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A The DEL Algorithm

In this section, we present DEL, our algorithm, and introduce notations used to describe it and in its
regret analysis. DEL pseudo-code is given in Algorithm S1. There, for notational convenience, we
abuse the notations and redefine log t as 1[t ≥ 1] log t. φt refers to the estimated MDP at time t (e.g.
using empirical transition rates). For non-empty correspondence C : S � A (i.e., for any x, C(x) is a
non-empty subset of A), let φ(C) denote the restricted MDP where the set of actions available at state
x is limited to C(x). Then, g∗φ(C) and h∗φ(C) are the (optimal) gain and bias functions corresponding to
the restricted MDP φ(C), respectively. Given a restriction defined by C, for each (x, a) ∈ S ×A, let
δ∗(x, a;φ, C) := (B∗φ(C)h

∗
φ(C))(x) − (Ba

φh
∗
φ(C))(x) and Hφ(C) := maxx,y∈S h

∗
φ(C)(x) − h∗φ(C)(y).

For ζ ≥ 0, let δ∗(x, a;φ, C, ζ) := 0 if δ∗(x, a;φ, C) ≤ ζ, and let δ∗(x, a;φ, C, ζ) := δ∗(x, a;φ, C)
otherwise. For ζ ≥ 0, we further define the set of confusing MDPs ∆Φ(φ; C, ζ), and the set of
feasible solutions FΦ(φ; C, ζ):

∆Φ(φ; C, ζ) :=

{
ψ ∈ Φ ∪ {φ} : φ� ψ;

(i) KLφ|ψ(x, a) = 0 ∀x,∀a ∈ O(x;φ(C));
(ii) ∃(x, a) ∈ S ×A s.t.

a /∈ O(x;φ(C)) and δ∗(x, a;ψ, C, ζ) = 0

}

FΦ(φ; C, ζ) :=

{
η ∈ R̄S×A+ :

∑
x∈S

∑
a∈A

η(x, a)KLφ|ψ(x, a) ≥ 1 ∀ψ ∈ ∆Φ(φ; C, ζ)

}
.

For the unstructured and Lipschitz MDPs, we simplify the feasible solution set as Fun(φ; C, ζ) and
Flip(φ; C, ζ) , respectively, defined as:

Fun(φ; C, ζ) :=

{
η ∈ R̄S×A+ : η(x, a)

(
δ∗(x, a;φ, C, ζ)

Hφ(C) + 1

)2

≥ 2 ∀(x, a) s.t. a /∈ O(x;φ(C))

}

Flip(φ; C, ζ) :=

{
η ∈ R̄S×A+ : Llip(x′, a′;φ, C, ζ) ≥ 2∀(x′, a′) s.t. a′ /∈ O(x′;φ(C))

}
where

Llip(x′, a′;φ, C, ζ) :=
∑
x∈S

∑
a∈A

η(x, a)

([
δ∗(x′,a′;φ,C,ζ)
Hφ(C)+1 − 2

(
Ld(x, x′)α + L′d(a, a′)α

′
)]

+

)2

.

B Numerical Experiments

In this section, we briefly illustrate the performance of a simplified version of the DEL algorithm on
a simple example constructed so as to comply to a Lipschitz structure. Our objective is to investigate
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Algorithm S1 DEL(γ)

input Model structure Φ
Initialize N1(x) ← 1[x = X1], N1(x, a) ← 0, s1(x) ← 0, p1(y | x, a) ← 1/|S|, r1(x, a) ← 0
for each x, y ∈ S, a ∈ A, and φ1 accordingly.
for t = 1, ..., T do

For each x ∈ S, let Ct(x) := {a ∈ A : Nt(x, a) ≥ log2Nt(x)}, φ′t := φt(Ct), h′t(x) :=
h∗φ′t

(x), ζt := 1
1+log log t and γt := (1 + γ)(1 + log t)

if ∀a ∈ O(x;φ′t), Nt(Xt, a) < log2Nt(Xt) + 1 then
Monotonize: At ← Amnt

t := arg mina∈O(x;φ′t)
Nt(Xt, a).

else if ∃a ∈ A s.t. Nt(Xt, a) < logNt(Xt)
1+log logNt(Xt)

then
Estimate: At ← Aest

t := arg mina∈ANt(Xt, a).

else if
(
Nt(x,a)
γt

: (x, a) ∈ S ×A
)
∈ FΦ(φt; Ct, ζt). then

Exploit: At ← Axpt
t := arg mina∈O(x;φ′t)

Nt(Xt, a).
else

For each (x, a) ∈ S ×A, let δt(x, a) := δ∗(x, a;φt, Ct, ζt).
if Ft := FΦ(φt; Ct, ζt) ∩ {η : η(x, a) =∞ if δt(x, a) = 0} = ∅ then

Let ηt(x, a) =∞ if δt(x, a) = 0 and ηt(x, a) = 0 otherwise.
else

Obtain a solution ηt of P(δt,Ft): infη∈Ft
∑

(x,a)∈S×A η(x, a)δt(x, a)

end if
Explore: At ← Axpr

t := arg mina∈A:Nt(Xt,a)≤ηt(Xt,a)γt Nt(Xt, a).
end if
Select action At, and observe the next state Xt+1 and the instantaneous reward Rt.
Update φt+1:

Nt+1(x)← Nt(x) + 1[x = Xt+1],

Nt+1(x, a)← Nt(x, a) + 1[(x, a) = (Xt, At)],

pt+1(y | x, a)←

{
Nt(x,a)pt(y|x,a)+1[y=Xt+1]

Nt+1(x,a) if (x, a) = (Xt, At)

pt(y | x, a) otherwise

rt+1(x, a)←

{
Nt(x,a)rt(x,a)+Rt

Nt+1(x,a) if (x, a) = (Xt, At)

rt(x, a) otherwise

, ∀x, y ∈ S, a ∈ A

end for

the regret gains obtained by exploiting a Lipschitz structure, and we compare the performance of our
two simplified versions of DEL with γ = 1 and ζt = 0, one solving P (φt,Fun(φt; Ct, ζt)) in step t,
and the other solving P (φt,Flip(φt; Ct, ζt)).

The RL problem. We consider a toy MDP whose states are partitioned into two clusters S1, S2 of
equal sizes S/2. Both states and actions are embedded into R:

• The states in cluster S1 (resp. S2) are randomly generated in the interval [−ζ, 0] (resp. [1, 1 + ζ])
for some ζ ∈ (0, 1);

• In each state there are two possible actions: s = 0 (stands for stay) and m = 1 (stands for move).

The transition probabilities depend on the states only through their corresponding clusters, and are
given by: for ε ∈ (0, 0.5),

p(y|x, a) =

{
2(1−ε)
S if (x, y, a) ∈ Γp

2ε
S otherwise

, (S1)

where
Γp := {(x, y, a) : a = s, ∃i ∈ {1, 2}, x, y ∈ Si} ∪ {(x, y, a) : a = m, ∃i ∈ {1, 2}, x ∈ Si, y /∈ Si}.
In words, when the agent decides to move, she will end up in a state uniformly sampled from the
other cluster with probability 1− ε; when she decides to stay, she changes state within her cluster
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uniformly at random. We take ε > 0 to ensure irreducibility. For numerical experiments we take
ε = 0.1 and ζ = 0.1. The reward is obtained according to the following deterministic rule:

r(x, a) =

{
1 if (x, a) : a = m and x ∈ S1,

0 otherwise.
(S2)

A reward is collected when the agent is in cluster S1 and decides to move. The optimal stationary
strategy consists in moving in each state.
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Figure S1: Averaged regret under the two simplified versions of DEL over 48 random samples:
Unstructured (or Un) and Lipchitz (or Lip) refer to the algorithm with Fun and Flip, respectively.
The shadows and error bars show one standard deviation.

