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Abstract

Inverse reinforcement learning (IRL) attempts to infer human rewards or pref-
erences from observed behavior. Since human planning systematically deviates
from rationality, several approaches have been tried to account for specific human
shortcomings. However, the general problem of inferring the reward function of an
agent of unknown rationality has received little attention. Unlike the well-known
ambiguity problems in IRL, this one is practically relevant but cannot be resolved
by observing the agent’s policy in enough environments. This paper shows (1) that
a No Free Lunch result implies it is impossible to uniquely decompose a policy
into a planning algorithm and reward function, and (2) that even with a reasonable
simplicity prior/Occam’s razor on the set of decompositions, we cannot distinguish
between the true decomposition and others that lead to high regret. To address this,
we need simple ‘normative’ assumptions, which cannot be deduced exclusively
from observations.

1 Introduction

In today’s reinforcement learning systems, a simple reward function is often hand-crafted, and still
sometimes leads to undesired behaviors on the part of RL agent, as the reward function is not well
aligned with the operator’s true goals4. As AI systems become more powerful and autonomous, these
failures will become more frequent and grave as RL agents exceed human performance, operate at
time-scales that forbid constant oversight, and are given increasingly complex tasks — from driving
cars to planning cities to eventually evaluating policies or helping run companies. Ensuring that
the agents behave in alignment with human values is known, appropriately, as the value alignment
problem [Amodei et al., 2016, Hadfield-Menell et al., 2016, Russell et al., 2015, Bostrom, 2014,
Leike et al., 2017].

One way of resolving this problem is to infer the correct reward function by observing human
behaviour. This is known as Inverse reinforcement learning (IRL) [Ng and Russell, 2000, Abbeel and
Ng, 2004, Ziebart et al., 2008]. Often, learning a reward function is preferred over imitating a policy:
when the agent must outperform humans, transfer to new environments, or be interpretable. The
reward function is also usually a (much) more succinct and robust task representation than the policy,
especially in planning tasks [Abbeel and Ng, 2004]. Moreover, supervised learning of long-range and
goal-directed behavior is often difficult without the reward function [Ratliff et al., 2006].
∗Equal contribution.
†Work performed at Future of Humanity Institute.
‡Further affiliation: Machine Intelligence Research Institute, Berkeley, USA.
4See for example the game CoastRunners, where an RL agent didn’t finish the course, but instead

found a bug allowing it to get a high score by crashing round in circles https://blog.openai.com/
faulty-reward-functions/.
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https://blog.openai.com/faulty-reward-functions/
https://blog.openai.com/faulty-reward-functions/


Usually, the reward function is inferred based on the assumption that human behavior is optimal
or noisily optimal. However, it is well-known that humans deviate from rationality in systematic,
non-random ways [Tversky and Kahneman, 1975]. This can be due to specific biases such as time-
inconsistency, loss aversion and hundreds of others, but also limited cognitive capacity, which leads
to forgetfulness, limited planning and false beliefs. This limits the use of IRL methods for tasks that
humans don’t find trivial.

Some IRL approaches address specific biases [Evans et al., 2015b,a], and others assume noisy
rationality [Ziebart et al., 2008, Boularias et al., 2011]. But a general framework for inferring the
reward function from suboptimal behavior does not exist to our knowledge. Such a framework needs
to infer two unobserved variables simultaneously: the human reward function and their planning
algorithm5 which connects the reward function with behaviour, henceforth called a planner.

The task of observing human behaviour (or the human policy) and inferring from it the human reward
function and planner will be termed decomposing the human policy. This paper will show there is a
No Free Lunch theorem in this area: it is impossible to get a unique decomposition of human policy
and hence get a unique human reward function. Indeed, any reward function is possible. And hence,
if an IRL agent acts on what it believes is the human policy, the potential regret is near-maximal.
This is another form of unidentifiability of the reward function, beyond the well-known ones [Ng and
Russell, 2000, Amin and Singh, 2016].

The main result of this paper is that, unlike other No Free Lunch theorems, this unidentifiability
does not disappear when regularising with a general simplicity prior that formalizes Occam’s razor
[Vitanyi and Li, 1997]. This result will be shown in two steps: first, that the simplest decompositions
include degenerate ones, and secondly, that the most ‘reasonable’ decompositions according to human
judgement are of high complexity.

