Deep Generative Markov State Models

Hao Wu'2*, Andreas Mardt'*, Luca Pasquali' % and Frank Noe!"
1Dept. of Mathematics and Computer Science, Freie Universitit Berlin, 14195 Berlin, Germany
2School of Mathematical Sciences, Tongji University, Shanghai, 200092, P.R. China

Abstract

We propose a deep generative Markov State Model (DeepGenMSM) learning
framework for inference of metastable dynamical systems and prediction of tra-
jectories. After unsupervised training on time series data, the model contains (i)
a probabilistic encoder that maps from high-dimensional configuration space to a
small-sized vector indicating the membership to metastable (long-lived) states, (ii)
a Markov chain that governs the transitions between metastable states and facili-
tates analysis of the long-time dynamics, and (iii) a generative part that samples
the conditional distribution of configurations in the next time step. The model
can be operated in a recursive fashion to generate trajectories to predict the sys-
tem evolution from a defined starting state and propose new configurations. The
DeepGenMSM is demonstrated to provide accurate estimates of the long-time ki-
netics and generate valid distributions for molecular dynamics (MD) benchmark
systems. Remarkably, we show that DeepGenMSMs are able to make long time-
steps in molecular configuration space and generate physically realistic structures
in regions that were not seen in training data.

1 Introduction

Complex dynamical systems that exhibit events on vastly different timescales are ubiquitous in sci-
ence and engineering. For example, molecular dynamics (MD) of biomolecules involve fast vibra-
tions on the timescales of 10~!® seconds, while their biological function is often related to the rare
switching events between long-lived states on timescales of 10~3 seconds or longer. In weather and
climate systems, local fluctuations in temperature and pressure fields occur within minutes or hours,
while global changes are often subject to periodic motion and drift over years or decades. Primary
goals in the analysis of complex dynamical systems include:

1. Deriving an interpretable model of the essential long-time dynamical properties of these
systems, such as the stationary behavior or lifetimes/cycle times of slow processes.

2. Simulating the dynamical system, e.g., to predict the system’s future evolution or to sample
previously unobserved system configurations.

A state-of-the-art approach for the first goal is to learn a Markovian model from time-series data,
which is theoretically justified by the fact that physical systems are inherently Markovian. In prac-
tice, the long-time behavior of dynamical systems can be accurately described in a Markovian model
when suitable features or variables are used, and when the time resolution of the model is sufficiently
coarse such that the time-evolution can be represented with a manageable number of dynamical
modes [24, 11]. In stochastic dynamical systems, such as MD simulation, variants of Markov state
models (MSMs) are commonly used [3, 25, 22]. In MSMs, the configuration space is discretized,
e.g., using a clustering method, and the dynamics between clusters are then described by a matrix

“H. Wu, A. Mardt and L. Pasquali equally contributed to this work.
T Author to whom correspondence should be addressed. Electronic mail: frank.noe @fu-berlin.de.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

of transition probabilities [22]. The analogous approach for deterministic dynamical systems such
as complex fluid flows is called Koopman analysis, where time propagation is approximated by a
linear model in a suitable function space transformation of the flow variables [16, 26, 29, 4]. The
recently proposed VAMPnets learn an optimal feature transformation from full configuration space
to a low-dimensional latent space in which the Markovian model is built by variational optimization
of a neural network [15]. When the VAMPnet has a probabilistic output (e.g. SoftMax layer), the
Markovian model conserves probability, but is not guaranteed to be a valid transition probability
matrix with nonnegative elements. A related work for deterministic dynamical systems is Extended
Dynamic Mode Decomposition with dictionary learning [13]. All of these methods are purely ana-
Iytic, i.e. they learn a reduced model of the dynamical system underlying the observed time series,
but they miss a generative part that could be used to sample new time series in the high-dimensional
configuration space.