Figure S1 presents the regret of the two versions of our DEL algorithm. Clearly, exploiting the
structure brings a very significant performance improvement and the gain grows as the number of
states increases, as predicted by our theoretical results. Observe that the regret after T = 50k steps
under the version of DEL exploiting the Lipschitz structure barely grows with the number of states,
see Figure S1(b), which was also expected.

C Proof of Theorem 1

Notations and preliminaries. Let NT (x) =
∑T
t=1 1[Xt = x] and NT (x, a) =

∑T
t=1 1[Xt =

x,At = a] denote the number of times x and (x, a) have been visited up to step T . For any ψ ∈ Φ
and any initial state x1, we denote by Pπψ|x1

and Eπψ|x1
the probability measure and expectation under

π and ψ conditioned on X1 = x1. The regret up to step T starting in state x1 under π and ψ is
denoted byRπT,ψ(x1). To emphasize the dependence on the MDP ψ of the gap function δ∗, we further
denote its value at (x, a) by δ∗(x, a;ψ).

For any ψ ∈ Φ, using the ergodicity of ψ, we may leverage the same arguments as those used in the
proof of Proposition 1 of [Burnetas and Katehakis, 1997] to establish a connection between the regret
of an algorithm π ∈ Π under ψ and NT (x, a). Specifically, for any x1,

RπT,ψ(x1) =
∑
x∈S

∑
a/∈O(y,ψ)

Eπψ|x1
[NT (x, a)]δ∗(x, a;ψ) +O(1) , as T →∞ . (S3)

In addition, due to the ergodicity of ψ, we can also prove as in Proposition 2 in [Burnetas and
Katehakis, 1997] that there exists constants C, ρ > 0 such that for any x ∈ S, π ∈ Π,

Pπψ|x[NT (x) ≤ ρT ] ≤ C · exp(−ρT/2). (S4)

Change-of-measure argument. Let π be a uniformly good algorithm, and x1 an initial state. For
any bad MDP ψ ∈ ∆Φ(φ), the argument consists in (i) relating the log-likelihood of the observations
under φ and ψ to the expected number of times sub-optimal actions are selected under π, and (ii)
using the fact that π is uniformly good to derive a lower bound on the log-likelihood.
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(i) Define by L the log-likelihood of the observations up to step T under φ and ψ. We can use the
same techniques as in [Kaufmann et al., 2016, Garivier et al., Jun. 2018] (essentially an extension of
Wald’s lemma):

Eπφ|x1
[L] =

∑
x,a

Eπφ|x1
[NT (x, a)]KLφ|ψ(x, a). (S5)

The so-called data processing inequality [Garivier et al., Jun. 2018] yields for all event E inHπT :
Eπφ|x1

[L] ≥ kl(Pπφ|x1
[E ],Pπψ|x1

[E ]), where for u, v ∈ [0, 1], kl(u, v) := u log u
v + (1 − u) log 1−u

1−v .
Combine with (S5), this leads to:∑

x,a/∈O(x,φ)

Eπφ|x1
[NT (x, a)]KLφ|ψ(x, a) ≥ KL(Pπφ|x1

[E ],Pπψ|x1
[E ]). (S6)

Note that in the above sum, we removed a ∈ O(x, φ) since KLφ|ψ(x, a) = 0 if a ∈ O(x, φ).

(ii) Next we will leverage the fact that π is uniformly good to select the event E. We first state the
following lemma, proved at the end of this section. Since Π∗(φ) ∩ Π∗(ψ) = ∅, there exists x ∈ S
such that for all α > 0,

Eπψ|x1

 ∑
a∈O(x,φ)

NT (x, a)

 = o(Tα).

Indeed, otherwise π would not be uniformly good. Now define the event E as:

E :=

NT (x) ≥ ρT,
∑

a/∈O(x,φ)

NT (x, a) ≤
√
T

 ,
where the constant ρ is chosen so that (S4) holds under φ and ψ. Using a union bound, we have

1− Pπφ|x1
[E ] ≤ Pπφ|x1

[NT (x) ≤ ρT ] + Pπφ|x1

 ∑
a/∈O(x,φ)

NT (x, a) ≥
√
T


≤ C · exp(−ρT/2) +

Eπφ|x1

[∑
a/∈O(x,φ)NT (x, a)

]
√
T

(S7)

where for the first and second terms in the last inequality, we used (S4) and Markov inequality,
respectively. Since π is uniformly good, Eπφ|x1

[
∑
a/∈O(x,φ)NT (x, a)] = o(Tα) for all α > 0, the last

term of (S7) converges to 0, i.e., Pπφ|x1
[E ]→ 1 as T →∞. Using Markov inequality, it follows that

Pπψ|x1
[E ] ≤ Pπψ|x1

NT (x)−
∑

a/∈O(x,φ)

NT (x, a) ≥ ρT −
√
T


≤

Eπψ|x1
[NT (x)−

∑
a/∈O(x,φ)NT (x, a)]

ρT −
√
T

=
Eπψ|x1

[
∑
a∈O(x,φ)NT (x, a)]

ρT −
√
T

which converges to 0 because of our choice of x. Combining Pπφ|x1
[E ]→ 1 and Pπψ|x1

[E ]→ 0,

kl(Pπφ|x1
[E ],Pπψ|x1

[E ])

log T
∼

T→∞

1

log T
log

(
1

Pπψ|x1
[E ]

)
≥ 1

log T
log

(
ρT −

√
T

Eπψ|x1
[
∑
a∈O(x,φ)NT (x, a)]

)
which converges to 1 as T grows large due to our choice of x. Plugging this result in (S6), we get:

lim inf
T→∞

1

log T

∑
x,a/∈O(x,φ)

Eπφ|x1
[NT (x, a)]KLφ|ψ(x, a) ≥ 1. (S8)

Combining the above constraints valid for any ψ ∈ ∆Φ(ψ) and (S3) concludes the proof of the
theorem.
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D Proof of Theorem 2

We first prove the decoupling lemma.

Proof of Lemma 1. We prove the lemma by contradiction. Assume that Π∗(φ) ∩Π∗(ψ1) 6= ∅ and
Π∗(φ) ∩Π∗(ψ2) 6= ∅. Let Π∗(φ, ψ1, ψ2) := Π∗(φ) ∩Π∗(ψ1) ∩Π∗(ψ2). It is sufficient to show

(i) Π∗(φ, ψ1, ψ2) 6= ∅ , and (ii) Π∗(φ, ψ1, ψ2) ⊆ Π∗(ψ0) . (S9)

Indeed, this implies Π∗(φ) ∩ Π∗(ψ0) 6= ∅. Note that any policy f ∈ Π∗(φ) has the same gain and
bias function under φ, ψ0, ψ1, ψ2 since the modifications of φ are made on suboptimal (state, action)
pairs. Specifically,

gfψ0
= gfψ1

= gfψ2
= g∗φ and hfψ0

= hfψ1
= hfψ2

= h∗φ . (S10)

To prove (i), the first part of (S9), consider a policy f ′ ∈ Π∗(φ) ∩ Π∗(ψ1) and a policy f ′′ ∈
Π∗(φ) ∩Π∗(ψ2). Then, from the optimality of f ′ under ψ1, it follows that for each x ∈ S,

g∗ψ1
= gf

′

ψ1
≥ gf

′′

ψ1
= gf

′′

ψ2
= g∗ψ2

, (S11)

where for the second equality, we use (S10). Similarly, we have for each x ∈ S,

g∗ψ2
= gf

′′

ψ2
≥ gf

′

ψ2
= gf

′

ψ1
= g∗ψ1

.

Hence g∗ψ1
= g∗ψ2

and Π∗(φ, ψ1, ψ2) = Π∗(φ) ∩Π∗(ψ1) = Π∗(φ) ∩Π∗(ψ2) 6= ∅.

