
Virtual Class Enhanced Discriminative Embedding
Learning

Binghui Chen1, Weihong Deng1, Haifeng Shen2

1Beijing University of Posts and Telecommunications
2AI Labs, Didi Chuxing, Beijing 100193, China

chenbinghui@bupt.edu.cn, whdeng@bupt.edu.cn, shenhaifeng@didiglobal.com

Abstract

Recently, learning discriminative features to improve the recognition performances
gradually becomes the primary goal of deep learning, and numerous remarkable
works have emerged. In this paper, we propose a novel yet extremely simple
method Virtual Softmax to enhance the discriminative property of learned features
by injecting a dynamic virtual negative class into the original softmax. Injecting
virtual class aims to enlarge inter-class margin and compress intra-class distribution
by strengthening the decision boundary constraint. Although it seems weird to
optimize with this additional virtual class, we show that our method derives from
an intuitive and clear motivation, and it indeed encourages the features to be more
compact and separable. This paper empirically and experimentally demonstrates
the superiority of Virtual Softmax, improving the performances on a variety of
object classification and face verification tasks.

1 Introduction
In the community of deep learning, the Softmax layer is widely adopted as a supervisor at the top of
the model due to its simplicity and differentiability, such as in object classification[9–11, 39] and face
recognition[29, 30, 27, 36], etc. While, many research works take it for granted and omit the fact
that the learned features by Softmax are only separable not discriminative. Thus, the performances
of deep models in many recognition tasks are limited. Moreover, there are a few research works
concentrating on learning discriminative features through refining this commonly used softmax layer,
e.g. L-Softmax [22] and A-Softmax[21]. However, they require an annealing-like training procedure
which is controlled by human, and thus are difficult to transfer to other new tasks. To this end, we
intend to propose an automatic counterpart which dedicates to learning discriminative features.

W1 W1

W5

W6W7

W8

W4
W4

W3 W3

W2 W2

Decision Boundary

decision boundary

for class 2

Area of

Class 1

Area of

Class 2

Area of

Class 3

Area of

Class 4

Area of

Additional classes

decision boundary

 for class 1
decision boundary

 for class 1 & 2

(a) (b)

θ
θ

Φ

Figure 1: Illustration of angularly distributed features on
2-D space. (a) shows features learned by the original 4-
way softmax. (b) shows features learned by 8-way soft-
max, where there are 4 additionally hand-injected nega-
tive classes. W denotes the class anchor vector.

In standard softmax, the input pattern xi (with label yi)
is classified by evaluating the inner product between its
feature vector Xi and the class anchor vector Wj (if not
specified, the basis b is removed, which does not affec-
t the final performances of DCNN verified in [22, 21]).
Since the inner product WT

j Xi can be rewritten into
‖Wj‖‖Xi‖ cos θj , where θj is the angle between vector
Xi and Wj , and the linear softmax classifier is mainly
determined by the angle 1, thus can be regarded as an
angle classifier. Moreover, as shown in [33], the feature
distribution leaned by softmax is ’radial’, like in Fig.1.
Thus, learning the angularly discriminative feature is the
bedrock of softmax-based classifier. Here, we will first
succinctly elucidate the direct motivation of our Virtual Softmax. For a 4-class classification problem,
as illustrated in Fig.1.(a)2, one can observe that when optimizing with the original 4 classes, the

1Elucidated in [22]. Here for simplicity, assume that all ‖Wj‖ = l.
2N-dimensionality space complicates our analysis but has the similar mechanism as 2-D space.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



decision boundary for class 1 overlaps with that for class 2, i.e. there is no inter-class angular margin.
Obviously, this constraint of overlapped boundaries is not enough to ensure intra-class compactness
and inter-class separability, and then contributes little to recognition performance improvement.
While, in expanded 8-category constraint case as exhibited in Fig.1 .(b), the decision boundaries for
class 1 and 2 have a large inter-class angular margin with each other due to the additionally injected
class 5 (which doesn’t take part in the final recognition evaluation) and the constrained region of class
1 is much tighter than before (other classes have the same phenomenon), yielding more compact and
separable features which are highly beneficial to the original 4-class recognition. Thus, artificially
injected virtual classes (e.g. W5 ∼ W8) can be dedicated to encouraging larger decision margin
among original classes (e.g. class 1 ∼ 4) such that produces angularly discriminative features.

Naturally motivated by this, we propose Virtual Softmax, a novel yet extremely simple technique
to improve the recognition performances by training with an extra dynamic virtual class. Injecting
this virtual class aims at imposing stronger and continuous constraint on decision boundaries so
as to further produces the angularly discriminative features. Concretely, generalizing Softmax to
Virtual Softmax gives chances of enlarging inter-class angular margin and tightening intra-class
distribution, and allows the performance improvement of recognition via introducing a large angular
margin. Different from L-Softmax[22] and A-Softmax[21], our work aims at extending Softmax to
an automatic counterpart, which can be easily performed without or with little human interaction.
Fig.2 verifies our technique where the learned features by our Virtual Softmax turn to be much more
compact and well separated. And the main contributions of this paper are summarized as follows:
•We propose Virtual Softmax to automatically enhance the representation power of learned features
by employing a virtual negative class. The learned features are much more compact and separable,
illustrated in Fig.2. And to our best knowledge, it is the first work to employ additional virtual class
in Softmax to optimize the feature learning and to improve the recognition performance.
• The injected virtual class derives from the natural and intuitive motivation, and intends to force a
zero limit θyi which is a much stronger constraint than softmax. Moreover, it is dynamic and adaptive,
pursuing an automatic training procedure and without incurring much computational complexity and
memory consumption.
• Extensive experiments have been conducted on several datasets, including MNIST [17], SVHN
[23], CIFAR10/100 [16], CUB200 [35], ImageNet32[5], LFW [12] and SLLFW [6]. Finally, our
Virtual Softmax has achieved competitive and appealing performances, validating its effectiveness.