So, although current IRL methods can perform well on many well-specified problems, they are
fundamentally and philosophically incapable of establishing a ‘reasonable’ reward function for the
human, no matter how powerful they become. In order to do this, they will need to build in ‘normative
assumptions’: key assumptions about the reward function and/or planner, that cannot be deduced
from observations, and allow the algorithm to focus on good ways of decomposing the human policy.

Future work will sketch out some potential normative assumptions that can be used in this area,
making use of the fact that humans assess each other to be irrational, and often these assessments
agree. In view of the No Free Lunch result, this shows that humans must share normative assumptions.

One of these ‘normative assumption’ approaches is briefly illustrated in an appendix, while another
appendix demonstrates how to use the planner-reward formalism to define when an agent might be
manipulating or overriding human preferences. This happens when the agent pushes the human
towards situations where their policy is very suboptimal according to their reward function.

2 Related Work

In the first IRL papers from Ng and Russell [2000] and Abbeel and Ng [2004] a max-margin algorithm
was used to find the reward function under which the observed policy most outperforms other policies.
Suboptimal behavior was first addressed explicitly by Ratliff et al. [2006] who added slack variables to
allow for suboptimal behavior. This finds reward functions such that the observed policy outperforms
most other policies and the biggest margin by which another policy outperforms it is minimal, i.e. the
observed policy has low regret. Shiarlis et al. [2017] introduce a modern max-margin technique with
an approximate planner in the optimisation.

However, the max-margin approach has mostly been replaced by the max entropy IRL [Ziebart et al.,
2008]. Here, the assumption is that observed actions or trajectories are chosen with probability
proportional to the exponent of their value. This assumes a specific suboptimal planning algorithm
which is noisily rational (also known as Boltzmann-rational). Noisy rationality explains human
behavior on various data sets better [Hula et al., 2015]. However, Evans et al. [2015b] and Evans et al.
[2015a] showed that this can fail since humans deviate from rationality in systematic, non-random
ways. If noisy rationality is assumed, repeated suboptimal actions throw off the inference.

5 Technically we only need to infer the human reward function, but inferring that from behaviour requires
some knowledge of the planning algorithm.
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Literature on inferring the reasoning capabilities of an agent is scarce. Evans et al. [2015b] and Evans
et al. [2015a] use Bayesian inference to identify specific planning biases such as myopic planning and
hyperbolic time-discounting. They simultaneously infer the agent’s preferences. Cundy and Filan
[2018] adds bias resulting from hierarchical planning. Hula et al. [2015] similarly let agents infer
features of their opponent’s reasoning such as planning depth and impulsivity in simple economic
games. Recent work learns the planning algorithm with two assumptions: being close to noisily
rational in a high-dimensional planner space and supervised planner-learning [Anonymous, 2019].

The related ideas of meta-reasoning [Russell, 2016], computational rationality [Lewis et al., 2014] and
resource rationality [Griffiths et al., 2015] may create the possibility to redefine irrational behavior
as rational in an ‘ancestral’ distribution of environments where the agent optimises its rewards by
choosing among the limited computations it is able to perform or jointly minimising the cost of
computation and maximising reward. This could in theory redefine many biases as computationally
optimal in some distribution of environments and provide priors on human planning algorithms.
Unfortunately the problem of doing this in practice seems to be extremely difficult — and it assumes
that human goals are roughly the same as evolution’s goals, which is certainly not the case.

3 Problem setup and background

A human will be performing a series of actions, and from these, an agent will attempt to estimate
both the human’s reward function and their planning algorithm.

The environment M in which the human operates is an MDP/R, a Markov Decision Process without
reward function (a world-model [Hadfield-Menell et al., 2017]). An MDP/R is defined as a tuple,
〈S,A, T, ŝ〉 consisting of a discrete state space S , a finite action space A, a fixed starting state ŝ, and
a probabilistic transition function T : S ×A×S → [0, 1] to the next state (also called the dynamics).
At each step, the human is in a certain state s, takes a certain action a, and ends up in a new state s′
as given by T (s′ | s, a).

LetR = {R : S ×A → [−1, 1]} = [−1, 1]S×A be the space of candidate reward functions; a given
R will map any state-reward pair to a reward value in the interval [−1, 1].

Let Π be the space of deterministic, Markovian policies. So Π is the space of functions S → A. The
human will be following the policy π̇ ∈ Π.

The results of this paper apply to both discounted rewards and episodic environments settings6.

3.1 Planners and reward functions: decomposing the policy

The human has their reward function, and then follows a policy that presumably attempts to maximise
it. Therefore there is something that bridges between the reward function and the policy: a piece of
greater or lesser rationality that transforms knowledge of the reward function into a plan of action.

