
Tree-to-tree Neural Networks for Program
Translation

Xinyun Chen
UC Berkeley

xinyun.chen@berkeley.edu

Chang Liu
UC Berkeley

liuchang2005acm@gmail.com

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

Abstract

Program translation is an important tool to migrate legacy code in one language
into an ecosystem built in a different language. In this work, we are the first
to employ deep neural networks toward tackling this problem. We observe that
program translation is a modular procedure, in which a sub-tree of the source tree
is translated into the corresponding target sub-tree at each step. To capture this
intuition, we design a tree-to-tree neural network to translate a source tree into a
target one. Meanwhile, we develop an attention mechanism for the tree-to-tree
model, so that when the decoder expands one non-terminal in the target tree, the
attention mechanism locates the corresponding sub-tree in the source tree to guide
the expansion of the decoder. We evaluate the program translation capability of our
tree-to-tree model against several state-of-the-art approaches. Compared against
other neural translation models, we observe that our approach is consistently better
than the baselines with a margin of up to 15 points. Further, our approach can
improve the previous state-of-the-art program translation approaches by a margin
of 20 points on the translation of real-world projects.

1 Introduction

Programs are the main tool for building computer applications, the IT industry, and the digital world.
Various programming languages have been invented to facilitate programmers to develop programs
for different applications. At the same time, the variety of different programming languages also
introduces a burden when programmers want to combine programs written in different languages
together. Therefore, there is a tremendous need to enable program translation between different
programming languages.

Nowadays, to translate programs between different programming languages, typically programmers
would manually investigate the correspondence between the grammars of the two languages, then
develop a rule-based translator. However, this process can be inefficient and error-prone. In this
work, we make the first attempt to examine whether we can leverage deep neural networks to build a
program translator automatically.

Intuitively, the program translation problem in its format is similar to a natural language translation
problem. Some previous work propose to adapt phrase-based statistical machine translation (SMT)
for code migration [21, 16, 22]. Recently, neural network approaches, such as sequence-to-sequence-
based models, have achieved the state-of-the-art performance on machine translation [4, 9, 13, 14, 30].
In this work, we study neural machine translation methods to handle the program translation problem.
However, a big challenge making a sequence-to-sequence-based model ineffective is that, unlike

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

natural languages, programming languages have rigorous grammars and are not tolerant to typos
and grammatical mistakes. It has been demonstrated that it is very hard for an RNN-based sequence
generator to generate syntactically correct programs when the lengths grow large [17].

In this work, we observe that the main issue of an RNN that makes it hard to produce syntactically
correct programs is that it entangles two sub-tasks together: (1) learning the grammar; and (2) aligning
the sequence with the grammar. When these two tasks can be handled separately, the performance can
typically boost. For example, Dong et al. employ a tree-based decoder to separate the two tasks [11].
In particular, the decoder in [11] leverages the tree structural information to (1) generate the nodes at
the same depth of the parse tree using an LSTM decoder; and (2) expand a non-terminal and generate
its children in the parse tree. Such an approach has been demonstrated to achieve the state-of-the-art
results on several semantic parsing tasks.

Inspired by this observation, we hypothesize that the structural information of both source and target
parse trees can be leveraged to enable such a separation. Inspired by this intuition, we propose
tree-to-tree neural networks to combine both a tree encoder and a tree decoder. In particular, we
observe that in the program translation problem, both source and target programs have their parse
trees. In addition, a cross-language compiler typically follows a modular procedure to translate the
individual sub-components in the source tree into their corresponding target ones, and then compose
them to form the final target tree. Therefore, we design the workflow of a tree-to-tree neural network
to align with this procedure: when the decoder expands a non-terminal, it locates the corresponding
sub-tree in the source tree using an attention mechanism, and uses the information of the sub-tree to
guide the non-terminal expansion. In particular, a tree encoder is helpful in this scenario, since it can
aggregate all information of a sub-tree to the embedding of its root, so that the embedding can be
used to guide the non-terminal expansion of the target tree.