2 Related Work
Since the training of deep model is dominated and guided by the top objective loss, and this objective
function can be equipped with more semantic information, many research works force stronger
representation by refining the supervisor at the top of deep model. In [29], contrastive loss is
employed to enlarge the inter-class Euclidean distance and to reduce the intra-class Euclidean distance.
Afterwards, it is generalized to triplet loss, the major idea is to simultaneously maximize inter-class
distance and minimize intra-class distance, and it is widely applied in numerous computer vision tasks,
such as in face verification [27], in person re-identification [4], in fine-grained classification [34],
etc. Moreover, many tuple-based methods are developed and perform better on the corresponding
tasks, such as Lifted loss [24], N-pair loss [28, 2], etc. However, these tuple-based methods constrain
the feature learning with multiple instances, and thus require to elaborately manipulate the tuple
mining procedure, which is much expensive in computation and is performance-sensitive. In addition,
inspired by linear discriminant analysis, center loss [36] breaks away from the tuple-based idea and
shows better performances. However, our Virtual Softmax differs with them in that (1) the model
is optimized with only the single Virtual Softmax loss not the joint loss functions (e.g. softmax +
contrastive-loss). (2) our method can also be applied to improve the classification performances,
while the above methods are not as good in classification tasks. Compared to L-Softmax[22] and
A-Softmax[21], this paper heads from a totally different idea that encourages a large margin among
classes via injecting additionally virtual class, and dedicates to proposing an automatic method, i.e.
Virtual-Softmax.

3 Intuition and Motivation
In this section, we will give a toy example to introduce the immediate motivation of our Vir-
tual Softmax. Define the i-th input data xi with its corresponding label yi, where yi ∈
[1 . . . C] and C is the class number. Define the j-th class anchor vector in softmax clas-
sifier Wj , where j ∈ [1 . . . C]. The output feature of deep model is defined as Xi.

2



Training (Softmax)

Testing (Softmax) Testing (Softmax)

Training (Softmax)Training (Virtual Softmax)

Testing (Virtual Softmax) Testing (Virtual Softmax)

Training (Virtual Softmax)

Testing Accuracy: 98.91% Testing Accuracy: 99.2% Testing Accuracy: 99.13% Testing Accuracy: 99.38%

0

1

2

3

4

5

6

7

8

9

Figure 2: Visualization of the learned features optimized by original Softmax vs. Virtual Softmax on MNIST
dataset. We provide two cases of 2-D and 3-D visualization, which are shown in the left two columns and the
right two columns, respectively. From the visualization, it can be observed that our Virtual Softmax possesses a
stronger power of forcing compact and separable features.

WyiWj WyiWj

Wk

Decision Boundary Areas of different classes

before injecting new class after injecting new class

θ θ

(a) (b)

Figure 3: Toy example for non-uniform distribu-
tion case. If the class number increases, the con-
strained regions will be more compact than before.

In standard softmax, the optimization objective is to
minimize the following cross-entropy loss:

Li = − log
e
WT

yi
Xi∑C

j=1 e
WT

j Xi
(1)

here we omit the basis b and it does not affect the
performance. Obviously, in original softmax opti-
mization, it is to force WT

yiXi > WT
j Xi,∀j 6= yi, in

order to correctly classify the input xi.

Thus we can obtain the following property of soft-
max, which is the immediate incentive of our Virtual
Softmax.

Property 1. As the number of class anchor vector increases, the constrained region for each class
(e.g. the area of each class in Fig.1,3) becomes more and more compact, i.e. θ will gradually
decreases (e.g. in Fig.1,3).
Proof. For simplicity, here we consider the 2-D c-class case (n-D c-class case can be generalized
as well but is more complicated.). First, assume ‖Wj‖ = l,∀j and they are evenly distributed in
feature space, in another word, every two vectors have the same vectorial angle Φ = 2π

c . As stated
above, the softmax is to force WT

yiXi > maxj∈c,j 6=yi (W
T
j Xi) in order to correctly classify xi, i.e.

l‖Xi‖ cos θyi > maxj∈c,j 6=yi(l‖Xi‖ cos θj) ⇒ cos θyi > maxj∈c,j 6=yi(cos θj), where θj denotes
the angle between feature vector Xi and class vector Wj . Hence, the decision boundary for class yi is
WT
yiX = maxj∈c,j 6=yiW

T
j X , i.e. cos θyi = maxj∈c,j 6=yi(cos θj), we define θ as the angle between

Wyi and the decision boundary of class yi, and the solution is θ = θyi = θargmaxj,j 6=yi
(WT

j X) =
Φ
2

(see Fig.1. (a) for a toy example). Considering the distribution symmetry of W , the angle range of
the constrained region for class yi is 2θ = 2π

c , which is inversely proportional to c. Thus, if the class
number increases, the constrained region of each class will be more and more compact. Moreover,
for the ‖Wyi‖ 6= ‖Wj‖ and non-uniform distribution case, the analysis is a little more complicated.
Because the length of W are different, the feasible angles of class yi and class j are also different
(see the decision boundary of the case before injecting new classes in Fig.3.(a)). Normally, the larger
‖Wyi‖ is, the larger the feasible region of the class yi is [22]. While, as illustrated in Fig.3.(b), if the
class number increases, i.e. more new classes are injected to the same space, the constrained region
of each class is going to be compact as well.