Recently, several learning frameworks for dynamical systems have been proposed that partially ad-
dress the second goal by including a decoder from the latent space back to the space of input features.
Most of these methods primarily aim at obtaining a low-dimensional latent space that encodes the
long-time behavior of the system, and the decoder takes the role of defining or regularizing the learn-
ing problem [30, 8, 14, 19, 23]. In particular none of these models have demonstrated the ability to
generate viable structures in the high-dimensional configuration space, such as a molecular struc-
ture with realistic atom positions in 3D. Finally, some of these models learn a linear model of the
long-timescale dynamics [14, 19], but none of them provide a probabilistic dynamical model that
can be employed in a Bayesian framework. Learning the correct long-time dynamical behavior with
a generative dynamical model is difficult, as demonstrated in [8].

Here, we address these aforementioned gaps by providing a deep learning framework that learns,
based on time-series data, the following components:

1. Probabilistic encodings of the input configuration to a low-dimensional latent space by
neural networks, z; — x/(x¢).

2. A true transition probability matrix K describing the system dynamics in latent space for a
fixed time-lag 7:

Ex(z¢4r)] =E [KT(T)X(%‘,)] .

The probabilistic nature of the method allows us to train it with likelihood maximization
and embed it into a Bayesian framework. In our benchmarks, the transition probability
matrix approximates the long-time behavior of the underlying dynamical system with high
accuracy.

3. A generative model from latent vectors back to configurations, allowing us to sample the
transition density P(z;,|z;) and thus propagate the model in configuration space. We
show for the first time that this allows us to sample genuinely new and valid molecular
structures that have not been included in the training data. This makes the method promis-
ing for performing active learning in MD [2, 21], and to predict the future evolution of the
system in other contexts.

2 Deep Generative Markov State Models

Given two configurations z,y € R?, where R? is a potentially high-dimensional space of system
configurations (e.g. the positions of atoms in a molecular system), Markovian dynamics are defined
by the transition density P(z;4, = y|x; = x). Here we represent the transition density between m
states in the following form (Fig. 1):

P24 = ylo, = x) = x(x) "q(y; 7) = ZXi(x)Qi(yQT)- (D

Here, x(2) " = [x1(2), ..., X.n ()] represent the probability of configuration to be in a metastable
(long-lived) state ¢

Xi(z) = P(z; € state i | z; = z).

Consequently, these functions are nonnegative (x;(z) > 0Vz) and sumup toone (3, x;(x) = 1V).
The functions x(z) can, e.g., be represented by a neural network mapping from R? to R™ with a

Deep Generative MSM Rewiring Trick

sample Markov
L d .
X Enc)céder E X(xt) expectation model

Markov

model H M4 =~
. o |Generator| X(Xt)s s X(xH—T)

Xt+1 Encs){der ¢ X(Xeyr) : q Xtir
° noise e ba
. t+T

Figure 1: Schematic of Deep Generative Markov State Models (DeepGenMSMs) and the rewiring
trick. The function Y, here represented by neural networks, maps the time-lagged input configura-
tions to metastable states whose dynamics are governed by a transition probability matrix K. The
generator samples the distribution x,, ~ q by employing a generative network that can produce
novel configurations (or by resampling z; , in DeepResampleMSMs). The rewiring trick consists
of reconnecting the probabilistic networks q and x such that the time propagation in latent space
can be sampled: From the latent state x(x;), we generate a time-lagged configuration x; . using
q, and then transform it back to the latent space, x(z¢4+,). Each application of the rewired net-
work samples the latent space transitions, thus providing the statistics to estimate the Markov model
transition matrix K(7), which is needed for analysis. This trick allows K(7) to be estimated with
desired constraints, such as detailed balance.

SoftMax output layer. Additionally, we have the probability densities
¢i(y; 7) = P(244, = ylz, € state i)

that define the probability density of the system to “land” at configuration y after making one time-
step. We thus briefly call them “landing densities”.

2.1 Kinetics

Before addressing how to estimate x and q from data, we describe how to perform the standard
calculations and analyses that are common in the Markov modeling field for a model of the form

(D).