This bridge will be modeled as a planner p : R → Π, a function that takes a reward and outputs a
policy. This planner encodes all the rationality, irrationality, and biases of the human. Let P be the
set of planners. The human is therefore defined by a planner-reward pair (p,R) ∈ P ×R. Similarly,
(p,R) with p(R) = π is a decomposition of the policy π. The task of the agent is to find a ‘good’
decomposition of the human policy π̇.

3.2 Compatible pairs and evidence

The agent can observe the human’s behaviour and infer their policy from that. In order to simplify
the problem and separate out the effect of the agent’s learning, we will assume the agent has perfect
knowledge of the human policy π̇ and of the environment M . At this point, the agent cannot learn
anything by observing the human’s actions, as it can already perfectly predict these.

Then a pair (p,R) is defined to be compatible with π̇, if p(R) = π̇ — thus that pair is a possible
candidate for decomposing the human policy into the human’s planner and reward function.

6The setting is only chosen for notational convenience: it also emulates discrete POMDPs, non-
Markovianness (eg by encoding the whole history in the state) and pseudo-random policies.
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4 Irrationality-based unidentifiability

Unidentifiability of the reward is a well-known problem in IRL [Ng and Russell, 2000]. Amin and
Singh [2016] categorise the problem into representational and experimental unidentifiability. The
former means that adding a constant to a reward function or multiplying it with a positive scalar
does not change what is optimal behavior. This is unproblematic as rescaling the reward function
doesn’t change the preference ordering. The latter can be resolved by observing optimal policies in a
whole class of MDPs which contains all possible transition dynamics. We complete this framework
with a third kind of identifiability, which arises when we observe suboptimal agents. This kind of
unidentifiability is worse as it cannot necessarily be resolved by observing the agent in many tasks.
In fact, it can lead to almost arbitrary regret.

4.1 Weak No Free Lunch: unidentifiable reward function and half-maximal regret

The results in this section show that without assumptions about the rationality of the human, all
attempts to optimise their reward function are essentially futile. Everitt et al. [2017] work in a similar
setting as we do: in their case, a corrupted version of the reward function is observed. The problem
our case is that a ‘corrupted’ version π̇ of an optimal policy π∗

Ṙ
is observed and used as information

to optimise for the ideal reward Ṙ. A No Free Lunch result analogous to theirs applies in our case;
both resemble the No Free Lunch theorems for optimisation [Wolpert and Macready, 1997].

More philosophically, this result is as an instance of the well-known is-ought problem from meta-
ethics. Hume [1888] argued that what ought to be (here, the human’s reward function) can never be
concluded from what is (here, behavior) without extra assumptions. Equivalently, the human reward
function cannot be inferred from behavior without assumptions about the planning algorithm p. In
probabilistic terms, the likelihood P (π|R) =

∑
p∈P P (π | R, p)P (p) is undefined without P (p). As

shown in Section 5 and Section 5.2, even a simplicity prior on p and R will not help.

4.1.1 Unidentifiable reward functions

Firstly, we note that compatibility (p(R) = π̇), puts no restriction on R, and few restrictions on p:
Theorem 1. For all π ∈ Π and R ∈ R, there exists a p ∈ P such that p(R) = π.

For all p ∈ P and π ∈ Π in the image of p, there exists an R such that p(R) = π.

Proof. Trivial proof: define the planner7 p as mapping all of R to π; then p(R) = π. The second
statement is even more trivial, as π is in the image of p, so there must exist R with p(R) = π.

4.1.2 Half-maximal regret

The above shows that the reward function cannot be constrained by observation of the human, but
what about the expected long-term value? Suppose that an agent is unsure what the actual human
reward function is; if the agent itself is acting in an MDP/R, can it follow a policy that minimises the
possible downside of its ignorance?

This is prevented by a recent No Free Lunch theorem. Being ignorant of the reward function one
should maximise is equivalent of having a corrupted reward channel with arbitrary corruption. In that
case, Everitt et al. [2017] demonstrated that whatever policy π the agent follows, there is a R ∈ R
for which π is half as bad as the worst policy the agent could have followed. Specifically, let V πR (s)
be the expected return of reward function R from state s, given that the agent follows policy π. If π
was the optimal policy for R, then this can be written as V ∗R(s). The regret of π for R at s is given by
the difference:

Reg(π,R)(s) = V ∗R(s)− V πR (s).