4 Virtual Softmax
Naturally motivated by the property.1, a simple way to introduce a large margin between classes for
achieving intra-class compactness and inter-class separability is to constrain the features with more
and more additional classes. In another word, injecting additional classes is to space the original
classes, resulting in a margin between these original classes. Concretely, for a given classification
task (namely that the number of categories to be classified is fixed), the additionally injected classes

3



(if inserted at the exact position) will introduce a new and more rigorous decision boundary for these
original classes, compressing their intra-class distribution, and furthermore the originally overlapped
decision boundaries of the adjacent categories will thus be forced to separate with each other,
producing a margin between these decision boundaries and thus encouraging inter-class separability
(see Fig.1 for a toy example). Therefore, injecting extra classes for feature supervision is a bold yet
reasonable idea to enhance the discriminative property of features, and the objective function can be
formulated as:

Li = − log
e
WT

yi
Xi∑C+K

j=1 eW
T
j Xi

= − log
e‖Wyi

‖‖Xi‖ cos θyi∑C+K
j=1 e‖Wj‖‖Xi‖ cos θj

(2)

where K is the number of extra injected classes. From Eq. 2, it can be observed that it is more
possible to acquire a compact region for class yi quantified by the angle θyi , since the angle θyi is
optimized above a much larger set (C+K classes)3.

Theoretically, the larger K is, the better features are. Nevertheless, in practical cases where the
available training samples are limited and the total number of classes is changeless, it is intractable
to enlarge the angular margin with real and existed extra classes. Moreover, a most troublesome
problem is that we can not insert the extra classes exactly between the originally adjacent categories
due to the random initialization of class anchor vectors W before training and the dynamic nature of
parameter update during optimizing.

To address the aforementioned issues, we introduce a single and dynamic negative class into original
softmax. This negative class is constructed on the basis of current training instance xi. Since there
is no real training data belonging to this class and it is employed only as a negative category (i.e.
this class is utilized only to assist the training of original C classes and have no need to be treated
as a positive class), we denote it as virtual negative class and have the following formulation of our
proposed Virtual Softmax:

L =
1

N

N∑
i=1

Li = −
1

N

N∑
i=1

log
e
WT

yi
Xi∑C

j=1 e
WT

j Xi + eW
T
virtXi

(3)

where Wvirt =
‖Wyi

‖Xi

‖Xi‖ and N is the training batch size. In the above equation, we instead require

WT
yiXi ≥ max (WT

1 Xi . . .W
T
CXi,W

T
virtXi)︸ ︷︷ ︸

C+1

, it is a special case of Eq. 2 where K = 1. Replacing

a large and fixed set of virtual classes (like K classes in Eq. 2) with a single dynamic virtual class
Wvirt incurs nearly zero extra computational cost and memory consumption compared to original
softmax.

From Eq.3, one can observe that this virtual class is tactfully inserted around the class yi, and
particularly it is inserted at the same position with Xi as illustrated in Fig.4.(a). It well matches
our motivation that insert negative class between the originally adjacent classes Wyi and Wj , and
this negative class will never stop pushing Xi towards Wyi until they overlap with each other
due to the dynamic nature of Xi during training procedure. Moreover, from another optimization
perspective, in order to correctly classify xi, Virtual Softmax forces WT

yiXi to be the largest one
among (C+1) inner product values. SinceWT

virtXi = ‖Wyi‖‖Xi‖, the only way to makeWT
yiXi ≥

maxj∈C+1(W
T
j Xi) = WT

virtXi, i.e. ‖Wyi‖‖Xi‖ cos θyi ≥ ‖Wyi‖‖Xi‖, is to optimize θyi = 0,
however, the original softmax is to optimize ‖Wyi‖ cos θyi ≥ maxj∈C (‖Wj‖ cos θj), i.e. θyi ≤
minj∈C(arccos (

‖Wj‖
‖Wyi

‖ cos θj)) (briefly, if ‖Wj‖ have the same magnitude, the original softmax is
to optimize θyi ≤ minj∈C(θj)). Obviously, the original softmax is to make θyi to be smaller than a
certain value, while our Virtual Softmax optimizes a much more rigorous objective, i.e. zero limit
θyi , aiming to produce more compact and separable features. And based on this optimization goal,
the new decision boundary of class yi is overlapping with the class anchor Wyi , which is more strict
than softmax.

Optimization: The Virtual Softmax can be optimized with standard SGD and BP. And in backward
propagation, the computation of gradients are listed as follows:

∂Li
∂Xi

=

∑C
j=1 e

WT
j XiWj + eW

T
virtXiWvirt∑C

j=1 e
WT

j Xi + eW
T
virtXi

−Wyi ,
∂Li
∂Wyi

=
e
WT

yi
XiXi + eW

T
virtXi ‖Xi‖

‖Wyi
‖Wyi∑C

j=1 e
WT

j Xi + eW
T
virtXi

−Xi

(4)

3Assume that all the K classes are injected at the exact position among original C classes.