In Markov modeling, one is typically interested in the kinetics of the system, i.e. the long-time
behavior of the dynamics. This is captured by the elements of the transition matrix K = [k;;]
between metastable states. K can be computed as follows: the product of the probability density
to jump from metastable ¢ to a configuration y and the probability that this configuration belongs to
metastable state j, integrated over the whole configuration space.

Fis(r) = / 4T () d. @)

Practically, this calculation is implemented via the “rewiring trick” shown in Fig. 1, where the
configuration space integral is approximated by drawing samples from the generator. The estimated
probabilistic functions q and x define, by construction, a valid transition probability matrix K,
ie. kij > 0and), ki; = 1. As aresult, the proposed models have a structural advantage over
other high-accuracy Markov state modeling approaches that define metastable states in a fuzzy or
probabilistic manner but do not guarantee a valid transition matrix [12, 15] (See Supplementary
Material for more details.).

The stationary (equilibrium) probabilities of the metastable states are given by the vector w = [m]
that solves the eigenvalue problem with eigenvalue A\; = 1:

=K', 3)
and the stationary (equilibrium) distribution in configuration space is given by:
py) = migi(y;7) = a(y; 7). 4)

Finally, for a fixed definition of states via), the self-consistency of Markov models may be tested
using the Chapman-Kolmogorov equation

K"(r) = K(n1) 5)

which involves estimating the functions q(y; n7) at different lag times n7 and comparing the re-
sulting transition matrices with the nth power of the transition matrix obtained at lag time 7. A
consequence of Eq. (5) is that the relaxation times

-

ti T)= —/T7"7"""T"7"
)= "tog)]
are independent of the lag time 7 at which K is estimated [27]. Here, \; with ¢ = 2, ..., m are the
nontrivial eigenvalues of K.

(6)

2.2 Maximum Likelihood (ML) learning of DeepResampleMSM

Given trajectories {x;}¢=1,.. 1, how do we estimate the membership probabilities x(z), and how
do we learn and sample the landing densities q(y)? We start with a model, where q(y) are di-
rectly derived from the observed (empirical) observations, i.e. they are point densities on the input
configurations {x; }, given by:

ai(y) = %%(y)p(y)- @)

Here, p(y) is the empirical distribution, which in the case of finite sample size is simply p(y) =

ﬁ tT;lT 0(y — x4-), and 7;(y) is a trainable weighting function. The normalization factor

_ T—71
Vi = ﬁ > o=t Vi(@egr) = Eyop, [vi(y)] ensures fy qi(y)dy = 1.

Now we can optimize x; and -; by maximizing the likelihood (ML) of generating the pairs
(¢, x14,) observed in the data. The log-likelihood is given by:

T—1 m
LL=> In (Z Xz'(xt)wl%(xtw)) ; ®)
t=1 i=1
and is maximized to train a deep MSM with the structure shown in Fig. 1.

Alternatively, we can optimize Y; and <y; using the Variational Approach for Markov Processes
(VAMP) [31]. However, we found the ML approach to perform significantly better in our tests, and
we thus include the VAMP training approach only in the Supplementary Material without elaborat-
ing on it further.

Given the networks x and -+, we compute q from Eq. (7). Employing the rewiring trick shown in
Fig. 1 results in computing the transition matrix by a simple average over all configurations:

T—1

1
K=+ ; A(Trpr)x(zer) ")

The deep MSMs described in this section are neural network generalizations of traditional MSMs
— they learn a mapping from configurations to metastable states, where they aim obtaining a good
approximation of the kinetics of the underlying dynamical system, by means of the transition matrix
K. However, since the landing distribution q in these methods is derived from the empirical distribu-
tion (7), any generated trajectory will only resample configurations from the input data. To highlight
this property, we will refer to the deep MSMs with the present methodology as DeepResampleMSM.

