 16 1 1.5
6 16 2 3.5
6 16 4 2.5
6 32 1 3.3
6 32 2 1.9
6 32 4 2.3
6 64 1 1.5
6 64 2 2.7
6 64 4 2.5
6 128 1 1.6
6 128 2 3.1
6 128 4 1.7
8 16 1 1.8
8 16 2 1.9
8 16 4 2.0
8 32 1 1.6
8 32 2 2.2
8 32 4 2.7
8 64 1 1.2
8 64 2 2.4
8 64 4 2.2
8 128 1 1.8
8 128 2 2.0
8 128 4 1.6

Table 1: Hyperparameter comparison of the KL divergence of the generated stationary distribution
with respect to the true one for the Prinz potential varying the depth, the width, and the random input
dimension taking the mean over 5 runs.
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Supplementary Fig. 2: Conditional transition distributions for Alanine dipeptide starting from dif-
ferent metastable states. The starting distribution are sampled from the empirical distribution in the
yellow region around the red point. (a) Distribution sampled from the MD simulation. (b) Distribu-
tion generated by the DeepGenMSM.
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