4



(a) (b) (c)

feature layer

input Z

output Xw

Virtual
SoftmaxXk

WyiX

vector3

vector2

vector1

θ

Wyi

Wj

Xi

Wvirt

push Virtual Softmax

Softmax

wk

Figure 4: (a) shows the virtual class by green arrow. (b) exhibits the feature layer in CNN. (c) illustrates the
feature update, the blue arrow represents X

′
obtained by original softmax and the red arrow represents X

′

obtained by Virtual Softmax.
∂Li
∂Wj

=
eW

T
j Xi∑C

j=1 e
WT

j Xi + eW
T
virtXi

Xi, where j 6= yi (5)

5 Discussion
Except for the above analysis that Virtual Softmax optimizes a much more rigorous objective than the
original Softmax for learning discriminative features, in this section, we will give some interpretations
from several other perspectives, i.e. coupling decay5.1 and feature update5.2. And we also provide
the visualization of the learned features for intuitive understanding5.3.

5.1 Interpretation from Coupling Decay
In this paragraph, we give a macroscopic analysis from coupling decay which can be regarded as a
regularization strategy.

Observing Eq.3, Li can be reformulated as: Li = −WT
yiXi + log (

∑C
j=1 e

WT
j Xi + e‖Wyi

‖‖Xi‖),
then performing the first order Taylor Expansion for the second term, a term of ‖Wyi‖‖Xi‖ shows
up. Therefore, minimizing Eq.3 is to minimize ‖Wyi‖‖Xi‖ to some extend, and it can be viewed
as a coupling decay term, i.e. data-dependent weight decay and weight-dependent data decay. It
regularizes the norm of both feature representation and the parameters in classifier layer such that
improves the generalization ability of deep models by reducing over-fitting. Moreover, it is supported
by some experimental results, e.g. the feature norm in Fig.2 is decreased by Virtual Softmax (e.g. from
100 to 50 in 2-D space), and the performance improvement over the original Softmax is increased
when using a much wider network as in Sec.6.1 (e.g. in CIFAR100/100+, increasing the model
width from t=4 to t=7, the performance improvement is rising, since increasing the dimensionality of
parameters while keeping data set size constant calls for stronger regularization).

However, the reason of calling the above analysis a macroscopic one is that it coarsely throws away
many other relative terms and only considers the single effect of ‖Wyi‖‖Xi‖, without taking into
account the collaborative efforts of other terms. Thus there are some other phenomenons that cannot
be explained well, e.g. why the inter-class angular margin is increased as shown in Fig.2 and why
the confusion matrix of Virtual Softmax in Fig.5 shows more compact intra-class distribution and
separable inter-class distribution than the original Softmax. To this end, we provide another discussion
below from a relatively microscopic view that how the individual data representations of Virtual
Softmax and original Softmax are constrained and formed in the feature space.

5.2 Interpretation From Feature Update
Here, considering the collaborative effect of all the terms in Eq.3, we give another microscopic
interpretation from the perspective of feature update, which is also a strong justification of our
method. In part, it reveals the reason why the learned features by Virtual Softmax are much more
compact and separable than original softmax.

To simplify our analysis, we only consider the update in a linear feature layer, namely that the input
to this linear feature layer is fixed. As illustrated in Fig.4.(b), the feature vector X is computed as
X = wTZ 4, where Z is the input vector, w is the weight parameters in this linear layer. We denote
the k-th element of vector X as Xk, the connected weight vector (i.e. the k-th column of w) as wk.
Thus, Xk = wTk Z, after computing the partial derivative ∂L

∂wk
, the parameters are updated by SGD as

4Although the following discussion is based on this assumption, the actual uses of activation functions (like
the piecewise linear function ReLU and PReLU) and the basis b do not affect the final performances.

5



w
′

k = wk − α ∂L
∂wk

, where α is the learning rate. Since Z is fixed, in the next training iteration, the
new feature output X

′

k can be computed by the updated w
′

k as:

X
′
k = (w

′
k)
TZ = (wk − α

∂L

∂wk
)TZ = wTk Z − α(

∂L

∂wk
)TZ = Xk − α(

∂Xk
∂wk

∂L

∂Xk
)TZ

= Xk − α
∂L

∂Xk
(
∂Xk
∂wk

)TZ = Xk − α
∂L

∂Xk
ZTZ = Xk − α‖Z‖2

∂L

∂Xk
(6)

thus from Eq. 6, it can be inferred that the holistic feature vector X
′

can be obtained by X
′
=

X − β ∂L∂X , where β = α‖Z‖2, implying that updating weight parameters w with SGD can implicitly
lead to the update of the output feature in the similar way. Based on this observation, putting the partial
derivatives ∂L

∂X of Softmax and Virtual Softmax into Eq. 6 respectively, we can obtain the following
corresponding updated features for Softmax (Eq. 7) and Virtual Softmax (Eq. 8) respectively:

X
′
= X + β(Wyi −

∑C
j=1 e

WT
j XWj∑C

j=1 e
WT

j X
) (7)

X
′
= X + β(Wyi −

∑C
j=1 e

WT
j XWj + eW

T
virtXWvirt∑C

j=1 e
WT

j X + eW
T
virtX

) (8)

Since the above equations are complicated enough to discuss, here for simplicity, we will give
an approximate analysis. Consider a well trained feature (i.e. eW