We follow the above intuition to design the tree-to-tree translation model. Some existing work [28, 18]
propose tree-based autoencoder architectures. However, in these models, the decoder can only
access to a single hidden vector representing the source tree, thus they are not performant on
the translation task. In our evaluation, we demonstrate that without an attention mechanism, the
translation performance is 0% in most cases, while using an attention mechanism could boost
the performance to > 90%. Another work [6] proposes a tree-based attentional encoder-decoder
architecture for natural language translation, but their model performs even worse than the attentional
sequence-to-sequence baseline model. One main reason is that their attention mechanism calculates
the attention weights of each node independently, which does not well capture the hierarchical
structure of the parse trees. In our work, we design a parent attention feeding mechanism that
formulates the dependence of attention maps between different nodes, and show that this attention
mechanism further improves the performance of our tree-to-tree model considerably, especially
when the size of the parse trees grows large (i.e., 20% − 30% performance gain). To the best of
our knowledge, this is the first successful demonstration of tree-to-tree neural network architecture
proposed for translation tasks in the literature.

To test our hypothesis, we develop two novel program translation tasks, and employ a Java to C#
benchmark used by existing program translation works [22, 21]. First, we compare our approach
against several neural network approaches on our proposed two tasks. Experimental results demon-
strate that our tree-to-tree model outperforms other state-of-the-art neural networks on the program
translation tasks, and yields a margin of up to 5% on the token accuracy and up to 15% on the
program accuracy. Further, we compare our approach with previous program translation approaches
on the Java to C# benchmark, and the results show that our tree-to-tree model outperforms previous
state-of-the-art by a large margin of 20% on program accuracy. These results demonstrate that our
tree-to-tree model is promising toward tackling the program translation problem. Meanwhile, we
believe that our proposed tree-to-tree neural network could also be adapted to other tree-to-tree tasks,
and we consider it as future work.

2 Program Translation Problem

In this work, we consider the problem of translating a program in one language into another. One
approach is to model the problem as a machine translation problem between two languages, and thus
numerous neural machine translation approaches can be applied.

2

CoffeeScript Program: x=1 if y==0 JavaScript Program: if (y === 0) { x = 1; }

Block

If

Op===

Value

Identifier

Literal

y

Value

Number

Literal

0

Assign

Value

Identifier

Literal

x

Value

Number

Literal

1

Block

Program

IfStatement

BinaryExpression

Identifier

y

=== Literal

0

BlockStatement

ExpressionStatement

AssignExpression

Identifier

x

= Literal

1

Parse Tree Parse Tree

Figure 1: Translating a CoffeeScript program into JavaScript. The sub-component in the CoffeeScript
program and its corresponding translation in JavaScript are highlighted.

For the program translation problem, however, a unique property is that each input program unam-
biguously corresponds to a unique parse tree. Thus, rather than modeling the input program as a
sequence of tokens, we can consider the problem as translating a source tree into a target tree. Note
that most modern programming languages are accompanied with a well-developed parser, so we can
assume that the parse trees of both the source and the target programs can be easily obtained.

The main challenge of the problem in our consideration is that the cross-compiler for translating
programs typically does not exist. Therefore, even if we assume the existence of parsers for both the
source and the target languages, the translation problem itself is still non-trivial. We formally define
the problem as follows.

Definition 1 (Program translation). Given two programming languages Ls and Lt, each being a set
of instances (pk, Tk), where pk is a program, and Tk is its corresponding parse tree. We assume that
there exists a translation oracle π, which maps instances in Ls to instances in Lt. Given a dataset of
instance pairs (is, it) such that is ∈ Ls, it ∈ Lt and π(is) = it, our problem is to learn a function
F that maps each is ∈ Ls into it = π(is).

In this work, we focus on the problem setting that we have a set of paired source and target programs
to learn the translator. Note that all existing program translation works [16, 22, 21] also study the
problem under such an assumption. When such an alignment is lacking, the program translation
problem is more challenging. Several techniques for NMT have been proposed to handle this issue,
such as dual learning [14], which have the potential to be extended for the program translation task.
We leave these more challenging problem setups as future work.

3 Tree-to-tree Neural Network

In this section, we present our design of the tree-to-tree neural network. We first motivate the design,
and then present the details.