Then Everitt et al. [2017] demonstrates that for any π,

max
R∈R

Reg(π,R)(s) ≥ 1

2

(
max

π′∈Π,R∈R
Reg(π′, R)(s)

)
.

So for any compatible (p,R) = π̇, we cannot rule out that maximizing R leads to at least half of the
worst-case regret.

7This is the ‘indifferent’ planner pπ of subsubsection 5.1.1.
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5 Simplicity of degenerate decompositions

Like many No Free Lunch theorems, the result of the previous section is not surprising given there are
no assumptions about the planning algorithm. No Free Lunch results are generally avoided by placing
a simplicity prior on the algorithm, dataset, function class or other object [Everitt et al., 2014]. This
amounts to saying algorithms can benefit from regularisation. This section is dedicated to showing
that, surprisingly, simplicity does not solve the No Free Lunch result.

Our simplicity measure is minimum description length of an object, defined as Kolmogorov com-
plexity [Kolmogorov, 1965], the length of the shortest program that outputs a string describing the
object. This is the most general formalization of Occam’s razor we know of [Vitanyi and Li, 1997].
Appendix A explores how the results extend to other measures of complexity, such as those that
include computation time. We start with informal versions of our main results.
Theorem 2 (Informal simplicity theorem). Let (ṗ, Ṙ) be a ‘reasonable’ planner-reward pair that
captures our judgements about the biases and rationality of a human with policy π̇ = ṗ(Ṙ). Then
there are degenerate planner-reward pairs, compatible with π̇, of lower complexity than (ṗ, Ṙ), and
a pair (ṗ′,−Ṙ) of similar complexity to (ṗ, Ṙ), but with opposite reward function.

There are a few issues with this theorem as it stands. Firstly, simplicity in algorithmic information
theory is relative to the computer language (or equivalently Universal Turing Machine) L used [Ming
and Vitányi, 2014, Calude, 2002], and there exists languages in which the theorem is clearly false:
one could choose a degenerate language in which (ṗ, Ṙ) is encoded by the string ‘0’, for example,
and all other planner-reward pairs are of extremely long length. What constitutes a ‘reasonable’
language is a long-standing open problem, see Leike et al. [2017] and Müller [2010]. For any pair of
languages, complexities differ only by a constant, the amount required for one language to describe
the other, but this constant can be arbitrarily large.

Nevertheless, this section will provide grounds for the following two semi-formal results:
Proposition 3. If π̇ is a human policy, and L is a ‘reasonable’ computer language, then there exists
degenerate planner-reward pairs amongst the pairs of lowest complexity compatible with π̇.
Proposition 4. If π̇ is a human policy, and L is a ‘reasonable’ computer language with (ṗ, Ṙ) a
compatible planner-reward pair, then there exist a pair (ṗ′,−Ṙ) of comparable complexity to (ṗ, Ṙ),
but opposite reward function.

The last part of Theorem 2, the fact that any ‘reasonable’ (ṗ, Ṙ) is expected to be of higher complexity,
will be addressed in Section 6.

5.1 Simple degenerate pairs

The argument in this subsection will be that 1) the complexity of π̇ is close to a lower bound on
any pair compatible with it and 2) degenerate decompositions are themselves close to this bound.
The first statement follows because for any decomposition (p,R) compatible with π̇, the map
(p,R) 7→ p(R) = π̇ will be a simple one, adding little complexity. And if a compatible pair (p′, R′)
can be from π̇ with little extra complexity, then it too will have a complexity close to the minimal
complexity of any other pair compatible with it. Therefore we will first produce three degenerate
pairs that can be simply constructed from π̇.

5.1.1 The degenerate pairs

We can define the trivial constant reward function 0, and the greedy planner pg . The greedy planner
pg acts by taking the action that maximises the immediate reward in the current state and the next
action. Thus8 pg(R)(s) = argmaxaR(s, a). We can also define the anti-greedy planner −pg, with
−pg(R)(s) = argminaR(s, a). In general, it will be useful to define the negative of a planner:
Definition 5. If p : R → Π is a planner, the planner −p is defined by −p(R) = p(−R).

For any given policy π, we can define the indifferent planner pπ , which maps any reward function to
π. We can also define the reward function Rπ, so that Rπ(s, a) = 1 if π(s) = a, and Rπ(s, a) = 0
otherwise. The reward function −Rπ is defined to be the negative of Rπ . Then:

8Recall that pg is a planner, pg(R) is a policy, so pg(R) can be applied to states, and pg(R)(s) is an action.
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Lemma 6. The pairs (pπ, 0), (pg, Rπ), and (−pg,−Rπ) are all compatible with π.