We now prove (ii), the second part of (S9). Let f ∈ Π∗(φ, ψ1, ψ2). It is sufficient to show gfψ0
and

hfψ0
(x) verify the Bellman optimality equation for model ψ0. Using (S10) and the optimality of f

under ψ1, for all a ∈ A, if (x, a) /∈ U2,

rψ0
(x, f(x)) +

∑
y∈S

pψ0
(y|x, f(x))hfψ0

(y)
(a)
= rψ1

(x, f(x)) +
∑
y∈S

pψ1
(y|x, f(x))hfψ1

(y)

(b)

≥ rψ1
(x, a) +

∑
y∈S

pψ1
(y|x, a)hfψ1

(y)

(c)
= rψ0

(x, a) +
∑
y∈S

pψ0
(y|x, a)hfψ0

(y) , (S12)

where for (a) and (c), we used (S10) and the fact that the kernels of ψ0 and ψ1 are the same at every
(x, a) /∈ U2, and for (b), we used the fact that gfψ1

and hfψ1
verify the Bellman optimality equation for

ψ1. Similarly, using the optimality of f under ψ2, it follows that for (x, a) ∈ U2,

rψ0
(x, f(x)) +

∑
y∈S

pψ0
(y|x, f(x))hfψ0

(y) = rψ2
(x, f(x)) +

∑
y∈S

pψ2
(y|x, f(x))hfψ2

(y)

≥ rψ2
(x, a) +

∑
y∈S

pψ2
(y|x, a)hfψ2

(y)

= rψ0(x, a) +
∑
y∈S

pψ0(y|x, a)hfψ0
(y) . (S13)

Combining (S12) and (S13), for all (x, a) ∈ S ×A,

rψ0
(x, f(x)) +

∑
y∈S

pψ0
(y|x, f(x))hfψ0

(y) ≥ rψ0
(x, a) +

∑
y∈S

pψ0
(y|x, a)hfψ0

(y) ,

which implies that gfψ0
and hfψ0

verify the Bellman optimality equation under model ψ0, i.e., f ∈
Π∗(ψ0). �

Proof of Theorem 2. Recall that any policy f ∈ Π∗(φ) has the same gain and bias function in ψ and
φ since the kernels of φ and ψ are identical at every (x, a) such that a ∈ O(x;φ). More formally, for
any f ∈ Π∗(φ),

Bf
φ = Bf

ψ, g∗φ = gfφ = gfψ and h∗φ(·) = hfφ(·) = hfψ(·) .
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Next we show that for all ψ ∈ ∆Φ(φ),

Π∗(φ) ∩Π∗(ψ) = ∅ =⇒ ∃(x, a) such that (Ba
ψh
∗
φ)(x) > g∗φ + h∗φ(x) . (S14)

We prove (S14) by contradiction. Consider a policy f ∈ Π∗(φ). Suppose that for all (x, a),
(Ba

ψh
f
φ)(x) ≤ gfφ + hfφ(x). Then, for all (x, a),

(Bf
ψh

f
ψ)(x) = (Bf

φh
f
φ)(x) = gfφ + hfφ(x) ≥ max

a∈A
(Ba

ψh
f
φ)(x)

which implies that gfψ and hfψ verify the Bellman optimality equation under ψ. Hence, f ∈ Π∗(ψ)

which contradicts to Π∗(φ) ∩Π∗(ψ) = ∅.
Finally Theorem 2 is obtained by combining the decoupling lemma and (S14). Indeed, due to the
decoupling lemma, we may restrict ∆Φ(φ) to MDPs obtained from φ by only changing the kernels in
a single state-action pair. �

Simplification for null structure. We conclude this section by proving that Fun(φ) ⊂ FΦ(φ). Let
η ∈ Fun(φ), recalling that

Fun(φ) =

{
η ∈ F0(φ) : η(x, a)

(
δ∗(x, a;φ)

H + 1

)2

≥ 2, ∀(x, a) s.t. a /∈ O(x;φ)

}
.

We show that η ∈ FΦ(φ). To this aim, we need to show that ∀(x, a) s.t. a /∈ O(x;φ),

η(x, a)KLφ|ψ(x, a) ≥ 1, ∀ψ ∈ ∆Φ(x, a;φ).

Let (x, a) be such that a /∈ O(x;φ), which means a /∈ O(x, h∗φ;φ), and ψ ∈ ∆Φ(x, a;φ). We have,
by definition, (Ba

ψh
∗
φ)(x) > g∗φ + h∗φ(x). Then,

δ∗(x, a;φ) = (B∗φh
∗
φ)(x)− (Ba

φh
∗
φ)(x)

< (Ba
ψh
∗
φ)(x)− (Ba

φh
∗
φ)(x)

= rψ(x, a)− rφ(x, a) +
∑
y∈S

(pψ(y | x, a)− pφ(y | x, a))h∗φ(y)

≤ ‖qψ(· | x, a)− qφ(· | x, a)‖1 +H‖pψ(· | x, a)− pφ(· | x, a)‖1
≤ (H + 1)‖ψ(x, a)− φ(x, a)‖1

where we define

‖ψ(x, a)− φ(x, a)‖1 := ‖qψ(· | x, a)− qφ(· | x, a)‖1 + ‖pψ(· | x, a)− pφ(· | x, a)‖1.

Finally, Pinsker’s inequality yields:

2KLφ|ψ(x, a) ≥ ‖ψ(x, a)− φ(x, a)‖21 ≥
(
δ∗(x, a;φ)

H + 1

)2

.

This implies that:

η(x, a)KLφ|ψ(x, a) ≥ η(x, a)

2

(
δ∗(x, a;φ)

H + 1

)2

≥ 1

where the last inequality is due to the fact that η(x, a) ∈ Fun(φ).
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E Proof of Theorem 3

We prove that Flip(φ) ⊂ FΦ(φ). Let η ∈ Flip(φ). We show that η ∈ FΦ(φ). Let ψ ∈ ∆Φ(φ),
then, from (S14), there exist (x′, a′) such that (Ba′

ψ h
∗
φ)(x′) > g∗φ + h∗φ(x′). Then, using the same

arguments as at the end of the previous section, we obtain:

‖φ(x′, a′)− ψ(x′, a′)‖1 ≥
δ∗(x′, a′;φ)

H + 1
. (S15)

Now for all (x, a) ∈ S ×A,

‖φ(x′, a′)− ψ(x′, a′)‖1 ≤ ‖φ(x′, a′)− φ(x, a)‖1 + ‖φ(x, a)− ψ(x, a)‖1 + ‖ψ(x, a)− ψ(x′, a′)‖1
≤ ‖φ(x, a)− ψ(x, a)‖1 + 2Ld(x, x′)α + 2L′d(a, a′)α

′
, (S16)

where the first inequality follows from the triangular inequality and the second follows from Lipschitz
continuity. This further implies that

‖φ(x, a)− ψ(x, a)‖1 ≥
[
δ∗(x′, a′;φ)

H + 1
− 2
(
Ld(x, x′)α + L′d(a, a′)α

′
)]

+

.

Hence, using Pinsker’s inequality,

2KLφ|ψ(x, a) ≥
[
δ∗(x′, a′;φ)

H + 1
− 2
(
Ld(x, x′)α + L′d(a, a′)α

′
)]2

+

, (S17)

which implies that:

η(x, a)KLφ|ψ(x, a) ≥ η(x, a)

2

[
δ∗(x′, a′;φ)

H + 1
− 2
(
Ld(x, x′)α + L′d(a, a′)α

′
)]2

+

≥ 1. (S18)

The last inequality follows from η ∈ Flip. Thus Flip(φ) ⊂ FΦ(φ).

Next we derive an upper bound for KΦ(φ). To this aim, we construct a vector η ≥ 0 verifying (2b)
for our given structure Φ. Then, we get an upper bound ofKΦ(φ) by evaluating the objective function
of P (φ,FΦ(φ)) at η.

To construct η, we build a sequence (Xi)i=1,2,... of sets of (state, action) pairs, as well as a se-
quence (xi)i=1,2,...(state, action) pairs, such that for any i ≥ 1, Xi+1 ⊂ Xi, and (xi, ai) ∈
arg max(x,a)∈Xi δ

∗(x, a;φ) (ties are broken arbitrarily).