3.1 Program Translation as a Tree-to-tree Translation Problem

Figure 1 presents an example of translation from CoffeeScript to JavaScript. We observe that an
interesting property of the program translation problem is that the translation process can be modular.
The figure highlights a sub-component in the source tree corresponding to x=1 and its translation
in the target tree corresponding to x=1;. This correspondence is independent of other parts of the
program. Consider when the program grows longer and this statement may repetitively occur multiple
times, it may be hard for a sequence-to-sequence model to capture the correspondence based on
only token sequences without structural information. Thus, such a correspondence makes it a natural
solution to locate the referenced sub-tree in the source tree when expanding a non-terminal in the
target tree into a sub-tree.

3

Block

If

Op===

Value

Identifier

Literal

y

Value

Number

Literal

0

Assign

Value

Identifier

Literal

x

Value

Number

Literal

1

Block

Program

IfStatement

BinaryExpression

Expanding

To Expand

Source Tree Target Tree

ℎ1

ℎ2

ℎ8

ℎ7

ℎ6

ℎ5

ℎ4

ℎ3

ℎ14

ℎ13

ℎ12

ℎ11

ℎ10

ℎ9

ℎ17

ℎ16

ℎ15

ℎ1′

ℎ2′

ℎ3′

ℎ4′

ℎ5′

Attention map: 𝑤𝑖 ∝ exp(ℎ𝑖
𝑇𝑊0ℎ5

′)

Source embedding: 𝑒𝑠 = ∑𝑖=1
17 𝑤𝑖ℎ𝑖 = ℎ1; … ; ℎ17 𝑤

Combined embedding: 𝑒𝑡 = tanh(𝑊1𝑒𝑠 +𝑊2ℎ5′)

Predicting the node: node = argmax 𝐬𝐨𝐟𝐭𝐦𝐚𝐱(𝑊et)

Figure 2: Tree-to-tree workflow: The arrows indicate the computation flow. Blue solid arrows indicate
the flow from/to the left child, while orange dashed arrows are for the right child. The black dotted
arrow from the source tree root to the target tree root indicates that the LSTM state is copied. The
green box denotes the expanding node, and the grey one denotes the node to be expanded in the
queue. The sub-tree of the source tree corresponding to the expanding node is highlighted in yellow.
The right corner lists the formulas to predict the value of the expanding node.

3.2 Tree-to-tree Neural Network

Inspired by the above motivation, we design the tree-to-tree neural network, which follows an
encoder-decoder framework to encode the source tree into an embedding, and decode the embedding
into the target tree. To capture the intuition of the modular translation process, the decoder employs
an attention mechanism to locate the corresponding source sub-tree when expanding the non-terminal.
We illustrate the workflow of a tree-to-tree model in Figure 2, and present each component of the
model below.

Converting a tree into a binary one. Note that the source and target trees may contain multiple
branches. Although we can design tree-encoders and tree-decoders to handle trees with arbitrary
number of branches, we observe that encoder and decoder for binary trees can be more effective.
Thus, the first step is to convert both the source tree and the target tree into a binary tree. To this end,
we employ the Left-Child Right-Sibling representation for this conversion.

Binary tree encoder. The encoder employs a Tree-LSTM [29] to compute embeddings for both the
entire source tree and each of its sub-tree. In particular, consider a node N with the value ts in its
one-hot encoding representation, and it has two children NL and NR, which are its left child and
right child respectively. The encoder recursively computes the embedding for N from the bottom up.

Assume that the left child and the right child maintain the LSTM state (hL, cL) and (hR, cR)
respectively, and the embedding of ts is x. Then the LSTM state (h, c) of N is computed as

(h, c) = LSTM(([hL;hR], [cL; cR]), x) (1)

where [a; b] denotes the concatenation of a and b. Note that a node may lack one or both of its
children. In this case, the encoder sets the LSTM state of the missing child to be zero.

Binary tree decoder. The decoder generates the target tree starting from a single root node. The
decoder first copies the LSTM state (h, c) of the root of the source tree, and attaches it to the root node
of the target tree. Then the decoder maintains a queue of all nodes to be expanded, and recursively
expands each of them. In each iteration, the decoder pops one node from the queue, and expands it.
In the following, we call the node being expanded the expanding node.

First, the decoder will predict the value of expanding node. To this end, the decoder computes the
embedding et of the expanding node N , and then feeds it into a softmax regression network for
prediction:

tt = argmax softmax(Wet) (2)

Here, W is a trainable matrix of size Vt × d, where Vt is the vocabulary size of the outputs and d is
the embedding dimension. Note that et is computed using the attention mechanism, which we will
explain later.