T
virtX � eW

T
j X and eW

T
yi
X �

eW
T
j X ,∀j 6= yi) and that the parameters in Softmax and Virtual Softmax are the same. Then, omitting

the relatively smaller terms in denominators, i.e.
∑C
j=1,j 6=yi e

WT
j XWj , Eq.7, 8 can be separately

approximated as:

X
′
= X + β(Wyi −

e
WT

yi
X
Wyi∑C

j=1 e
WT

j X
)

︸ ︷︷ ︸
vector1

(9)

X
′
= X + β(Wyi −

e
WT

yi
X
Wyi∑C

j=1 e
WT

j X + eW
T
virtX︸ ︷︷ ︸

vector2

)−β eW
T
virtXWvirt∑C

j=1 e
WT

j X + eW
T
virtX︸ ︷︷ ︸

vector3

(10)

from the above Eq.9 and Eq.10, we consider the magnitude and direction of ’vector1’, ’vector2’
and ’vector3’, and then the updated X

′
by the corresponding softmax and Virtual Softmax can be

easily illustrated as in Fig.4.(c). It can be firstly observed that the norm of red arrow is smaller
than that of blue arrow, showing a similar result with the analysis in Sec.5.1, i.e. Virtual Softmax
will regularize the feature norm. Meanwhile, one can also observe another important phenomenon
that the feature vector X

′
optimized by Virtual Softmax has a much smaller angle θ to the class

anchor Wyi than original Softmax, well explaining the reason why the features learned by Virtual
Softmax is much more compact and separable than original Softmax. In summary, by considering
the collaborative effort of many terms, we could know the working principle of our Virtual Softmax
better. The Virtual Softmax not only provides regularization but more importantly, intensifies
the discrimination property within the learned features.

Although it is based on an approximate analysis, to some extent, it can give us an heuristic inter-
pretation of Virtual Softmax why it is capable of encouraging the discrimination of features from a
novel feature update perspective. And practically, without these assumptions the Virtual Softmax can
indeed produce discriminative features, validated by the visualization in Sec. 5.3 and the experimental
results in Sec. 6.
5.3 Visualization of Compactness and Separability
In order to highlight and emphasize that Virtual Softmax indeed encourages the discriminative feature
learning, we provide a clear visualization of the learned features on MNIST dataset [17] in 2-D and
3-D space respectively, as shown in Fig.2. From it, one can observe that the learned features by
our Virtual Softmax are much compact and well separated, with larger inter-class angular margin
and tighter intra-class distribution than softmax, and Virtual Softmax can consistently improve the
performances in both 2-D (99.2% vs. 98.91%) and 3-D (99.38% vs. 99.13%) cases. Furthermore,
we also visualize the leaned features in k-D space (where k > 3) with the confusion matrix. The
confusion matrix comparison between original softmax and our Virtual Softmax are shown in
Fig.5. Specifically, we compute the included angle cosine (i.e. cos θ) between any two feature

6



Layer MNIST(for fig.2) MNIST SVHN CIFAR10 CIFAR100/100+
Block1 [5x5,32×t]x2,padding 2 [3x3,32×t]x4 [3x3,32×t]x5 [3x3,32×t]x5 [3x3,32×t]x5
Pool1 Max-Pooling

Block2 [5x5,64×t]x2,padding 2 [3x3,32×t]x4 [3x3,64×t]x4 [3x3,64×t]x4 [3x3,64×t]x4
Pool2 Max-Pooling

Block3 [5x5,128×t]x2,padding 2 [3x3,32×t]x4 [3x3,128×t]x4 [3x3,128×t]x4 [3x3,128×t]x4
Pool3 Max-Pooling Max-Pooling Max-Pooling Max-Pooling Ave-Pooling

Fully Connected 2/3 64 64 64 512
Table 1: Model architectures for different benchmarks. [3x3,32×t]x4 denotes 4 cascaded convolutional layers
with 32× t filters of size 3x3. The toy models are of t = 1. Max-Pooling is with 3× 3 kernel and stride of 2.

Figure 5: Cosine confusion matrixes on the test splits of CIFAR10/100/100+. On each dataset, both Softmax
and Virtual Softmax use the same CNN architecture.

vectors which are extracted from the testing splits of CIFAR10/100/100+ [16] datasets. From Fig.5,
it can be observed that, over the there datasets, the intra-class similarities are enhanced and the
inter-class similarities are reduced when training with our Virtual Softmax. Moreover, our Virtual
Softmax improves nearly 1%, 2% and 1.5% classification accuracies over the original softmax on
CIFAR10/100/100+, respectively. To summarize, all these aforementioned experiments demonstrate
that our Virtual Softmax indeed serves as an efficient algorithm which has a much stronger power of
enlarging inter-class angular margin and compressing intra-class distribution than softmax and thus
can significantly improve the recognition performances.

5.4 Relationship to Other Methods
There are a few research works concentrating on refining the Softmax objective, e.g. L-Softmax[22],
A-Softmax[21] and Noisy Softmax[3]. Research works [22, 21] require to manually select a tractable
constraint, and need a careful and annealing-like training procedure which is under human control.
However, our Virtual-Softmax can be easily trained end-to-end without or with little human inter-
ventions, since the margin constraint is introduced automatically by the virtual class. Moreover,
our method differs from L-Softmax and A-softmax in a heuristic idea that training deep models
with the additional virtual class not only the given ones, which is the first work to extend the o-
riginal Softmax to employ virtual class for discriminative feature learning and may inspire other
researchers. And it can also provide regularization for deep models implicitly. Method [3] aims to
improve the generalization ability of DCNN by injecting noise into Softmax, which heads from a
different perspective. In summary, our Virtual-Softmax comes from a clear and unusual motivation
that injects a dynamic virtual class for enhancing features, which is different from the listed other
methods[22, 21, 3], even though all the methods intend to learn better features.