2.3 Energy Distance learning of DeepGenMSM

In contrast to DeepResampleMSM, we now want to learn deep generative MSM (DeepGenMSM),
which can be used to generate trajectories that do not only resample from input data, but can produce
genuinely new configurations. To this end, we train a generative model to mimic the empirical
distribution ¢;(y):

y = Glej,€), (10)
where the vector e; € R™ is a one-hot encoding of the metastable state, and € is a i.i.d. random
vector where each component samples from a Gaussian normal distribution.

Here we train the generator G' by minimizing the conditional Energy Distance (ED), whose choice is
motivated in the Supplementary Material. The standard ED, introduced in [28], is a metric between
the distributions of random vectors, defined as

D (P(x),P(y)) =E[2]lz -yl = [lo — 2" — lly = /Il (11)

for two real-valued random variables x and y. z, ', y, v’ are independently distributed according to
the distributions of x, y. Based on this metric, we introduce the conditional energy distance between
the transition density of the system and that of the generative model:

D £ E[Dg(P(Xeyr|ze), P(Reyr|ze)) |24]
= E[2)|@4r — Begrll — [|Begr — Bpr || — ||Teer — 2ipr]]] (12)

Here x;,, and 2}, . are distributed according to the transition density for given x; and &4, &},
are independent outputs of the generative model conditioned on z;. Implementing the expectation
value with an empirical average results in an estimate for D that is unbiased, up to an additive
constant. We train G to minimize D. See Supplementary Material for detailed derivations and the
training algorithm used.

After training, the transition matrix can be obtained by using the rewiring trick (Fig. 1), where the
configuration space integral is sampled by generating samples from the generator:

[K]ij = E [x; (G(ei, €))] - (13)

3 Results

Below we establish our framework by applying it to two well-defined benchmark systems that ex-
hibit metastable stochastic dynamics. We validate the stationary distribution and kinetics by comput-
ing x(x), q(y), the stationary distribution x(y) and the relaxation times ¢;(7) and comparing them
with reference solutions. We will also test the abilities of DeepGenMSMs to generate physically
valid molecular configurations.

The networks were implemented using PyTorch [20] and Tensorflow [6]. For the full code and all
details about the neural network architecture, hyper-parameters and training algorithm, please refer
to https://github.com/markovmodel/deep_gen_msm.

3.1 Diffusion in Prinz potential

We first apply our framework to the time-discretized diffusion process x1a; = —AtVV (z¢) +

V2Atn; with At = 0.01 in the Prinz potential V' (z;) introduced in [22] (Fig. 2a). For this system
we know exact results for benchmarking: the stationary distribution and relaxation timescales (black
lines in Fig. 2b,c) and the transition density (Fig. 2d). We simulate trajectories of lengths 250, 000
and 125, 000 time steps for training and validation, respectively. For all methods, we repeat the data
generation and model estimation process 10 times and compute mean and standard deviations for
all quantities of interest, which thus represent the mean and variance of the estimators.

The functions x, v and G are represented with densely connected neural networks. The details of
the architecture and the training procedure can be found in the Supplementary Information.

We compare DeepResampleMSMs and DeepGenMSMs with standard MSMs using four or ten
states obtained with k-means clustering. Note that standard MSMs do not directly operate on con-
figuration space. When using an MSM, the transition density (Eq. 1) is thus simulated by:
z) ~Ki. . ~p;
Tt X(l}) T — J P;(;/) Lt

i.e., we find the cluster 7 associated with a configuration z;, which is deterministic for regular MSMs,
then sample the cluster j at the next time-step, and sample from the conditional distribution of
configurations in cluster j to generate s ..