4

The value of each node tt is a non-terminal, a terminal, or a special 〈EOS〉 token. If tt = 〈EOS〉,
then the decoder finishes expanding this node. Otherwise, the decoder generates one new node as the
left child and another new node as the right child of the expanding one. Assume that (h′, c′), (h′′, c′′)
are the LSTM states of its left child and right child respectively, then they are computed as:

(h′, c′) = LSTML((h, c), Btt) (3)

(h′′, c′′) = LSTMR((h, c), Btt) (4)

Here, B is a trainable word embedding matrix of size d × Vt. Note that the generation of the left
child and right child use two different sets of parameters for LSTML and LSTMR respectively. These
new children are pushed into the queue of all nodes to be expanded. When the queue is empty, the
target tree generation process terminates.

Notice that although the sets of terminal and non-terminal are disjoint, it is necessary to include the
〈EOS〉 token for the following reasons. First, due to the left-child-right-sibling encoding, although a
terminal does not have a child, since it could have a right child representing its sibling in the original
tree, 〈EOS〉 is still needed for predicting the right branch. Meanwhile, we combine the terminal and
non-terminal sets into a single vocabulary Vt for the decoder, and do not incorporate the knowledge
of grammar rules into the model, thus the model needs to infer whether a predicted token is a terminal
or a non-terminal itself. In our evaluation, we find that a well-trained model never generates a left
child for a terminal, which indicates that the model can learn to distinguish between terminals and
non-terminals correctly.

Attention mechanism to locate the source sub-tree. Now we consider how to compute et. One
straightforward approach is to compute et as h, which is the hidden state attached to the expanding
node. However, in doing so, the embedding will soon forget the information about the source tree
when generating deep nodes in the target tree, and thus the model yields a very poor performance.

To make better use of the information of the source tree, our tree-to-tree model employs an attention
mechanism to locate the source sub-tree corresponding to the sub-tree rooted at the expanding node.
Specifically, we compute the following probability:

P (Ns is the source sub-tree corresponding to Nt|Nt)

where Nt is the expanding node. We denote this probability as P (Ns|Nt), and we compute it as

P (Ns|Nt) ∝ exp(hTs W0ht) (5)

where W0 is a trainable matrix of size d× d.

To leverage the information from the source tree, we compute the expectation of the hidden state
value across all Ns conditioned on Nt, i.e.,

es = E[hNs
|Nt] =

∑
Ns

hNs
· P (Ns|Nt) (6)

This embedding can then be combined with h, the hidden state of the expanding node, to compute et
as follows:

et = tanh(W1es +W2h) (7)
where W1, W2 are trainable matrices of size d× d respectively.

Parent attention feeding. In the above approach, the attention vectors et are computed independently
to each other, since once et is used for predicting the node value tt, et is no longer used for further
predictions. However, intuitively, the attention decisions for the prediction of each node should be
related to each other. For example, for a non-terminal node Nt in the target tree, suppose that it is
related to Ns in the source tree, then it is very likely that the attention weights of its children should
focus on the descendants of Ns. Therefore, when predicting the attention vector of a node, the model
should leverage the attention information of its parent as well.

Following this intuition, we propose a parent attention feeding mechanism, so that the attention vector
of the expanding node is taken into account when predicting the attention vectors of its children.
Formally, besides the embedding of the node value tt, we modify the inputs to LSTML and LSTMR

of the decoder in Equations (3) and (4) as below:

5

(h′, c′) = LSTML((h, c), [Btt; et]) (8)

(h′′, c′′) = LSTMR((h, c), [Btt; et]) (9)

Notice that these formulas in their formats coincide with the input-feeding method for sequential
neural networks [20], but their meanings are different. For sequential models, the input attention
vector belongs to the previous token, while here it belongs to the parent node. In our evaluation, we
will show that such a parent attention feeding mechanism significantly improves the performance of
our tree-to-tree model.

4 Evaluation

In this section, we evaluate our tree-to-tree neural network with several baseline approaches on the
program translation task. To do so, we first describe three benchmark datasets in Section 4.1 for eval-
uating different aspects; then we evaluate our tree-to-tree model against several baseline approaches,
including the state-of-the-art neural network approaches and program translation approaches.