6 Experiments and Results
We evaluate our Virtual Softmax on classification tasks and on face verification tasks. For fair
comparison, we train with the same network for both Virtual Softmax and the baseline softmax.
Small-Set Object Classification: We follow [39, 22, 3] to devise our CNN models. Denote t as the
widening factor, which is used to multiply the basic number of filters in one convolutional layer, then
our architecture configurations are listed in Table.1. For training, the initial learning rate is 0.1, and is
divided by 10 at (20k, 27k) and (12k, 18k) in CIFAR100 and the other datasets respectively, and the
corresponding total iterations are 30k and 20k.
Fine-grained Object Classification: We fine-tune some popular models pre-trained on
ImageNet[26], including GooglenetV1[31] and GooglenetV2[32] , by replacing the last softmax
layer with our Virtual Softmax. The learning rates are fixed to 0.0001 and 0.001 for the pre-trained
layers and the randomly initialized layer respectively, and stop training at 30k iteration.
Large-Set Object Classification: Here, we use the network for CIFAR100 with t=7, the learning
rate starts from 0.1 and is divided by 10 at 20k, 40k, 60k iterations. The maximal iteration is 70k.
Face Verification: We employ the published Resnet model in [21] to evaluate our Virtual Softmax.
Start with a learning rate of 0.1, divide it by 10 at (30k, 50k) and stop training at 70k.

7



0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

T
e
s
ti

n
g

 A
c
c

CIFAR10

t=1, softmax

t=1, virtual softmax

t=2, softmax

t=2, virtual softmax

t=3, softmax

t=3, virtual softmax

t=4, softmax

t=4, virtual softmax

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

T
e
s

ti
n

g
 A

c
c

CIFAR100

t=2, softmax

t=2, virtual softmax

t=3, softmax

t=3, virtual softmax

t=4, softmax

t=4, virtual softmax

t=7, softmax

t=7, virtual softmax

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iteration

T
e
s

ti
n

g
 A

c
c

CIFAR100+

t=2, softmax

t=2, virtual softmax

t=3, softmax

t=3, virtual softmax

t=4, softmax

t=4, virtual softmax

t=7, softmax

t=7, virtual softmax

120 125 130 135 140

0.84

0.86

0.88

0.9

0.92

0.94

Iteration

T
e
s

ti
n

g
A

c
c

200 210 220 230 240 250 260 270

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

200 210 220 230 240 250 260

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

T
e
s
ti

n
g

A
c

c

Figure 6: Testing Acc(%) on CIFAR10/100/100+ datasets.

Compared Methods: We set L-Softmax(LS)[22], Noisy-Softmax(NS)[3] and A-Softmax(AS)[21]
as the compared methods and re-implement them with the same experimental configurations as us.
All of our experiments are implemented by Caffe[14]. The models are trained on one TitanX and we
fill it with different batch sizes for different networks. For data preprocessing, we follow NS[3]. For
testing, we use original softmax to classify the testing data in classification tasks and cosine distance
to evaluate the performances in face verification tasks.

6.1 Ablation Study on Network Width CIFAR10 t = 1 t = 2 t = 3 t = 4
Softmax 9.84 8.2 7.76 7.15

Virtual Softmax 8.95 7.27 7.04 6.68
Improvement 0.77 0.93 0.72 0.47
CIFAR100 t = 2 t = 3 t = 4 t = 7

Softmax 32.72 30.74 28.76 27.7
Virtual Softmax 29.84 28.4 27.81 26.02

Improvement 2.88 2.34 0.95 1.68
CIFAR100+ t = 2 t = 3 t = 4 t = 7

Softmax 30.44 28.59 27.21 25.52
Virtual Softmax 28.62 26.81 26.17 24.01

Improvement 1.82 1.78 1.04 1.51

Table 2: Recognition error rates(%) on CI-
FAR10/100 datasets. t is the widening factor and +
denotes data augmentation.

As listed in Table.1, our toy network on each dataset
is with the widening factor of t = 1. We expand the
toy models by setting t = 1, 2, 3, 4 and t = 2, 3, 4, 7
on CIFAR10 and CIFAR100 respectively, and the
experimental results are listed in Table.2. From these
results, for example on CIFAR100+, it can be ob-
served that as the model width increasing (i.e. from
t = 2 to t = 7) the recognition error rate of Virtu-
al Softmax is diminishing, and our method achieves
consistent performance gain over the original soft-
max when training with different networks, verifying
the robustness of our method. Furthermore, when
training with Virtual Softmax, the recognition error
rates of wider models are consistently lower than that
of thinner models across all these datasets, indicating that the Virutal Softmax does not easily suffer
from over-fitting and supporting the analysis in Sec.5.1. And we plot the curves of testing Acc
on CIFAR10/100/100+ as shown in Fig.6, one can observe that our Virtual Softmax can be easily
optimized, with a similar convergence speed compared to the original softmax.