Both DeepResampleMSMs trained with the ML method and standard MSMs can reproduce the
stationary distribution within statistical uncertainty (Fig. 2b). For long lag times 7, all methods con-
verge from below to the correct relaxation timescales (Fig. 2c), as expected from theory [22, 18].
When using equally many states (here: four), the DeepResampleMSM has a much lower bias in the
relaxation timescales than the standard MSM. This is expected from approximation theory, as the
DeepResampleMSMs represents the four metastable states with a meaningful, smooth membership
functions x (), while the four-state MSM cuts the memberships hard at boundaries with low sam-
ple density (Supplementary Fig. 1). When increasing the number of metastable states, the bias of
all estimators will reduce. An MSM with ten states is needed to perform approximately equal to a
four-state DeepResampleMSM (Fig. 2c). All subsequent analyses use a lag time of 7 = 5.

asio c 102 d 100 e 107
B s / u
2
Bos ; g _ -
I~ 3 o) B
g © 2 E
02 ~ c 01072
% o0 8 . s
L —— 0 1 T o
S _ 2
b oo a ——— MSM 10 g
2 — ML P 3
3 = —— MSM_4 S 107
ooy = — msM_10 | @ i .
S o
o — True 2
000! — w10 5 frr
"o ok odo " os0 10 10 100 10!] 100 0 100 ML MSM, MSM,, ED ML ED
x/a.u. Lag time / a.u. Starting State Starting State Methods

Figure 2: Performance of deep versus standard MSMs for diffusion in the Prinz Potential. (a)
Potential energy as a function of position z. (b) Stationary distribution estimates of all methods
with the exact distribution (black). (c) Implied timescales of the Prinz potential compared to the real
ones (black line). (d) True transition density and approximations using maximum likelihood (ML)
DeepResampleMSM, four and ten state MSMs. (e) KL-divergence of the stationary and transition
distributions with respect to the true ones for all presented methods (also DeepGenMSM).

e
10?

o
End State =

o

0
-1.00 -0.50 0.00 0.50 100

0.
x/a.u. :) Starting State

=
S

10! / =
_— - |

Timescales / a.u.

End State °,
End State

10°

10° 10t
Lag time / a.u.

100 0
Starting State Starting State

Figure 3: Performance of DeepGenMSMs for diffusion in the Prinz Potential. Comparison between
exact reference (black), DeepGenMSMs estimated using only energy distance (ED) or combined
ML-ED training. (a) Stationary distribution. (b-d) Transition densities. (e) Relaxation timescales.

The DeepResampleMSM generates a transition density that is very similar to the exact density,
while the MSM transition densities are coarse-grained by virtue of the fact that x(x;) performs a
hard clustering in an MSM (Fig. 2d). This impression is confirmed when computing the Kullback-
Leibler divergence of the distributions (Fig. 2e).

Encouraged by the accurate results of DeepResampleMSMs, we now train DeepGenMSM, either
by training both the x and q networks by minimizing the energy distance (ED), or by taking x
from a ML-trained DeepResampleMSM and only training the q network by minimizing the energy
distance (ML-ED). The stationary densities, relaxation timescales and transition densities can still
be approximated in these settings, although the DeepGenMSM:s exhibit larger statistical fluctuations
than the resampling MSMs (Fig. 3). ML-ED appears to perform slightly better than ED alone, likely
because reusing x from the ML training makes the problem of training the generator easier.

For a one-dimensional example like the Prinz potential, learning a generative model does not provide
any added value, as the distributions can be well approximated by the empirical distributions. The
fact that we can still get approximately correct results for stationary, kinetics and dynamical proper-
ties encourages us to use DeepGenMSMs for a higher-dimensional example, where the generation
of configurations is a hard problem.

3.2 Alanine dipeptide

We use explicit-solvent MD simulations of Alanine dipeptide as a second example. Our aim is
the learn stationary and kinetic properties, but especially to learn a generative model that generates
genuinely novel but physically meaningful configurations. One 250 ns trajectory with a storage
interval of 1 ps is used and split 80%/20% for training and validation — see [15] for details of the
simulation setup. We characterize all structures by the three-dimensional Cartesian coordinates of
the heavy atoms, resulting in a 30 dimensional configuration space. While we do not have exact
results for Alanine dipeptide, the system is small enough and well enough sampled, such that high-

— ML

0.01 / MSM_6
—— MSM_100
—— ML_ED

/ --- Ref

I ° - 0 n 0.001 o001 0.06

¢ [rad] lag time / ns

timescales / ns

0 . n-n 0
¢ [rad] ¢ [rad]