4.1 Datasets

To evaluate different approaches for the program translation problem, we employ three tasks: (1)
a synthetic translation task from an imperative language to a functional language; (2) translation
between CoffeeScript and JavaScript, which are both full-fledged languages; and (3) translation of
real-world projects from Java to C#, which has been used as a benchmark in the literature. Due to the
space limit, we present the translation tasks of real-world programming languages (i.e., task (2) and
(3)) below, and we discuss the synthetic task in the supplementary material.

For the CoffeeScript-JavaScript task, CoffeeScript employs a Python-style succinct syntax, while
JavaScript employs a C-style verbose syntax. To control the program lengths of the training and test
data, we develop a pCFG-based program generator and a subset of the core CoffeeScript grammar.
We also limit the set of variables and literals to restrict the vocabulary size. We utilize the CoffeeScript
compiler to generate the corresponding ground truth JavaScript programs. The grammar used to
generate the programs in our experiments can be found in the supplementary material. In doing so,
we obtain a set of CoffeeScript-JavaScript pairs, and thus we can build a CoffeeScript-to-JavaScript
dataset, and a JavaScript-to-CoffeeScript dataset by exchanging the source and the target. To build
the dataset, we randomly generate 100,000 pairs of source and target programs for training, 10,000
pairs as the development set, and 10,000 pairs for testing. We guarantee that there is no overlap
among training, development and test sets, and all samples are unique in the dataset. More statistics
of the dataset can be found in the supplementary material.

For the evaluation on Java to C#, we tried to contact the authors of [22] for their dataset, but our emails
were not responded. Thus, we employ the same approach as in [22] to crawl several open-source
projects, which have both a Java and a C# implementation. Same as in [22], we pair the methods in
Java and C# based on their file names and method names. The statistics of the dataset is summarized
in the supplementary material. Due to the change of the versions of these projects, the concrete
dataset in our evaluation may differ from [22]. For each project, we apply ten-fold validation on
matched method pairs, as in [22].

4.2 Metrics

The main metric evaluated in our evaluation is the program accuracy, which is the percentage of the
predicted target programs that are exactly the same as the ground truth in the dataset. Note that the
program accuracy is an underestimation of the true accuracy based on semantic equivalence, and this
metric has been used in [22]. This metric is more meaningful than other previously proposed metrics,
such as syntax-correctness and dependency-graph-accuracy, which are not directly comparable to
semantic equivalence. We also measure another metric called token accuracy, and we defer the details
to the supplementary material.

6

Tree2tree Seq2seq Seq2tree Tree2seq

T→T T→T T→T P→P P→T T→P T→T P→T T→T T→P T→T(-PF) (-Attn)
CoffeeScript to JavaScript translation

CJ-AS 99.57% 98.80% 0.09% 90.51% 79.82% 92.73% 89.13% 86.52% 88.50% 96.96% 92.18%
CJ-BS 99.75% 99.67% 0% 97.44% 16.26% 98.05% 93.89% 91.97% 88.22% 96.83% 78.77%
CJ-AL 97.15% 71.52% 0% 21.04% 0% 0% 0% 80.82% 78.60% 82.55% 46.94%
CJ-BL 95.60% 78.61% 0% 19.26% 9.98% 25.35% 42.08% 76.12% 76.21% 83.61% 26.83%

JavaScript to CoffeeScript translation
JC-AS 87.75% 85.11% 0.09% 83.07% 86.13% 73.88% 86.31% 86.86% 86.99% 71.61% 86.53%
JC-BS 86.37% 80.35% 0% 80.49% 85.94% 69.77% 85.28% 85.06% 84.25% 66.82% 85.31%
JC-AL 78.59% 54.93% 0% 77.10% 77.30% 65.52% 75.70% 77.11% 77.59% 60.75% 75.75%
JC-BL 75.62% 44.40% 0% 73.14% 73.96% 61.92% 74.51% 74.34% 71.56% 57.09% 73.86%

Table 1: Program accuracy for the translation between CoffeeScript and JavaScript.