We start with X1 = {(x, a) : x ∈ S, a /∈ O(x;φ), i.e., δ∗(x, a;φ) > 0}. Recursively, for each
i = 1, 2, ..., let

Bi =

{
(x, a) ∈ Xi : Ld(x, xi)

α + L′d(a, ai)
α′ ≤ δmin

4(H + 1)

}
, and

Xi+1 = Xi \ Bi . (S19)
Let I be the first index such that XI+1 = ∅. Construct η as

η(x, a) =

{
8
(
δmin

H+1

)−2

if ∃i ∈ [1, I] such that (x, a) = (xi, ai),

0 otherwise.
(S20)

Observe that η is strictly positive at only I pairs, and hence∑
(x,a)∈S×A

δ∗(x, a;φ)η(x, a) ≤ 8(H + 1)

(
H + 1

δmin

)2

I

since δ∗(x, a;φ) ≤ H + 1 for all (x, a). Next, we bound I using the covering and packing numbers
of the hypercubes [0, D]d and [0, D′]d

′
.
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Lemma S1. The generation ofXi’s in (S19) must stop after (SlipAlip +1) iterations, i.e., I ≤ SlipAlip.

The proof of this lemma is postponed at the end of this section. To complete the proof of the theorem,
it remains to show that η verifies all the constraints (2b) for the Lipschitz structure Φ.

Remember that Flip(φ) ⊂ FΦ(φ). Fix ψ ∈ ∆Φ(φ). There exists (x′, a′) such that a′ /∈ O(x′;h∗φ, φ)

and a′ ∈ O(x′;h∗φ, ψ), and such that (S15) holds. Let i ∈ {1, . . . , I} denote an index such that
(x′, a′) ∈ Bi. Note that such an index i exists since (x′, a′) ∈ X1 and XI+1 = ∅. Thus, we have:∑
(x,a)∈S×A

η(x, a)KLφ|ψ(x, a) ≥
∑

(x,a)∈S×A

η(x, a)

2

[
δ∗(x′, a′;φ)

H + 1
− 2
(
Ld(x, x′)α + L′d(a, a′)α

′
)]2

+

≥ η(xi, ai)

2

[
δ∗(x′, a′;φ)

H + 1
− 2
(
Ld(xi, x

′)α + L′d(ai, a
′)α
′
)]2

+

≥ η(xi, ai)

2

[
δ∗(x′, a′;φ)

H + 1
− 1

2

δmin

H + 1

]2

+

≥ 4

(
δmin

H + 1

)−2(
1

2

δmin

H + 1

)2

= 1

where the third inequality follows from the fact that (x′, a′) ∈ Bi. Hence we have verified that
η satisfies the feasibility constraint for ψ. Since this observation holds for all ψ ∈ ∆Φ(φ), this
completes the proof of Theorem 3. �

Proof of Lemma S1. A δ-packing of a set D with respect to a metric ρ is a set {x1, ..., xn} ⊂ D
such that ρ(xi − xj) > δ for all different i, j ∈ {1, ..., n}. The δ-packing number Ip(δ,D, ρ) is the
cardinality of the largest δ-packing. The construction of Xi ensures that for different i, j ∈ {1, ..., I},

`lip((xi, ai), (xj , aj)) > δ :=
δmin

4(H + 1)
,

where for (x, a), (x′, a′) ∈ Rd × Rd′ ,

`lip((x, a), (x′, a′)) := Ld(x, x′)α + L′d(a, a′)α
′
.

Then, we have:

I ≤ Ip (δ,S ×A, `lip) .

To obtain an upper bound of the packing number, we further define the covering number. A δ-cover
of a set D with respect to a metric ρ is a set {x1, ..., xI} ⊂ D such that for each x ∈ D, there
exists some i ∈ {1, ..., I} such that ρ(x, xi) ≤ δ. The δ-covering number Ic(δ,D, ρ) is the smallest
cardinality of δ-cover. Then, we have the following relationship between the packing and covering
numbers.
Lemma S2. For all δ > 0, D,D′ such that D ⊂ D′,

Ip(2δ,D, ρ) ≤ Ic(δ,D, ρ) ≤ Ic(δ,D′, ρ) .

The proof of this lemma is provided at the end of the section for completeness. Define the metrics
`
(1)
max, `

(2)
max, `max for Rd,Rd′ ,Rd × Rd′ , respectively, as follows:

`(1)
max(x, x′) :=

(
1√
d

(
δ

2L

)1/α
)−1

‖x− x′‖∞ ,

`(2)
max(a, a′) :=

(
1√
d′

(
δ

2L′

)1/α′
)−1

‖a− a′‖∞ ,

`max((x, a), (x′, a′)) := max
{
`(1)
max(x, x′), `(2)

max(a, a′)
}
,

where ‖ · ‖∞ is infinite norm. Then, it follows that for any (x, a), (x′, a′) ∈ Rd × Rd′ ,
`max((x, a), (x′, a′)) ≤ 1 =⇒ `lip((x, a), (x′, a′)) ≤ δ .
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Hence, we have

I ≤ Ic(δ,S ×A, `lip)

≤ Ic(1,S ×A, `max)

≤ Ic(1,S, `(1)
max)Ic(1,A, `(2)

max)

since for any 1-cover S ′ of S with metric `(1)
max and any 1-cover A′ of A with metric `(2)

max, their
Cartesian product S ′ ×A′ = {(x, a) : x ∈ S ′, a ∈ A′} is 1-cover of S × A with metric `max. We
now study Ic(1,S, `(1)

max) and Ic(1,A, `(2)
max). Recalling S ⊂ [0, D]d and using Lemma S2, it follows

directly that

Ic(1,S, `(1)
max) ≤ Ic(1, [0, D]d, `(1)

max)

= Ic

(
1√
d

(
δ

2L

)1/α

, [0, D]d, ‖ · ‖∞

)

≤

 D

1√
d

(
δ

2L

)1/α + 1

d

,

which implies

Ic(1,S, `(1)
max) ≤ min

|S|,
 D

1√
d

(
δ

2L

)1/α + 1

d
 = Slip

where we used the fact that Ic(1,S, `(1)
max) ≤ |S|. Similarly, we have

Ic(1,A, `(2)
max) ≤ min

|A|,
 D′

1√
d′

(
δ

2L′

)1/α′ + 1

d′
 = Alip .

This completes the proof of Lemma S1. �

Proof of Lemma S2. Consider a δ-cover X and a 2δ-packing Y of set D with respect to metric ρ.
Then, there is no x ∈ X such that y, y′ ∈ B(δ, x) = {x′ ∈ D : ρ(x, x′) ≤ δ} for two different
y, y′ ∈ Y . Otherwise, we would have ρ(x, y) ≤ δ and ρ(x, y′) ≤ δ which implies ρ(y, y′) ≤ 2δ
from the triangle inequality, and contradicts the fact that y, y′ are two different elements of 2δ-cover,
i.e., ρ(y, y′) > 2δ. Thus, the cardinality of Y cannot be larger than that of X . Due to the arbitrary
choice of δ-cover X and a 2δ-packing Y , we conclude that Ip(2δ,D, ρ) ≤ Ic(δ,D, ρ).

The second inequality in the lemma is straightforward. �

F Proof of Theorem 4

We analyze the regret under π = DEL algorithm when implemented with the original feasible set
FΦ(φ; C, ζ). Extending the analysis to the case where DEL runs on the simplified feasible sets
Fun(φ; C, ζ) and Flip(φ; C, ζ) can be easily done.