Figure 4: Performance of DeepResampleMSM and DeepGenMSMs versus standard MSMs on the
Alanine dipeptide simulation trajectory. (a) Data distribution and stationary distributions from ref-
erence MSM, DeepResampleMSM, and DeepGenMSM. (b) State classification by DeepResam-
pleMSM (c) Relaxation timescales.

quality estimates of stationary and kinetic properties can be obtained from a very fine MSM [22].
We therefore define an MSM build on 400 equally sized grid areas in the (¢, ¢)-plane as a reference
at a lag time of 7 = 25 ps that has been validated by established methods [22].

Neural network and training details are again found at the git repository and in the Supplementary
Information.

For comparison with deep MSMs, we build two standard MSMs following a state of the art protocol:
we transform input configurations with a kinetic map preserving 95% of the cumulative kinetic
variance [17], followed by k-means clustering, where k£ = 6 and £ = 100 are used.

DeepResampleMSM trained with ML method approximate the stationary distribution very well (Fig.
4a). The reference MSM assigns a slightly lower weight to the lowest-populated state 6, but other-
wise the data, reference distribution and deep MSM distribution are visually indistinguishable. The
relaxation timescales estimated by a six-state DeepResampleMSM are significantly better than with
six-state standard MSMs. MSMs with 100 states have a similar performance as the deep MSMs but
this comes at the cost of a model with a much larger latent space.

Finally, we test DeepGenMSMs for Alanine dipeptide where ' is trained with the ML method and
the generator is then trained using ED (ML-ED). The stationary distribution generated by simulat-
ing the DeepGenMSM recursively results in a stationary distribution which is very similar to the
reference distribution in states 1-4 with small ¢ values (Fig. 4a). States number 5 and 6 with large
¢ values are captured, but their shapes and weights are somewhat distorted (Fig. 4a). The one-step
transition densities predicted by the generator are high quality for all states (Suppl. Fig. 2), thus
the differences observed for the stationary distribution must come from small errors made in the
transitions between metastable states that are very rarely observed for states 5 and 6. These rare
events result in poor training data for the generator. However, the DeepGenMSMs approximates the
kinetics well within the uncertainty that is mostly due to estimator variance (Fig. 4c).

Now we ask whether DeepGenMSMs can sample valid structures in the 30-dimensional configura-
tion space, i.e., if the placement of atoms is physically meaningful. As we generate configurations
in Cartesian space, we first check if the internal coordinates are physically viable by comparing
all bond lengths and angles between real MD data and generated trajectories (Fig. 5). The true
bond lengths and angles are almost perfectly Gaussian distributed, and we thus normalize them by
shifting each distribution to a mean of 0 and scaling it to have standard deviation 1, which results
all reference distributions to collapse to a normal distribution (Fig. 5a,c). We normalize the gener-
ated distribution with the mean and standard distribution of the true data. Although there are clear
differences (Fig. 5b,d), these distributions are very encouraging. Bonds and angles are very stiff de-
grees of freedom, and the fact that most differences in mean and standard deviation are small when
compared to the true fluctuation width means that the generated structures are close to physically
accurate and could be refined by little additional MD simulation effort.

Finally, we perform an experiment to test whether the DeepGenMSM is able to generate genuinely
new configurations that do exist for Alanine dipeptide but have not been seen in the training data. In
other words, can the generator “extrapolate” in a meaningful way? This is a fundamental question,
because simulating MD is exorbitantly expensive, with each simulation time step being computation-
ally expensive but progressing time only of the order of 101> seconds, while often total simulation

Real bond distances distribution ~ Generated bond distances distribution Real angle values distribution Generated angle values distribution
He: 0.29; 02 1.2 C He: 0.075; 0.: 0.063

]
o
S
o
b
]
S
b
S
b

I
Y
I
e
o
Y
°
Y

°
N
o
N
o
N

°
o
Probability density [a.u.] Q.