4.3 Model Details

We evaluate our tree-to-tree model against a sequence-to-sequence model [4, 31], a sequence-to-tree
model [11], and a tree-to-sequence model [13]. Note that for a sequence-to-sequence model, there
can be four variants to handle different input-output formats. For example, given a program, we can
simply tokenize it into a sequence of tokens. We call this format as raw program, denoted as P. We
can also use the parser to parse the program into a parse tree, and then serialize the parse tree as a
sequence of tokens. Our serialization of a tree follows its depth-first traversal order, which is the same
as [31]. We call this format as parse tree, denoted as T. For both input and output formats, we can
choose either P or T. For a sequence-to-tree model, we have two variants based on its input format
being either P or T; note that the sequence-to-tree model generates a tree as output, and thus requires
its output format to be T (unserialized). Similarly, the tree-to-sequence model has two variants, and
our tree-to-tree only has one form. Therefore, we have 9 different models in our evaluation.

The hyper-parameters used in different models can be found in the supplementary material. The
baseline models have employed their own input-feeding or parent-feeding method that is analogous
to our parent attention feeding mechanism.

4.4 Results on the CoffeeScript-JavaScript Task

For the CoffeeScript-JavaScript task, we create several datasets named as XY-ZW: X and Y (C or
J) indicate the source and target languages respectively; Z (A or B) indicates the vocabulary; and
W (S or L) indicates the program length. In particular, vocabulary A uses {x,y} as variable names
and {0,1} as literals; vocabulary B uses all alphabetical characters as variable names, and all single
digits as literals. S means that the CoffeeScript programs has 10 tokens on average; and L for 20.

The program accuracy results are presented in Table 1. We can observe that our tree2tree model
outperforms all baseline models on all datasets. Especially, on the dataset with longer programs, the
program accuracy significantly outperforms all seq2seq models by a large margin, i.e., up to 75%.
Its margin over a seq2tree model can also reach around 20 points. These results demonstrate that
tree2tree model is more capable of learning the correspondence between the source and the target
programs; in particular, it is significantly better than other baselines at handling longer inputs.

Meanwhile, we perform an ablation study to compare the full tree2tree model with (1) tree2tree
without parent attention feeding (T→T (-PF)) and (2) tree2tree without attention (T→T (-Attn)). We
observe that the full tree2tree model significantly outperforms the other alternatives. In particular, on
JC-BL, the full tree2tree’s program accuracy is 30 points higher than the tree2tree model without
parent attention feeding.

More importantly, we observe that the program accuracy of tree2tree model without the attention
mechanism is nearly 0%. Note that such a model is similar to a tree-to-tree autoencoder architecture.
This result shows that our novel architecture can significantly outperform previous tree-to-tree-like
architectures on the program translation task.

However, although our tree2tree model performs better than other baselines, it still could not achieve
100% accuracy. After investigating into the prediction, we find that the main reason is because the
translation may introduce temporary variables. Because such temporary variables appear very rarely
in the training set, it could be hard for a neural network to infer correctly in these cases. Actually,

7

Tree2tree J2C# 1pSMT mppSMT
Reported in [22]

Lucene 72.8% 21.5% 21.6% 40.0%
POI 72.2% 18.9% 34.6% 48.2%
Itext 67.5% 25.1% 24.4% 40.6%
JGit 68.7% 10.7% 23.0% 48.5%
JTS 68.2% 11.7% 18.5% 26.3%

Antlr 31.9% (58.3%) 10.0% 11.5% 49.1%
Table 2: Program accuracy on the Java to C# translation. In the parentheses, we present the program
accuracy that can be achieved by increasing the training set.

the longer the programs are, the more temporary variables that the cross-compiler may introduce,
which makes the prediction harder. We consider further improving the model to handle this problem
as future work.

In addition, we observe that for the translation from JavaScript to CoffeeScript, the improvements of
the tree2tree model over the baselines are much smaller than for CoffeeScript to JavaScript translation.
We attribute this to the fact that the target programs are much shorter. For example, for a CoffeeScript
program with 20 tokens, its corresponding JavaScript program may contain more than 300 tokens.
Thus, the model needs to predict much fewer tokens for a CoffeeScript program than a JavaScript
program, so that even seq2seq models can achieve a reasonably good accuracy. However, still, we
can observe that our tree2tree model outperforms all baselines.