Proof. Since the image pπ is π, pπ(0) = π. Now, Rπ(s, a) > 0 iff π(s) = a, hence for all s:

pg(Rπ)(s) = argmax
a

Rπ(s, a) = π(s),

so pg(Rπ) = π. Then −pg(−Rπ) = pg(−(−Rπ)) = pg(Rπ) = π, by Definition 5.

5.1.2 Complexity of basic operations

We will look the operations that build the degenerate planner-reward pairs from any compatible pair:

1. For any planner p, f1(p) = (p, 0) as a planner-reward pair.
2. For any reward function R, f2(R) = (pg, R).
3. For any planner-reward pair (p,R), f3(p,R) = p(R).
4. For any planner-reward pair (p,R), f4(p,R) = (−p,−R).
5. For any policy π, f5(π) = pπ .
6. For any policy π, f6(π) = Rπ .

These will be called the basic operations, and there are strong arguments that reasonable computer
languages should be able to express them with short programs. The operation f1, for instance, is
simply appending the flat trivial 0, f2 appends a planner defined by the simple9 search operator
argmax, f3 applies a planner to the object — a reward function — that the planner naturally acts on,
f4 is a double negation, while f5 and f6 are simply described in subsubsection 5.1.1.

From these basic operations, we can define three composite operations that map any compatible
planner-reward pair to one of the degenerate pairs (the element F4 = f4 is useful for later definitions).
Thus define

F = {F1 = f1 ◦ f5 ◦ f3, F2 = f2 ◦ f6 ◦ f3, F3 = f4 ◦ f2 ◦ f6 ◦ f3, F4 = f4}.
For any π̇-compatible pair (p,R) we have F1(p,R) = (pπ̇, 0), F2(p,R) = (pg, Rπ̇), and F3(p,R) =
(−pg,−Rπ̇) (see the proof of Proposition 7).

Let KL denote Kolmogorov complexity in the language L: the shortest algorithm in L that generates
a particular object. We define the F -complexity of L as

max
(p,R),Fi∈F

KL(Fi(p,R))−KL(p,R).

Thus the F -complexity of L is how much the Fi potentially increase10 the complexity of pairs.

For a constant c ≥ 0, this allows us to formalise what we mean by L being a c-reasonable language
for F : that the F -complexity of L is at most c. A reasonable language is a c-reasonable language for
a c that we feel is intuitively low enough.

5.1.3 Low complexity of degenerate planner-reward pairs

To formalise the concepts ‘of lowest complexity’, and ‘of comparable complexity’, choose a constant
c ≥ 0, then (p,R) and (p′, R′) are of ‘comparable complexity’ if

||KL(p,R)−KL(p′, R′)|| ≤ c.
For a set S ⊂ P ×R, the pair (p,R) ∈ S is amongst the lowest complexity in S if

||KL(p,R)− min
(p′,R′)∈S

KL(p′, R′)|| ≤ c,

thus KL is within distance c of the minimum complexity element of S. Now formalize Proposition 3:
9 In most standard computer languages, argmax just requires a for-loop, a reference to R, a comparison

with a previously stored value, and possibly the storage of a new value and the current action.
10F -complexity is non-negative: F4 ◦ F4 is the identity, so that KL(F4(p,R)) − KL(p,R) =

−(KL(F4(F4(p,R)) −KL(F4(p,R)), meaning that max(p,R),F4
KL(F4(p,R)) −KF (p,R) must be non-

negative; this is a reason to include F4 in the definition of F .
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Proposition 7. If π̇ is the human policy, c defines a reasonable measure of comparable complexity,
and L is a c-reasonable language for F , then the degenerate planner-reward pairs (pπ̇, 0), (pg, Rπ̇),
and (−pg,−Rπ̇) are amongst the pairs of lowest complexity among the pairs compatible with π̇.

Proof. By Lemma 6, (pπ̇, 0), (pg, Rπ̇), and (−pg,−Rπ̇) are compatible with π̇. By the definitions
of the fi and Fi, for(p,R) compatible with π̇, f3((p,R)) = p(R) = π̇ and hence

F1(p,R) = f1 ◦ f5(π̇) = f1(pπ̇) = (pπ̇, 0),

F2(p,R) = f2 ◦ f6(π̇) = f2(Rπ̇) = (pg, Rπ̇),

F3(p,R) = f4 ◦ F2(p,R) = (−pg,−Rπ̇).