Probability density [a.u.
Probability density [a.u.] O
Probability density [a.u.

o
o
°
o

4 2 0 2 a 4 2 0 2 a 4 2 0 2 2 4 2 0 2 2
Normalized distance [a.u.] Normalized distance [a.u.] Normalized angle [a.u.] Normalized angle [a.u.]

Figure 5: Normalized bond (a,b) and angle (c,d) distributions of Alanine dipeptide compared to
Gaussian normal distribution (black). (a,c) True MD data. (b,d) Data from trajectories generated by
DeepGenMSMs.

Q
El

7] [gad]

O
23

7] [gad]

A
0 m-n 0 m-n 0

¢ [rad] ¢ [rad] ¢ [rad]

@ ®

¢ ¢ ¢ $
Sy o e AT ARy TTE S

Figure 6: DeepGenMSMs can generate physically realistic structures in areas that were not included
in the training data. (a) Distribution of training data. (b) Generated stationary distribution. (c)
Representative “real” molecular configuration (from MD simulation) in each of the metastable states
(sticks and balls), and the 100 closest configurations generated by the DeepGenMSM (lines).

L s 0 O 0 i O
¢ [rad] ¢ [rad] ¢ [rad]
© 1]

timescales of 10~2 seconds or longer are needed. A DeepGenMSM that makes leaps of length 7
— orders of magnitude larger than the MD simulation time-step — and has even a small chance of
generating new and meaningful structures would be extremely valuable to discover new states and
thereby accelerate MD sampling.

To test this ability, we conduct six experiments, in each of which we remove all data belonging to one
of the six metastable states of Alanine dipeptide (6a). We train a DeepGenMSM with each of these
datasets separately, and simulate it to predict the stationary distribution (6b). While the generated
stationary distributions are skewed and the shape of the distribution in the (¢, ¢) range with missing-
data are not quantitatively predicted, the DeepGenMSMs do indeed predict configurations where no
training data was present (6b). Surprisingly, the quality of most of these configurations is high (6c¢).
While the structures of the two low-populated states 5-6 do not look realistic, each of the metastable
states 1-4 are generated with high quality, as shown by the overlap of a real MD structure and the
100 most similar generated structures (6¢).

In conclusion, deep MSMs provide high-quality models of the stationary and kinetic properties for
stochastic dynamical systems such as MD simulations. In contrast to other high-quality models
such as VAMPnets, the resulting model is truly probabilistic and can thus be physically interpreted
and be used in a Bayesian framework. For the first time, it was shown that generating dynamical
trajectories in a 30-dimensional molecular configuration space results in sampling of physically
realistic molecular structures. While Alanine dipeptide is a small system compared to proteins and
other macromolecules that are of biological interest, our results demonstrate that efficient sampling
of new molecular structures is possible with generative dynamic models, and improved methods
can be built upon this. Future methods will especially need to address the difficulties of generating
valid configurations in low-probability regimes, and it is likely that the energy distance used here
for generator training needs to be revisited to achieve this goal.

Acknowledgements This work was funded by the European Research Commission (ERC CoG
“ScaleCell”), Deutsche Forschungsgemeinschaft (CRC 1114/A04, Transregio 186/A12, NO 825/4—
1, Dynlon P8), and the “1000-Talent Program of Young Scientists in China”.

References

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial net-
works. In International Conference on Machine Learning, pages 214-223,2017.

[2] G. R. Bowman, D. L. Ensign, and V. S. Pande. Enhanced Modeling via Network Theory:
Adaptive Sampling of Markov State Models. J. Chem. Theory Comput., 6(3):787-794, 2010.

[3] G. R. Bowman, V. S. Pande, and F. Noé, editors. An Introduction to Markov State Models
and Their Application to Long Timescale Molecular Simulation., volume 797 of Advances in
Experimental Medicine and Biology. Springer Heidelberg, 2014.

[4] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USAP, 113:3932—
3937.