For T ≥ 1, ε > 0, x ∈ S and a ∈ A, define the following random variables:

W
(1)
T (x, a; ε) :=

T∑
t=1

1
[
(Xt, At) = (x, a), Et(ε), (Ba

φth
′
t)(x) ≤ (B∗φh

∗
φ)(x)− 2ε

]
W

(2)
T (x, a; ε) :=

T∑
t=1

1
[
(Xt, At) = (x, a), Et(ε), (Ba

φth
′
t)(x) > (B∗φh

∗
φ)(x)− 2ε

]
W

(3)
T (ε) :=

T∑
t=1

1 [¬Et(ε)]

9



where we use the standard notation ¬U to represent the event that U does not occur, where we recall
that h′t := hφ′t is the bias function of the restricted estimated model φ′t = φt(Ct) at time t, and where
the event Et(ε) is defined as:

Et(ε) :=
{

Π∗(φ′t) ⊆ Π∗(φ) and |rt(x, a)− rφ(x, a)|+ |h′t(x)− h∗φ(x)| ≤ ε ∀x ∈ S,∀a ∈ O(x;φ′t)
}
.

From the above definitions, we have:

RπT (x1) ≤
∑

(x,a):a/∈O(x;φ)

δ∗(x, a;φ)Eπφ|x1

[
W

(1)
T (x, a; ε)

]
(S21a)

+
∑

(x,a):a/∈O(x;φ)

S Eπφ|x1

[
W

(2)
T (x, a; ε)

]
(S21b)

+ S Eπφ|x1
[W

(3)
T (ε)] . (S21c)

The multiplicative factor S in the last two terms arises from the fact that max(x,a) δ
∗(x, a;φ) ≤ S

when the magnitude of the instantaneous reward is bounded by 1. Next we provide upper bounds of
each of the three terms in (S21).

A. Upper bounds for (S21a) and (S21b). To study the first two terms in (S21), we first make the
following observations on the behavior of the algorithm. Let Eest

t , Emnt
t , Expt

t , and Expr
t denote the

events that at time t, the algorithm enters the estimation, monotonization, exploitation, and exploration
phases, respectively. By the design of the algorithm, the estimation phase generates regret no more
than O(log T/ log log T ) = o(log T ), i.e.,

T∑
t=1

1[Eest
t ] = o(log T ). (S22)

Moreover, when the event Et(ε) occurs, we haveO(Xt;φ
′
t) ⊆ O(Xt;φ) and thus the monotonization

and exploitation phases produce no regret. Formally, for (x, a) ∈ S ×A such that a /∈ O(x;φ),

T∑
t=1

1[(Xt, At) = (x, a), Et(ε), Emnt
t ∪ Expt

t ] = 0. (S23)

Hence, when Et(ε) occurs, we just care about the regret generated in the exploration phase, i.e., for
any (x, a) ∈ S ×A such that a /∈ O(x;φ),

Eπφ|x1

[
W

(1)
T (x, a; ε)

]
≤ o(log T ) +

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε)

]
Eπφ|x1

[
W

(2)
T (x, a; ε)

]
≤ o(log T ) +

T∑
t=1

Pπφ|x1

[
Z(2)
t (x, a; ε)

]
,

where the events Z(1)
t (x, a; ε) and Z(2)

t (x, a; ε) are defined as:

Z(1)
t (x, a; ε) :=

{
(Xt, At) = (x, a), Et(ε), Expr

t , (Ba
φth
′
t)(x) ≤ (B∗φh

∗
φ)(x)− 2ε

}
Z(2)
t (x, a; ε) :=

{
(Xt, At) = (x, a), Et(ε), Expr

t , (Ba
φth
′
t)(x) > (B∗φh

∗
φ)(x)− 2ε

}
.

The following lemma is proved in Section F.1, and deals events Z(1)
t (x, a; ε).

Lemma S3. For structure Φ with Bernoulli rewards and an ergodic MDP φ ∈ Φ, consider π =
DEL(γ) for γ > 0. Suppose that (i) φ is in the interior of Φ; (ii) the solution η∗(φ) is unique for
each (x, a) such that a /∈ O(x;φ); and (iii) continuous at φ. Then, for any (x, a) ∈ S ×A such that
a /∈ O(x;φ),

lim
ε→0

lim sup
T→∞

∑T
t=1 Pπφ|x1

[
Z(1)
t (x, a; ε)

]
log T

≤ (1 + γ)η∗(x, a;φ) .
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The following lemma is proved in Section F.2, and deals events Z(2)
t (x, a; ε). Its proof relies on the

following observation. When Z(2)
t (x, a; ε) occurs for sufficiently small ε, the facts that Et(ε) holds

and that (Ba
φt
h′t)(x) < (B∗φh

∗
φ)(x) − 2ε imply that φt(x, a) does not estimate φ(x, a) accurately.

The lemma then follows from concentration arguments.

Lemma S4. For structure Φ with Bernoulli rewards and an ergodic MDP φ ∈ Φ, consider π =
DEL(γ) for γ > 0. Then, there exists ε2 > 0 such that for any (x, a) ∈ S ×A such that a /∈ O(x;φ)
and ε ∈ (0, ε2),

T∑
t=1

Pπφ|x1

[
Z(2)
t (x, a; ε)

]
= o(log T ) as T →∞.

B. Upper bound for (S21c). The last term in (S21) is concerned with the regret generated when
Et(ε) does not occur. It is upper bounded in the following lemma proved in Section F.3. To establish
this result, we use a similar argument as that in Proposition 5 of [Burnetas and Katehakis, 1997].
Intuitively, we show that by the design of the algorithm, the restricted bias function h′t is monotonically
improved so that it eventually converges to the optimal bias function h∗φ with high probability. In
this analysis, we provide a more sophisticated concentration inequality than the one in [Burnetas
and Katehakis, 1997]. This concentration inequality is particularly important to bound the regret
generated in the exploitation phase.

Lemma S5. For structure Φ with Bernoulli rewards and an ergodic MDP φ ∈ Φ, consider π =
DEL(γ) for γ > 0. Suppose φ is in the interior of Φ, i.e., there exists a constant ζ0 > 0 such that for
any ζ ∈ (0, ζ0), ψ ∈ Φ if ‖φ− ψ‖ ≤ ζ. Then, there exists ε3 > 0 such that for any ε ∈ (0, ε3),

Pπφ|x1
[¬ET (ε)] = o(1/T ) as T →∞. (S24)

We provide the proof of Lemma S5 in Section F.3. Now, we are ready to complete the proof of
Theorem 4. Combining Lemma S3, (S23) and (S22), we get

∑
x∈S

∑
a/∈O(x;φ)

δ∗(x, a;φ)

 lim
ε→0

lim sup
T→∞

Eπφ|x1

[
W

(1)
T (x, a; ε)

]
log T

 ≤ (1 + γ)
∑
x∈S

∑
a∈A

δ∗(x, a;φ)η∗(x, a;φ)

= (1 + γ)KΦ(φ).

Similarly, combining Lemma S4 with (S23) and (S22), it follows that for sufficiently small ε ∈
(0,min{ε2, ε3}),

lim sup
T→∞

Eπφ|x1

[∑
x∈S

∑
a/∈O(x;φ) SW

(2)
T (x, a; ε)

]
log T

= 0.

From Lemma S5, we have that for sufficiently small ε ∈ (0,min{ε2, ε3}),

lim sup
T→∞

Eπφ|x1

[
W

(3)
T (ε)

]
log T

= 0.

Therefore, recalling the decomposition of regret bound in (S21), we conclude the proof of Theorem 4.