6.2 Evaluation on objecect datasets
MNIST [17], SVHN [23], CIFAR [16] are the popular used small-set object classification datasets,
including different number of classes. From Table.3, it can be observed that on both MNIST
and SVHN datasets the Virtual Softmax not only surpasses the original softmax using the same
network (i.e. 0.28% vs. 0.35% on MNIST, 1.93% vs. 2.11% on SVHN) but also outperforms
LS[22], NS[3] and AS[21], showing the effectiveness of our method. Moreover, we also report
the experimental results on CIFAR dataset as in Table.4. Specifically, one can observe that our
Virtual Softmax drastically improves nearly 0.6%, 2%, 1.5% accuracies over the baseline softmax
on CIFAR10/100/100+ respectively. Meanwhile, it outperforms all of the other methods on both
CIFAR10/100 datasets, e.g. it surpasses both the RestNet-110[9] and Densenet-40[11] on CIFAR100+
which are much deeper and more complex than our architecture, and also surpasses the listed compared
methods.

Method Top1 Top5
Softmax 47.63 73.14
NS*[3] 47.96 73.25
LS*[22] 48.59 73.82
AS*[21] 48.66 73.57

Virtual Softmax 48.84 74.06
Table 7: Acc (%) on ImageNet32

CUB200 [35] is the popular fine-grained object classification
set. The comparison results between other state-of-the-art re-
search works and our Virtual Softmax are shown in Table.5, V1
and V2 denote the corresponding GoogleNet models. One can
observe that the Virtual Softmax outperforms the baseline soft-
max over all the two pre-trained models, and surpasses all the
compared methods LS[22], NS[3] and AS[21]. Additionally,
training with only the Virtual Softmax, our final result is comparable to other remarkable works
which exploit many assistant attention and alignment models, showing the superiority of our method.

8



Method MNIST(%) SVHN(%)
Maxout [7] 0.45 2.47
DSN [19] 0.39 1.92

R-CNN [20] 0.31 1.77
WRN [39] - 1.85

DisturbLabel [38] 0.33 2.19
Noisy Softmax [3] 0.33 -

L-Softmax [22] 0.31 -
Softmax 0.35 2.11
NS*[3] 0.32 2.04
LS*[22] 0.30 2.01
AS*[21] 0.31 2.04

Virtual Softmax 0.28 1.93
Table 3: Recognition error rates on MNIST and
SVHN. * denotes our reproducing.

Method CIFAR10(%) CIFAR100(%) CIFAR100+(%)
GenPool [18] 7.62 32.37 -

DisturbLabel [38] 9.45 32.99 26.63
Noisy Softmax [3] 7.39 28.48 -

L-Softmax [22] 7.58 29.53 -
ACU [13] 7.12 27.47 -

ResNet-110 [9] - - 25.16
Densenet-40 [11] 7.00 27.55 24.42

Softmax 7.15 27.7 25.52
NS*[3] 6.91 26.33 25.20
LS*[22] 6.77 26.18 24.32
AS*[21] 6.83 26.09 24.11

Virtual Softmax 6.68 26.02 24.01
Table 4: Recognition error rates on CIFAR datasets. + denotes
data augmentation. * denotes our reproducing.

Method CUB(%)
Pose Normalization [1] 75.7
Part-based RCNN [40] 76.4

VGG-BGLm [41] 80.4
PG Alignment [15] 82.8

Softmax (V1) 73.5
NS*[3](V1) 74.8
LS*[22](V1) 76.5
AS*[21](V1) 75.2

Virtual Softmax (V1) 77.1
Softmax (V2) 77.2
NS*[3](V2) 77.9
LS*[22](V2) 80.5
AS*[21](V2) 80.2

Virtual Softmax (V2) 81.1
Table 5: Accuracy results on CUB200. * denotes
our reproducing.

Method Models LFW SLLFW
DeepID2+ [30] 25 99.47 -

VGG [25] 1 97.27 88.13
Lightened CNN [37] 1 98.13 91.22

L-Softmax [22] 1 98.71 -
Center loss [36] 1 99.05 -

Noisy Softmax [3] 1 99.18 94.50
Normface [33] 1 99.19 -
A-Softmax [21] 1 99.42 -

Softmax 1 99.10 94.59
NS*[3] 1 99.16 94.75
LS*[22] 1 99.37 95.58

AS*[21]+Normface*[33] 1 99.57 96.45
Virtual Softmax 1 99.46 95.85

Table 6: Verification results (%) on LFW/SLLFW. * denotes
our reproducing.

ImageNet32[5]: is a downsampled version of large-scale dataset ImageNet [26], which contains
exactly the same number of images as original dataset but with 32x32 size. The results are in Tab.7,
one can observe that Virtual Softmax performs the best.

6.3 Evaluation on face datasets
LFW [12] is a popular face verification benchmark. SLLFW [6] generalizes the original protocol
in LFW to a more difficult verification task, indicating that the images are all coming from LFW
but the testing pairs are more knotty to verify. For data preprocessing, we follow the method in
[3]. Then augment the training data by randomly mirroring. We adopt the public available Resnet
model from A-Softmax[21]. Then we train this Resnet model with the cleaned subset of [8]. The
final results are listed in Table.6. One can observe that our Virtual Softmax drastically improves
the performances over the baseline softmax on both LFW and SLLFW datasets, e.g. from 99.10%
to 99.46% and 94.59% to 95.85% , respectively. And it also outperforms both NS[3] and LS[22],
showing the effectiveness of our method. Moreover, since the class number for training is very large,
i.e. 67k, the optimizing procedure is difficult than that in object classification tasks, therefore, if the
training phase can be eased by human guidance and control, the performance will be more better,
e.g. AS*[21]+Normface*[33] achieve the best results when artificially and specifically choose the
optimal margin constraints and feature scale for the current training set.