Now pick (p,R) to be the simplest pair compatible with π̇. Since L is c-reasonable for F ,
KL(pπ̇, 0) ≤ c+KL(p,R). Hence (pπ̇, 0) is of lowest complexity among the pairs compatible with
π̇; the same argument applies for the other two degenerate pairs.

5.2 Negative reward

If (ṗ, Ṙ) is compatible with π̇, then so is (−ṗ,−Ṙ) = f4(ṗ, Ṙ) = F4(ṗ, Ṙ). This immediately
implies the formalisation of Proposition 4:
Proposition 8. If π̇ is a human policy, c defines a reasonable measure of comparable complexity, L
is a c-reasonable language for F , and (ṗ, Ṙ) is compatible with π̇, then (−ṗ,−Ṙ) is of comparable
complexity to (ṗ, Ṙ).

So complexity fails to distinguish between a reasonable human reward function and its negative.

6 The high complexity of the genuine human reward function

Section 5 demonstrated that there are degenerate planner-reward pairs close to the minimum com-
plexity among all pairs compatible with π̇. This section will argue that any reasonable pair (ṗ, Ṙ)
is unlikely to be close to this minimum, and is therefore of higher complexity than the degenerate
pairs. Unlike simplicity, reasonable decomposition cannot easily be formalised. Indeed, a formaliza-
tion would likely already solve the problem, yielding an algorithm to maximize it. Therefore, the
arguments in this section are mostly qualitative.

We use reasonable to mean ‘compatible with human judgements about rationality’. Since we do
not have direct access to such a decomposition, the complexity argument will be about showing the
complexity of these human judgements. This argument will proceed in three stages:

1. Any reasonable (ṗ, Ṙ) is of high complexity, higher than it may intuitively seem to us.

2. Even given π̇, any reasonable (ṗ, Ṙ) involves a high number of contingent choices. Hence
any given (ṗ, Ṙ) has high information (and thus high complexity), even given π̇.

3. Past failures to find a simple (ṗ, Ṙ) derived from π̇ are evidence that this is tricky.

6.1 The complexity of human (ir)rationality

Humans make noisy and biased decisions all the time. Though noise is important [Kahneman et al.,
2016], many biases, such as anchoring bias, overconfidence, planning fallacies, and so on, affect
humans in a highly systematic way; see Kahneman and Egan [2011] for many examples.

Many people may feel that they have a good understanding of rationality, and therefore assume that
assessing the (ir)rationality of any particular decision is not a complicated process. But an intuition
for bias does not translate into a process for establishing a (ṗ, Ṙ).

Consider the anchoring bias defined in Ariely et al. [2004], where irrelevant information — the last
digits of social security numbers — changed how much people were willing to pay for goods. When
defining a reasonable (ṗ, Ṙ), it does not suffice to be aware of the existence of anchoring bias11, but

11 The fact that many cognitive biases have only been discovered recently argue against people having a good
intuitive grasp of bias and rationality, as do people’s persistent bias blind spots [Scopelliti et al., 2015].
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one has to precisely quantify the extent of the bias — why does anchoring bias seem to be stronger
for chocolate than for wine, for instance? And why these precise percentages and correlations, and
not others? And can people’s judgment tell which people are more or less susceptible to anchoring
bias? And can one quantify the bias for a single individual, rather than over a sample?

Any given (ṗ, Ṙ) can quantify the form and extent of these biases by computing objects like the regret

function Reg(ṗ, Ṙ)(s) := Reg(ṗ(Ṙ), Ṙ)(s) = V ∗
Ṙ

(s)− V ṗ(Ṙ)

Ṙ
(s), which measures the divergence

between the expected value of the actual and optimal human policies12. Thus any given (ṗ, Ṙ)

— which contains the information to compute quantities like Reg(ṗ, Ṙ)(s) or similar measures of
bias13, in every state — carries a high amount of numerical information about bias, and hence a high
complexity.

Since humans do not easily have access to this information, this implies that human judgement of
irrationality is subject to Moravec’s paradox [Moravec, 1988]. It is similar to, for example, social
skills: though it seems intuitively simple to us, it is highly complex to define in algorithmic terms.

Other authors have argued directly for the complexity of human values, from fields as diverse as
computer science, philosophy, neuroscience, and economics [Minsky, 1984, Bostrom, 2014, Glimcher
et al., 2009, Muehlhauser and Helm, 2012, Yudkowsky, 2011].