�

F.1 Proof of Lemma S3

To establish the lemma, we investigate the event Z(1)
t (x, a; ε) depending on whether Ft is empty or

not, and on whether φt is a good approximation of φ. To this aim, for any given t > 0 and ζ > 0,
define the event Bt(ζ) :=

⋂
(x,a)∈S×A Bt(x, a; ζ) where for each (x, a) ∈ S × A, Bt(x, a; ζ) :=

{‖φt(x, a)−φ(x, a)‖ ≤ ζ}. Fix (x, a) ∈ S×A such that a /∈ O(x;φ). By the continuity assumption
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made in Theorem 4, we have:

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε),Ft 6= ∅, ζt < ζ(ε),Bt(ζt)

]
≤ Eπφ|x1

[
T∑
t=1

1 [(Xt, At) = (x, a), Nt(x, a) ≤ ηt(x, a)γt,Ft 6= ∅, ζt < ζ(ε),Bt(ζt)]

]

≤ Eπφ|x1

[
T∑
t=1

1 [(Xt, At) = (x, a), Nt(x, a) ≤ (η∗(x, a;φ) + ε)γt]

]
≤ (η∗(x, a;φ) + ε)γt + 2

where the second inequality is from the continuity of η∗(φ), and the last inequality is from a simple
counting argument made precise in the following lemma [Burnetas and Katehakis, 1997] (Lemma 3
therein):

Lemma S6. Consider any (random) sequence of Zt ∈ {0, 1} for t > 0. Let NT :=
∑T
t=1 1[Zt = 1].

Then, for all N > 0,
∑T
t=1 1[Zt = 1, Nt ≤ N ] ≤ N + 1 (point-wise if the sequence is random).

Proof of Lemma S6. The proof is straightforward from rewriting the summation as follows:

T∑
t=1

1[Zt = 1, Nt ≤ N ] =

T∑
t=1

bNc∑
n=1

1[Zt = 1, Nt = n]

=

bNc∑
n=1

T∑
t=1

1[Zt = 1, Nt = n] ≤ N + 1

where the last inequality is from the fact that
∑T
t=1 1[Zt = 1, Nt = n] ≤ 1. �

Since limT→∞
γT

log T = (1 + γ) for all x ∈ S, we obtain:

lim
ε→0

lim sup
T→∞

Eπφ|x1

[∑T
t=1 1

[
Z(1)
t (x, a; ε),Ft 6= ∅, ζt < ζ(ε),Bt(ζt)

]]
log T

= (1 + γ)η∗(x, a;φ).

Hence, to complete the proof of Lemma S3, it suffices to show that

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε),Ft = ∅

]
= O(1) (S25)

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε),Ft 6= ∅,¬Bt(ζt)

]
= o(log T ) (S26)

since
∑T
t=1 Pπφ|x1

[ζt > ζ(ε)] = O(1).

To prove (S25), observe that on the event Z(1)
t (x, a; ε) for sufficiently large t ≥ eeε , i.e., ζt < ε, for

b ∈ O(x;φ′t), we have

δ∗(x, a;φt, Ct) = (Bb
φ′t
h′t)(x)− (Ba

φth
′
t)(x)

≥ (Bb
φ′t
h′t)(x)− (B∗φh

∗
φ)(x) + 2ε

≥ −|(Bb
φ′t
h′t)(x)− (Bb

φh
∗
φ)(x)|+ 2ε

≥ −(|rt(x, b)− rφ(x, b)|+ |h′t(x)− h∗φ(x)|) + 2ε

≥ ε > ζt

where the first, second, and fourth inequalities are from that on the event Z(1)
t (x, a; ε), (Ba

φt
h′t)(x) ≤

(B∗φh
∗
φ)(x)− 2ε,O(x;φ′t) ⊆ O(x;φ), and |rt(x, b)− rφ(x, b)|+ |h′t(x)−h∗φ(x)| ≤ ε, respectively,
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and the last one is from the choice of t such that ζt = 1/(1 + log log t) < ε. Therefore, when
Z(1)
t (x, a; ε) occurs for sufficiently large t ≥ eeε ,

δt(x, a) > ζt > 0. (S27)

If Ft is empty, from the design of DEL algorithm, δt(x, a) > 0 implies that ηt(x, a) = 0
and thus (x, a) is not selected in the exploration phase. This concludes the proof of (S25) as∑T
t=1 Pπφ|x1

[ζt > ε] ≤ eeε = O(1).

To show (S26), observe that when Z(1)
t (x, a; ε) and Ft 6= ∅ occur, for t ≥ eeε combining (S27) and

Lemma S7 given below, we get:

ηt(x, a) ≤ 2SA

(
S + 1

ζt

)2

. (S28)

Lemma S7. Consider a structure Φ, an MDP φ ∈ Φ, a non-empty correspondence C : S �
A, and ζ > 0. If FΦ(φ; C, ζ) is non-empty and there exists (x, a) ∈ S × A such that

δ∗(x, a;φ, C, ζ) > 0, then η∗(x, a;φ, C, ζ) ≤ 2SA
(
S+1
ζ

)2

where η∗(x, a;φ, C, ζ) is a solution

of P(δ∗(φ, C, ζ),FΦ(φ; C, ζ)).

Proof of Lemma S7. Using the same arguments as those used in Theorem 2 to show that Fun(φ) ⊂
FΦ(φ), one can easily check that Fun(φ; C, ζ) ⊂ FΦ(φ; C, ζ). Note that the diameter of bias function
with Bernoulli reward is bounded by S. Now for (x, a) ∈ S ×A such that δ∗(x, a;φ, C, ζ) > 0, we
have

δ∗(x, a;φ, C, ζ) > ζ (S29)

which then implies that 2
(

Hφ(C)+1

δ∗(x,a;φ,C,ζ)

)2

≤ 2
(
S+1
ζ

)2

. Now let η be defined as η(x, a) = ∞ if

δ∗(x, a;φ, C, ζ) = 0 and η(x, a) = 2
(
S+1
ζ

)2

otherwise. Then η ∈ Fun(φ; C, ζ) ⊂ FΦ(φ; C, ζ). We
deduce that the optimal objective value of P(δ∗(φ, C, ζ),FΦ(φ; C, ζ)) is upper-bounded by∑

(x,a)∈S×A

η∗(x, a;φ, C, ζ)δ∗(x, a;φ, C, ζ) ≤
∑

(x,a)∈S×A

η(x, a)δ∗(x, a;φ, C, ζ)

≤ 2SA
(S + 1)2

ζ
.

Using the optimality of η∗(φ, C, ζ) and (S29), we conclude that for (x, a) ∈ S × A such that

δ∗(x, a;φ, C, ζ) > 0, η∗(x, a;φ, C, ζ) ≤ 2SA
(
S+1
ζ

)2

. �

From (S28), we deduce by design of DEL that, if Z(1)
t (x, a; ε) and Ft 6= ∅ occur, for t ≥ eeε , then:

Nt(x, a) ≤ ηt(x, a)γt

≤ 2SA

(
S + 1

ζt

)2

γt ≤ γ′t

where

γ′t := 8S3A(1 + γ)(1 + log log t)2(log t+ 1) > 2SA

(
S + 1

ζt

)2

γt. (S30)

Hence defining B′t(x, a) := {(Xt, At) = (x, a), Nt(x, a) ≤ γ′t,¬Bt(ζt)}, we get:

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε),Ft 6= ∅,¬Bt(ζt)

]
≤

T∑
t=1

Pπφ|x1

[
Z(1)
t (x, a; ε),Ft 6= ∅,¬Bt(ζt), t ≥ ee

ε
]

+ ee
ε

≤
T∑
t=1

Pπφ|x1
[B′t(x, a)] +O(1).
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Using ρ > 0 in (S4), we check that

T∑
t=1

Pπφ|x1
[B′t(x, a)]

≤
T∑
t=1

Pπφ|x1

[
min
y∈S

Nt(y) ≥ ρt,B′t(x, a)

]
+

T∑
t=1

Pπφ|x1

[
min
y∈S

Nt(y) ≤ ρt
]

≤
T∑
t=1

Pπφ|x1

[
min
y∈S

Nt(y) ≥ ρt,B′t(x, a)

]
+ o(log T )

≤
T∑
t=1

Pπφ|x1

[
min

(y,b)∈S×A
Nt(y, b) ≥

log t

(1 + log log t)2
,B′t(x, a)

]
+ o(log T ). (S31)