4.5 Results on Real-world Projects

We now compare our approach with three state-of-the-art program translation approaches, i.e.,
J2C# [15], 1pSMT [21], and mppSMT [22], on the real-world benchmark from Java to C#. Here,
J2C# is a rule-based system, 1pSMT directly applies the phrase-based SMT on sequential programs,
and mppSMT is a multi-phase phrase-based SMT approach that leverages both the raw programs and
their parse trees.

The results are summarized in Table 2. For previous approaches, we report the results from [22]. We
can observe that our tree2tree approach can significantly outperform the previous state-of-the-art on
all projects except Antlr. The improvements range from 20.2% to 41.9%.

On Antlr, the tree2tree model performs worse. We attribute this to the fact that Antlr contains too few
data samples for training. We test our hypothesis by constructing another training and validation set
from all other 5 projects, and test our model on the entire Antlr. We observe that our tree2tree model
can achieve a test accuracy of 58.3%, which is 9 points higher than the state-of-the-art. Therefore,
we conclude that our approach can significantly outperform previous program translation approaches
when there are sufficient training data.

5 Related Work

Statistical approaches for program translation. Some recent work have applied statistical machine
translation techniques to program translation [2, 16, 22, 21, 23, 24]. For example, several works
propose to adapt phrase-based statistical machine translation models and leverage grammatical
structures of programming languages for code migration [16, 22, 21]. In [23], Nguyen et al. propose
to use Word2Vec representation for APIs in libraries used in different programming languages, then
learn a transformation matrix for API mapping. On the contrary, our work is the first to employ deep
learning techniques for program translation.

Neural networks with tree structures. Recently, various neural networks with tree structures have
been proposed to employ the structural information of the data [11, 26, 25, 32, 3, 29, 34, 27, 13,
33, 28, 18, 6]. In these work, different tree-structured encoders are proposed for embedding the
input data, and different tree-structured decoders are proposed for predicting the output trees. In
particular, in [28, 18], they propose tree-structured autoencoders to learn vector representations of
trees, and show better performance on tree reconstruction and other tasks such as sentiment analysis.
Another work [6] proposes to use a tree-structured encoder-decoder architecture for natural language

8

translation, where both the encoder and the decoder are variants of the RNNG model [12]; however,
the performance of their model is slightly worse than the sequence-to-sequence model with attention,
which is mainly due to the fact that their attention mechanism can not condition the future attention
weights on previously computed ones. In this work, we are the first to demonstrate a successful
design of tree-to-tree neural network for translation tasks.

Neural networks for parsing. Other work study using neural networks to generate parse trees from
input-output examples [11, 31, 1, 26, 32, 3, 12, 8, 7]. In [11], Dong et al. propose a seq2tree model
that allows the decoder RNN to generate the output tree recursively in a top-down fashion. This
approach achieves the state-of-the-art results on several semantic parsing tasks. Some other work
incorporate the knowledge of the grammar into the architecture design [32, 26] to achieve better
performance on specific tasks. However, these approaches are hard to generalize to other tasks. Again,
none of them is designed for program translation or proposes a tree-to-tree architecture.

Neural networks for code generation. A recent line of research study using neural networks for
code generation [5, 10, 25, 19, 26, 32]. In [19, 26, 32], they study generating code in a DSL from
inputs in natural language or in another DSL. However, their designs require additional manual efforts
to adapt to new DSLs in consideration. In our work, we consider the tree-to-tree model as a generic
approach that can be applied to any grammar.

6 Conclusion and Future Work

In this work, we are the first to consider neural network approaches for the program translation
problem, and are the first to demonstrate a successful design of tree-to-tree neural network combining
both a tree-RNN encoder and a tree-RNN decoder for translation tasks. Extensive evaluation
demonstrates that our tree-to-tree neural network outperforms several state-of-the-art models. This
renders our tree-to-tree model as a promising tool toward tackling the program translation problem.
In addition, we believe that our proposed tree-to-tree neural network has the potential to generalize to
other tree-to-tree tasks, and we consider it as future work.

At the same time, we observe many challenges in program translation that existing techniques are
not capable of handling. For example, the models are hard to generalize to programs longer than
the training ones; it is unclear how to handle an infinite vocabulary set that may be employed in
real-world applications; further, the training requires a dataset of aligned input-output pairs, which
may be lacking in practice. We consider all these problems as important future work in the research
agenda toward solving the program translation problem.