6.2 The contingency of human judgement

The previous section showed that reasonable (ṗ, Ṙ) carry large amounts of information/complexity,
but the key question is whether it requires information additional to that in π̇. This section will show
that even when π̇ is known, there are many contingent choices that need to be made to define any
specific reasonable (ṗ, Ṙ). Hence any given (ṗ, Ṙ) contains a large amount of information beyond
that in π̇, and hence is of higher complexity.

Reasons to believe that human judgement about reasonable (ṗ, Ṙ) contains many contingent choices:

• There is a variability of human judgement between cultures. When Miller [1984] compared
American and Indian assessments of the same behaviours, they found systematically different
explanations for them14 Basic intuitions about rationality also vary between cultures [Nisbett
et al., 2001, Brück, 1999].

• There is a variability of human judgement within a single culture. When Slovic and Tversky
[1974] analysed the “Allais Paradox”, they found that different people gave different answers
as to what the rational behaviour was in their experiments.

• There is evidence of variability of human judgement within the same person. Slovic and
Tversky [1974] further attempted to argue for the rationality of one of the answers. This
sometimes resulted in the participant sometimes changing their minds, and contradicting
their previous assessment of rationality.

• There is a variability of human judgement for the same person assessing their own values,
caused by differences as trivial as question ordering [Schuman and Ludwig, 1983]. So
human meta-judgement, of own values and rationality, is also contingent and variable.

• People have partial bias blind spots around their own biases [Scopelliti et al., 2015].

Thus if a human is following policy π̇, a decomposition (ṗ, Ṙ) would provide additional information
about the cultural background of the decomposer, their personality within their culture, and even
about the past history of the decomposer and how the issue is being presented to them. Those last
pieces prevents us from ‘simply’ using the human’s own assessment of their own rationality, as that
assessment is subject to change and re-interpretation depending on their possible histories.

12To exactly quantify the anchoring bias above, we could use a regret function that contrasts π̇ with the same
policy, but where the decision is optimal for one turn only (rather than for all turns, as in standard regret).

13In constrast, regret for the degenerate planner-reward pairs is trivial. Reg(pπ̇, 0) and Reg(pg, Rπ̇) are
identically zero — in the second case, since pg(Rπ̇) is actually optimal for Rπ̇ , getting the maximal possible
reward — while (−pg,−Rπ̇) has a regret that is identically −1 at each step.

14“Results show that there were cross-cultural and developmental differences related to contrasting cultural
conceptions of the person [...] rather than from cognitive, experiential, and informational differences [...].”
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6.3 The search for human rationality models

One final argument that there is no simple algorithm for going from π̇ to (ṗ, Ṙ): many have tried
and failed to find such an algorithm. Since the subject of human rationality has been a major one for
several thousands of years, the ongoing failure is indicative — though not a proof — of the difficulties
involved. There have been many suggested philosophical avenues for finding such a reward (such as
reflective equilibrium [Rawls, 1971]), but all have been underdefined and disputed.

The economic concept of revealed preferences [Samuelson, 1948] is the most explicit, using the
assumption of rational behaviour to derive human preferences. This is an often acceptable approx-
imation, but can be taken too far: failure to take achieve an achievable goal does not imply that
failure was desired. Even within the confines of economics, it has been criticised by behavioural
economics approaches, such as prospect theory [Kahneman and Tversky, 2013] — and there are
counter-criticisms to these.

Using machine learning to deduce the intentions and preferences of humans is in its infancy, but we
can see non-trivial real-world examples, even in settings as simple as car-driving [Lazar et al., 2018].

Thus to date, neither humans nor machine learning have been able to find simple ways of going from
π̇ to (ṗ, Ṙ), nor any simple and explicit theory for how such a decomposition could be achieved. This
suggests that (ṗ, Ṙ) is a complicated object, even if π̇ is known. In conclusion:

Conjecture 9 (Informal complexity proposition). If π̇ is a human policy, and L is a ‘reasonable’
computer language with (ṗ, Ṙ) a ‘reasonable’ compatible planner-reward pair, then the complexity of
(ṗ, Ṙ) is not close to minimal amongst the pairs compatible with π̇.

7 Conclusion

We have shown that some degenerate planner-reward decompositions of a human policy have near-
minimal description length and argued that decompositions we would endorse do not. Hence, under
the Kolmogorov-complexity simplicity prior, a formalization of Occam’s Razor, the posterior would
endorse degenerate solutions. Previous work has shown that noisy rationality is too strong an
assumption as it does not account for bias; we tried the weaker assumption of simplicity, strong
enough to avoid typical No Free Lunch results, but it is insufficient here.