7 Conclusion
In this paper, we propose a novel but extremely simple method Virtual Softmax to enhance the
discriminative property of learned features by encouraging larger angular margin between classes.
It derives from a clear motivation and generalizes the optimization goal of the original softmax to
a more rigorous one, i.e. zero limit θyi . Moreover, it also has heuristic interpretations from feature
update and coupling decay perspectives. Extensive experiments on both object classification and face
verification tasks validate that our Virtual Softmax can significantly outperforms the original softmax
and indeed serves as an efficient feature-enhancing method.

Acknowledgments: This work was partially supported by the National Natural Science Foundation
of China under Grant Nos. 61573068 and 61871052, Beijing Nova Program under Grant No.
Z161100004916088, and sponsored by DiDi GAIA Research Collaboration Initiative.

9



References

[1] S. Branson, G. Van Horn, S. Belongie, and P. Perona. Bird species categorization using pose normalized
deep convolutional nets. arXiv preprint arXiv:1406.2952, 2014.

[2] B. Chen and W. Deng. Almn: Deep embedding learning with geometrical virtual point generating. arXiv
preprint arXiv:1806.00974, 2018.

[3] B. Chen, W. Deng, and J. Du. Noisy softmax: Improving the generalization ability of dcnn via postponing
the early softmax saturation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[4] D. Cheng, Y. Gong, S. Zhou, J. Wang, and N. Zheng. Person re-identification by multi-channel parts-based
cnn with improved triplet loss function. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1335–1344, 2016.

[5] P. Chrabaszcz, I. Loshchilov, and F. Hutter. A downsampled variant of imagenet as an alternative to the
cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[6] W. Deng, J. Hu, N. Zhang, B. Chen, and J. Guo. Fine-grained face verification: Fglfw database, baselines,
and human-dcmn partnership. Pattern Recognition, 66:63–73, 2017.

[7] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. arXiv
preprint arXiv:1302.4389, 2013.

[8] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. Ms-celeb-1m: A dataset and benchmark for large-scale face
recognition. In European Conference on Computer Vision (ECCV), pages 87–102. Springer, 2016.

[9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[10] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507, 2017.
[11] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten. Densely connected convolutional networks.

arXiv preprint arXiv:1608.06993, 2016.
[12] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database for

studying face recognition in unconstrained environments. Technical report, Technical Report 07-49,
University of Massachusetts, Amherst, 2007.

[13] Y. Jeon and J. Kim. Active convolution: Learning the shape of convolution for image classification. arXiv
preprint arXiv:1703.09076, 2017.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 675–678. ACM, 2014.

[15] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without part annotations. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5546–5555, 2015.

[16] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.
[17] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.
[18] C.-Y. Lee, P. W. Gallagher, and Z. Tu. Generalizing pooling functions in convolutional neural networks:

Mixed, gated, and tree. In International conference on artificial intelligence and statistics, 2016.
[19] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-supervised nets. In Artificial Intelligence and

Statistics, pages 562–570, 2015.
[20] M. Liang and X. Hu. Recurrent convolutional neural network for object recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3367–3375, 2015.
[21] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song. Sphereface: Deep hypersphere embedding for face

recognition. arXiv preprint arXiv:1704.08063, 2017.
[22] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-margin softmax loss for convolutional neural networks. In

Proceedings of The 33rd International Conference on Machine Learning (ICML), pages 507–516, 2016.
[23] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural images with

unsupervised feature learning. In NIPS workshop on deep learning and unsupervised feature learning,
volume 2011, page 5, 2011.

[24] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via lifted structured feature
embedding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4004–4012, 2016.

[25] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In BMVC, volume 1, page 6, 2015.
[26] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[27] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 815–823, 2015.

[28] K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. In Advances in Neural
Information Processing Systems (NIPS), pages 1849–1857, 2016.

[29] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint identification-verification.
In Advances in neural information processing systems (NIPS), pages 1988–1996, 2014.

[30] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and robust.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2892–2900, 2015.

10



[31] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9, 2015.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2818–2826, 2016.

[33] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: l_2 hypersphere embedding for face verification.
arXiv preprint arXiv:1704.06369, 2017.

[34] Y. Wang, J. Choi, V. Morariu, and L. S. Davis. Mining discriminative triplets of patches for fine-grained
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1163–1172, 2016.

[35] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-ucsd birds 200.
2010.

[36] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative feature learning approach for deep face recognition.
In European Conference on Computer Vision (ECCV), pages 499–515. Springer, 2016.

[37] X. Wu, R. He, and Z. Sun. A lightened cnn for deep face representation. arXiv preprint arXiv:1511.02683,
2015.

[38] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian. Disturblabel: Regularizing cnn on the loss layer.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
4753–4762, 2016.

[39] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
[40] N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based r-cnns for fine-grained category detection.

In European conference on computer vision (ECCV), pages 834–849. Springer, 2014.
[41] F. Zhou and Y. Lin. Fine-grained image classification by exploring bipartite-graph labels. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1124–1133, 2016.

11