[5] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.

[6] Martin Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770-778, 2016.

[8] C. X. Hernandez, H. K. Wayment-Steele, M. M. Sultan, B. E. Husic, and V. S. Pande. Varia-
tional encoding of complex dynamics. arXiv:1711.08576, 2017.

[9] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

[11] Milan Korda and Igor Mezic. On convergence of extended dynamic mode decomposition to
the koopman operator. J. Nonlinear Sci., 28:687-710, 2017.

[12] S. Kube and M. Weber. A coarse graining method for the identification of transition rates
between molecular conformations. J. Chem. Phys., 126:024103, 2007.

[13] Q. Li, F. Dietrich, E. M. Bollt, and 1. G. Kevrekidis. Extended dynamic mode decomposi-
tion with dictionary learning: a data-driven adaptive spectral decomposition of the koopman
operator. Chaos, 27:103111, 2017.

[14] B. Lusch and S. L. Brunton J . N. Kutz. Deep learning for universal linear embeddings of
nonlinear dynamics. arXiv:1712.09707, 2017.

[15] A. Mardt, L. Pasquali, H. Wu, and F. Noé. Vampnets: Deep learning of molecular kinetics.
Nat. Commun., 9:5, 2018.

[16] I. Mezi¢. Spectral properties of dynamical systems, model reduction and decompositions.
Nonlinear Dynam., 41:309-325, 2005.

[17] F. Noé and C. Clementi. Kinetic distance and kinetic maps from molecular dynamics simula-
tion. J. Chem. Theory Comput., 11:5002-5011, 2015.

[18] F. Noé and F. Niiske. A variational approach to modeling slow processes in stochastic dynam-
ical systems. Multiscale Model. Simul., 11:635-655, 2013.

[19] S.E. Otto and C. W. Rowley. Linearly-recurrent autoencoder networks for learning dynamics.
arXiv:1712.01378, 2017.

[20] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[21] N. Plattner, S. Doerr, G. De Fabritiis, and F. Noé. Protein-protein association and binding
mechanism resolved in atomic detail. Nat. Chem., 9:1005-1011, 2017.

[22] J.-H. Prinz, H. Wu, M. Sarich, B. G. Keller, M. Senne, M. Held, J. D. Chodera, C. Schiitte,
and F. Noé. Markov models of molecular kinetics: Generation and validation. J. Chem. Phys.,
134:174105, 2011.

[23] Jodo Marcelo Lamim Ribeiro, Pablo Bravo, Yihang Wang, and Pratyush Tiwary. Reweighted
autoencoded variational bayes for enhanced sampling (rave). J. Chem. Phys., 149:072301,
2018.

[24] M. Sarich, F. Noé, and C. Schiitte. On the approximation quality of markov state models.
Multiscale Model. Simul., 8:1154-1177, 2010.

[25] M. Sarich and C. Schiitte. Metastability and Markov State Models in Molecular Dynamics.
Courant Lecture Notes. American Mathematical Society, 2013.

[26] P.J. Schmid and J. Sesterhenn. Dynamic mode decomposition of numerical and experimental
data. In 61st Annual Meeting of the APS Division of Fluid Dynamics. American Physical
Society, 2008.

[27] W. C. Swope, J. W. Pitera, and F. Suits. Describing protein folding kinetics by molecular
dynamics simulations: 1. Theory. J. Phys. Chem. B, 108:6571-6581, 2004.

[28] G. Székely and M. Rizzo. Testing for equal distributions in high dimension. InterStat,, 5, 2004.

[29] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On dynamic mode
decomposition: Theory and applications. J. Comput. Dyn., 1(2):391-421, dec 2014.

[30] C. Wehmeyer and F. Noé. Time-lagged autoencoders: Deep learning of slow collective vari-
ables for molecular kinetics. arXiv:1710.11239, 2017.

[31] H. Wu and F. Noé. Variational approach for learning markov processes from time series data.
arXiv:1707.04659, 2017.

10