This is no reason for despair: there is a large space to explore between these two extremes. Our hope
is that with some minimal assumptions about planner and reward we can infer the rest with enough
data. Staying close to agnostic is desirable in some settings: for example, a misspecified model of
the human reward function can lead to disastrous decisions with high confidence [Milli et al., 2017].
Anonymous [2019] makes a promising first try — a high-dimensional parametric planner is initialized
to noisy rationality and then adapts to fit the behavior of a systematically irrational agent.

How can we reconcile our results with the fact that humans routinely make judgments about the
preferences and irrationality of others? And, that these judgments are often correlated from human
to human? After all, No Free Lunch applies to human as well as artificial agents. Our result shows
that they must be using shared priors, beyond simplicity, that are not learned from observations.
We call these normative assumptions because they encode beliefs about which reward functions are
more likely and what constitutes approximately rational behavior. Uncovering minimal normative
assumptions would be an ideal way to build on this paper; Appendix C shows one possible approach.
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LI Ming and Paul MB Vitányi. Kolmogorov complexity and its applications. Algorithms and
Complexity, 1:187, 2014.

Marvin Minsky. Afterword to Vernor Vinge’s novel, “True names.” Unpublished manuscript. 1984.
URL http://web.media.mit.edu/~minsky/papers/TrueNames.Afterword.html.

Hans Moravec. Mind children: The future of robot and human intelligence. Harvard University Press,
1988.

Luke Muehlhauser and Louie Helm. The singularity and machine ethics. In Singularity Hypotheses,
pages 101–126. Springer, 2012.

Markus Müller. Stationary algorithmic probability. Theoretical Computer Science, 411(1):113–130,
2010.

Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement learning. Proceedings of the
Seventeenth International Conference on Machine Learning, pages 663–670, 2000.

Richard E Nisbett, Kaiping Peng, Incheol Choi, and Ara Norenzayan. Culture and systems of thought:
holistic versus analytic cognition. Psychological review, 108(2):291, 2001.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In
Proceedings of the 23rd international conference on Machine learning - ICML ’06, pages 729–736,
2006.

11

http://web.media.mit.edu/~minsky/papers/TrueNames.Afterword.html


John Rawls. A Theory of Justice. Cambridge, Massachusetts: Belknap Press, 1971. ISBN 0-674-
00078-1.

Stuart Russell. Rationality and Intelligence: A Brief Update. In Fundamental Issues of Artificial
Intelligence, pages 7–28. 2016.

Stuart Russell, Daniel Dewey, and Max Tegmark. Research Priorities for Robust and Beneficial
Artificial Intelligence. AI Magazine, 36(4):105, 2015.

Paul A Samuelson. Consumption theory in terms of revealed preference. Economica, 15(60):243–253,
1948.

Jürgen Schmidhuber. The speed prior: a new simplicity measure yielding near-optimal computable
predictions. In International Conference on Computational Learning Theory, pages 216–228.
Springer, 2002.

Howard Schuman and Jacob Ludwig. The norm of even-handedness in surveys as in life. American
Sociological Review, pages 112–120, 1983.

Irene Scopelliti, Carey K Morewedge, Erin McCormick, H Lauren Min, Sophie Lebrecht, and
Karim S Kassam. Bias blind spot: Structure, measurement, and consequences. Management
Science, 61(10):2468–2486, 2015.

Kyriacos Shiarlis, Joao Messias, and Shimon Whiteson. Rapidly exploring learning trees. In
Proceedings - IEEE International Conference on Robotics and Automation, pages 1541–1548,
2017.

Paul Slovic and Amos Tversky. Who accepts savage’s axiom? Behavioral science, 19(6):368–373,
1974.

Amos Tversky and Daniel Kahneman. Judgment under Uncertainty: Heuristics and Biases. In Utility,
Probability, and Human Decision Making, pages 141–162. Springer Netherlands, Dordrecht, 1975.

Paul MB Vitanyi and Ming Li. An introduction to Kolmogorov complexity and its applications,
volume 34. Springer Heidelberg, 1997.

David H. Wolpert and William G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

Eliezer Yudkowsky. Complex value systems in friendly ai. In International Conference on Artificial
General Intelligence, pages 388–393. Springer, 2011.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy Inverse
Reinforcement Learning. In AAAI Conference on Artificial Intelligence, pages 1433–1438, 2008.

12