Acknowledgement

We thank the anonymous reviewers for their valuable comments. This material is in part based
upon work supported by the National Science Foundation under Grant No. TWC-1409915, Berkeley
DeepDrive, and DARPA D3M under Grant No. FA8750-17-2-0091. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

References
[1] R. Aharoni and Y. Goldberg. Towards string-to-tree neural machine translation. In ACL, 2017.

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big code
and naturalness. arXiv preprint arXiv:1709.06182, 2017.

[3] D. Alvarez-Melis and T. S. Jaakkola. Tree-structured decoding with doubly-recurrent neural
networks. In ICLR, 2017.

[4] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. In ICLR, 2015.

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deepcoder: Learning to
write programs. In ICLR, 2017.

9

[6] J. Bradbury and R. Socher. Towards neural machine translation with latent tree attention. arXiv
preprint arXiv:1709.01915, 2017.

[7] X. Chen, C. Liu, E. C. Shin, D. Song, and M. Chen. Latent attention for if-then program
synthesis. In Advances in Neural Information Processing Systems, pages 4574–4582, 2016.

[8] X. Chen, C. Liu, and D. Song. Towards synthesizing complex programs from input-output
examples. In ICLR, 2018.

[9] S. J. K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural
machine translation. In ACL, 2015.

[10] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P. Kohli. Robustfill: Neural
program learning under noisy I/O. arXiv preprint arXiv:1703.07469, 2017.

[11] L. Dong and M. Lapata. Language to logical form with neural attention. In ACL, 2016.

[12] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith. Recurrent neural network grammars. In
NAACL, 2016.

[13] A. Eriguchi, K. Hashimoto, and Y. Tsuruoka. Tree-to-sequence attentional neural machine
translation. In ACL, 2016.

[14] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T. Liu, and W.-Y. Ma. Dual learning for machine
translation. In Advances in Neural Information Processing Systems, pages 820–828, 2016.

[15] Java2CSharp. Java2csharp. http://sourceforge.net/projects/j2cstranslator/, 2018.

[16] S. Karaivanov, V. Raychev, and M. Vechev. Phrase-based statistical translation of programming
languages. In Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, pages 173–184. ACM, 2014.

[17] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078, 2015.

[18] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. arXiv
preprint arXiv:1703.01925, 2017.

[19] W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, A. Senior, F. Wang, and P. Blunsom.
Latent predictor networks for code generation. In ACL, 2016.

[20] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421, 2015.

[21] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Lexical statistical machine translation for
language migration. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 651–654. ACM, 2013.

[22] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-conquer approach for multi-phase
statistical migration for source code (t). In Automated Software Engineering (ASE), 2015 30th
IEEE/ACM International Conference on, pages 585–596. IEEE, 2015.

[23] T. D. Nguyen, A. T. Nguyen, and T. N. Nguyen. Mapping api elements for code migration with
vector representations. In Software Engineering Companion (ICSE-C), IEEE/ACM International
Conference on, pages 756–758. IEEE, 2016.

[24] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. Learning to generate
pseudo-code from source code using statistical machine translation (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on, pages 574–584. IEEE,
2015.

[25] E. Parisotto, A.-r. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli. Neuro-symbolic program
synthesis. In ICLR, 2017.

10

[26] M. Rabinovich, M. Stern, and D. Klein. Abstract syntax networks for code generation and se-
mantic parsing. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, pages 1139–1149, 2017.

[27] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural language
with recursive neural networks. In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 129–136, 2011.

[28] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. Semi-supervised recursive
autoencoders for predicting sentiment distributions. In Proceedings of the conference on empiri-
cal methods in natural language processing, pages 151–161. Association for Computational
Linguistics, 2011.

[29] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2015.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
pages 6000–6010, 2017.

[31] O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. Hinton. Grammar as a foreign
language. In NIPS, 2015.

[32] P. Yin and G. Neubig. A syntactic neural model for general-purpose code generation. In ACL,
2017.

[33] X. Zhang, L. Lu, and M. Lapata. Top-down tree long short-term memory networks. In
Proceedings of NAACL-HLT, pages 310–320, 2016.

[34] X. Zhu, P. Sobihani, and H. Guo. Long short-term memory over recursive structures. In
International Conference on Machine Learning, pages 1604–1612, 2015.

11