Here, the second inequality stems from (S4) and a union bound (over states). The the last inequality
follows from the following lemma:
Lemma S8. Under DEL algorithm, we have

T∑
t=1

1

[
min
y∈S

Nt(y) ≥ ρt, min
(y,b)∈S×A

Nt(y, b) <
log t

(1 + log log t)2

]
= o(log T ). (S32)

Proof of Lemma S8. For (x, a) ∈ S ×A and t sufficiently large, we claim the following:

1

[
Nt(x) ≥ ρt,Nt(x, a) <

log t

(1 + log log t)2

]
= 0. (S33)

Using the above claim, we can complete the proof. Indeed:

T∑
t=1

1

[
min
y∈S

Nt(y) ≥ ρt, min
(y,b)∈S×A

Nt(y, b) <
log t

(1 + log log t)2

]

≤
T∑
t=1

∑
(x,a)∈S×A

1

[
min
y∈S

Nt(y) ≥ ρt,Nt(x, a) <
log t

(1 + log log t)2

]

≤
T∑
t=1

∑
(x,a)∈S×A

1

[
Nt(x) ≥ ρt,Nt(x, a) <

log t

(1 + log log t)2

]
= O(1) as T →∞.

where the first inequality stems from the union bound.

Next we prove the claim (S33). Fix (x, a) ∈ S × A and consider sufficiently large t. Suppose
Nt(x) ≥ ρt and let t0 = bρt/2c. Then, since Nt0(x) ≤ t0, it follows that

Nt(x)−Nt0(x) ≥ ρt− bρt/2c ≥ ρt/2.

Let t1 = min{u ∈ N : u ∈ [t0, t], Nu(x)−Nt0(x) = bρt/4c} denote the time when the number of
visits to state x after time t0 reaches bρt/4c. Since Nt(x)−Nt0(x) ≥ ρt/2 ≥ bρt/4c, there exists
such a t1 ∈ [t0, t]. From the construction of t1, it follows that for all u ∈ [t1, t], bρt/4c ≤ Nu(x) and

Nt(x)−Nt1(x) = (Nt(x)−Nt0(x))− (Nt1(x)−Nt0(x))

≥ ρt/2− bρt/4c ≥ ρt/4. (S34)

Let Nt1,t(x) := {u ∈ [t1, t] : Xu = x,¬Emnt
u } be the set of times between t1 and t when the state is

x and the algorithm does not enter the monotonization phase and hence checks the condition to enter
the estimation phase. For u ∈ Nt1,t(x), the condition for the algorithm to enter the estimation phase
and select an action with the minimum occurrence is:

∃b ∈ A : Nu(x, b) <
logbρt/4c

1 + log logbρt/4c
(S35)

since from the construction of t1, for any u ∈ [t1, t], we have logbρt/4c
1+log logbρt/4c ≤

logNu(x)
1+log logNu(x) .
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Now assume that the number of times the algorithm enters the monotonization phase in state x
between t1 and t is bounded by O(log t). From (S34) and (S35), we deduce the desired claim (S33).
Indeed, with the observation (S35), the fact that monotonization happens a sublinear number of times
implies that the algorithm estimates all actions more than logbρt/4c

1+log logbρt/4c (> log t
(1+log log t)2 ) times.

Actually, the fact that monotonization happens a sublinear number of times and (S34) imply that
|Nt1,t(x)| > A logbρt/4c

1+log logbρt/4c for sufficiently large t.

Using the following lemma, we bound the number that the algorithm enters the monotonization phase
between t1 and t:

Lemma S9. For any action a ∈ A and three different u, u′, u′′ such that u < u′ < u′′, suppose that
the event Emnt

t ∩ {(Xt, At) = (x, a)} occurs for all t ∈ {u, u′, u′′}. Then, when Nu(x) > e,

Nu′′(x)−Nu(x) ≥ Nu(x)

2 logNu(x)
.

Proof of Lemma S9. Observe that selecting action b in the monotonization phase at time t means
that

Nt(x, a) ∈ [log2Nt(x), log2Nt(x) + 1) (S36)

From the fact that u < u′ < u′′, we have Nu′′(x, a) ≥ Nu(x, a) + 2 and thus using (S36):

log2Nu(x) + 2 ≤ Nu(x, a) + 2 ≤ Nu′′(x, a) < log2Nu′′(x) + 1.

We deduce that log2Nu′′(x)− log2Nu(x) > 1, and conclude that for Nu(x) > e,

Nu′′(x)−Nu(x) ≥ Nu(x)

2 logNu(x)

since the function log2 t is concave with derivative 2 log t
t , i.e., in order to increase log2 t by 1, t

should be increased by more than
(

2 log t
t

)−1

. �

From Lemma S9, it follows that for sufficiently large t,

∑
b∈A

t∑
u=t1

1[Nt(x) ≥ ρt, Emnt
t , (Xt, At) = (x, b)] ≤ Amax

{
3, 3(Nt(x)−Nt1(x))

(
2 logNt1(x)

Nt1(x)

)}
≤ Amax

{
3, 3(t− bρt/4c)

(
2 logbρt/4c
bρt/4c

)}
≤ 24A log t. (S37)

For the first inequality, we apply Lemma S9 with the fact that as u increases, Nu(x) increases and
2 logNu(x)
Nu(x) decreases. The second inequality is from the definition of t1 and (S34). The last inequality

holds for sufficiently large t. We have completed the proof of Lemma S8. �

We return to the proof of Lemma S3. Lemma S8 establishes (S31). Next we provide an upper bound
of (S31). To this aim, we use the following concentration inequality Combes and Proutiere [2014]:

Lemma S10. Consider any φ, π, ε > 0 with Bernoulli reward distribution. DefineHt the σ-algebra
generated by (Zs)1≤s≤t. Let B ⊂ N be a (random) set of rounds. Assume that there exists a
sequence of (random) sets (B(s))s≥1 such that (i) B ⊂ ∪s≥1B(s), (ii) for all s ≥ 1 and all t ∈ B(s),
Nt(x, a) ≥ εs, (iii) |B(s)| ≤ 1, and (iv) the event t ∈ B(s) is Ht-measurable. Then for all ζ > 0,
and x1, x, y ∈ S, a ∈ A, ∑

t≥1

Pπφ|x1
[t ∈ B, |rt(x, a)− rφ(x, a)| > ζ] ≤ 1

εζ2∑
t≥1

Pπφ|x1
[t ∈ B, |pt(y | x, a)− pφ(y | x, a)| > ζ] ≤ 1

εζ2
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Proof of Lemma S10. Combes and Proutiere [2014] provides a proof of the first part. Now the
occurrence of a transition under action a from state x to state y is a Bernoulli random variable, and
hence the second part of the lemma directly follows from the first. �

Let B′′t (x, a) := {min(y,b)∈S×ANt(y, b) ≥ log t
(1+log log t)2 ,B

′
t(x, a)}. If at time t ≤ T , we have the

s-th occurrence of B′′t (x, a), then it follows that s ≤ γ′t (since a is selected in state x at time t, and
Nt(x, a) ≤ γ′t), and thus

min
(y,b)∈S×A

Nt(y, b) ≥
log t

(1 + log log t)2
≥ 1

16S3A(1 + γ)(1 + log log t)4
γ′t

≥ 1

16S3A(1 + γ)(1 + log log T )4
s,

where the last inequality follows from t ≤ T and s ≤ γ′t. Thus since ¬Bt(ζt) holds when B′′t (x, a)
occurs, we deduce that the set of rounds where B′′t (x, a) occurs satisfies

{t : B′′t (x, a) occurs} ⊂ ∪s≥1 ∪(y,b)∈S×A {t : s-th occurence of B′′t (x, a), Nt(y, b) ≥ εs,
‖φt(y, b)− φ(y, b)‖ > ζT },

where ε := 1
16S3A(1+log log T )4 . Now we apply Lemma S10 to each pair (y, b) with ζ = ζT , and

conclude that:

T∑
t=1

Pπφ|x1
[B′′t (x, a)] ≤ (SA)

16S3A(1 + log log T )4

(ζT )2
= 16S4A2(1 + log log T )6 = o(log T )

where the factor SA in the inequality is from the union bound over all (y, b) ∈ S ×A. This proves
(S26) and completes the proof of Lemma S3. �

F.2 Proof of Lemma S4

Let ε2 := min(x,a)∈S×A:a/∈O(x;φ)(B
∗
φh
∗
φ)(x) − (Ba

φh
∗
φ)(x) > 0. Fix (x, a) ∈ S × A such that

a /∈ O(x;φ), and ε ∈ (0, ε2/5) so that

(Ba
φh
∗
φ)(x)− (B∗φh

∗
φ)(x) ≤ −5ε. (S38)

When Z(2)
t (x, a; ε) occurs, we have

(Ba
φth
∗
φ)(x)− (B∗φh

∗
φ)(x) = (Ba

φth
∗
φ)(x)− (Ba

φth
′
t)(x) + (Ba

φth
′
t)(x)− (B∗φh

∗
φ)(x)

> (Ba
φth
∗
φ)(x)− (Ba

φth
′
t)(x)− 2ε

=

∑
y∈S

pt(y | x, a)(h∗φ(y)− h′t(y))

− 2ε

≥ −3ε (S39)

where the first inequality stems from the fact that (Ba
φt
h′t)(x) > (B∗φh

∗
φ)(x)− 2ε when Z(2)

t (x, a; ε)

occurs, and the last inequality follows from the fact that Et(ε) holds when Z(2)
t (x, a; ε) occurs.

Let ζ = ε
S2 . Then, recalling the definition of the event Bt(x, a; ζ) := {‖φt(x, a)− φ(x, a)‖ ≤ ζ},

when Bt(x, a; ζ) occurs, we have

|(Ba
φh
∗
φ)(x)− (Ba

φth
∗
φ)(x)| ≤ |rt(x, a)− rφ(x, a)|+Hφ

∑
y∈S
|pt(y | x, a)− pφ(y | x, a)|

≤ |rt(x, a)− rφ(x, a)|+ S2 max
y∈S
|pt(y | x, a)− pφ(y | x, a)|

≤ S2‖φt(x, a)− φ(x, a)‖
≤ ε (S40)
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where for the second inequality, we used 0 ≤ Hφ ≤ S.

Now, we can deduce that the events Z(2)
t (x, a; ε) and Bt(x, a; ζ) cannot occur at the same time, i.e.,

Pπφ|x1

[
Z(2)
t (x, a; ε),Bt(x, a; ζ)

]
= 0. (S41)

Indeed, when Z(2)
t (x, a; ε) ∩ Bt(x, a; ζ) occurs, (S39) and (S40) imply

(Ba
φh
∗
φ)(x)− (B∗φh

∗
φ)(x) = (Ba

φth
∗
φ)(x)− (B∗φh

∗
φ)(x)−

(
(Ba

φh
∗
φ)(x)− (Ba

φth
∗
φ)(x)

)
≥ (Ba

φth
∗
φ)(x)− (B∗φh

∗
φ)(x)− |(Ba

φh
∗
φ)(x)− (Ba

φth
∗
φ)(x)|

≥ −4ε > −5ε

which contradicts (S38) for our choice of ε , i.e., ε ∈ (0, ε2/5).

Hence, to complete the proof, it is sufficient to show that
T∑
t=1

Pπφ|x1
[(Xt, At) = (x, a),¬Bt(x, a; ζ)] = O(1) (S42)

as we have the following bound:
T∑
t=1

Pπφ|x1

[
Z(2)
t (x, a; ε)

]
=

T∑
t=1

Pπφ|x1

[
Z(2)
t (x, a; ε),¬Bt(x, a; ζ)

]
≤

T∑
t=1

Pπφ|x1
[(Xt, At) = (x, a),¬Bt(x, a; ζ)]

where the equality follows from (S41). (S42) is obtained by applying Lemma S10 with {(Xt, At) =
(x, a)}, 1 and ε

S2 for B, ε and ζ, respectively. This complete the proof of Lemma S4.

�

F.3 Proof of Lemma S5

Recall that:

Et(ε) :=
{

Π∗(φ′t) ⊆ Π∗(φ) and |rt(x, a)− rφ(x, a)|+ |h′t(x)− h∗φ(x)| ≤ ε ∀x ∈ S,∀a ∈ O(x;φ′t)
}
.

Hence when Et(ε) occurs, (i) the estimation of the bias function in the restricted MDP φ(Ct) is
accurate and (ii) the restricted MDP includes the optimal policies of φ. We first focus on the accuracy
of the estimated bias function, and then show that the gain of the restricted MDP φ(Ct) is monotone
increasing and that it eventually includes an optimal policy for the (unrestricted) MDP.

Estimation error in bias function. We begin with some useful notations. Let K := AS be the
number of all the possible fixed policies. Fix β ∈

(
0, 1

K+1

)
. For sufficiently large t > 1

1
K+1−β

,

divide the time interval from 1 to t into (K + 1) subintervals It0, It1, . . . , ItK such that Itk := {u ∈
N : itk ≤ u < itk+1} where it0 := 1 and itk := t + 1 − (K + 1 − k)b t

K+1c for k ∈ {1, ...,K + 1}.
Then, it is easy to check that for each k ∈ {0, ...,K},

|Itk| = itk+1 − itk > βt.

Indeed, for k = 0, it1 − it0 = t−Kb t
K+1c ≥

t
K+1 > βt, and for k ∈ [1,K], itk+1 − itk = b t

K+1c ≥
t

K+1 > βt as t > 1
1

K+1−β
, i.e., each subinterval length grows linearly with respect to t.

For k ∈ [0,K], x ∈ S and a ∈ A, let N t
k(x) := Nitk+1

(x)−Nitk(x) and N t
k(x, a) := Nitk+1

(x, a)−
Nitk(x, a). Using ρ > 0 in (S4), for ζ > 0, define an event Dt(ζ) as

Dt(ζ) := D′t ∩ E ′t(ζ) (S43)

where we let

D′t :=
{
N t
k(x) > ρβt,∀x ∈ S,∀k ∈ [0,K]

}
E ′t(ζ) :=

{
‖φ′u − φ(Cu)‖ ≤ ζ ∀u ∈ [it1, t]

}
.
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When Dt(ζ) occurs, then in each subinterval, each state is linearly visited, and after the first subinter-
val, the estimation on the restricted MDP is accurate, i.e., φ(Ct) ' φt(Ct). Note that Et(ε) bounds
the error in the estimated gain and bias functions. Hence, we establishy the correspondence between
ζ in Dt(ζ) and ε in Et(ε) using the continuity of the gain and bias functions in φ:

Lemma S11. Consider an ergodic MDP φ with Bernoulli rewards. Then, for ε > 0. there exists
ζ0 = ζ0(ε, φ) > 0 such that for any ζ ∈ (0, ζ0), policy f ∈ ΠD and MDP ψ, if ‖ψ − φ‖ ≤ ζ and
ψ � φ, then ψ is ergodic, |gfψ − g

f
φ| ≤ ε and ‖hfψ − h

f
φ‖ ≤ ε.

The proof of Lemma S11 is in Section F.3.1. Observe that on the event Dt(ζ), for u ≥ it1, every state
is visited more than ρβt, i.e., log2Nu(x) ≥ log2 ρβt ≥ 1 for all x ∈ S and sufficiently large t, and
thus, for all (x, a) ∈ S × A such that a ∈ Cu(x), φu(x, a) is indeed the estimation of φ(x, a), i.e.,
φ′u = φu(Cu)� φ(Cu). Then, using Lemma S11, it follows that there exists constant t0 > 0 such
that for t > t0 and ζ ∈ (0,min{ζ0(ε/2, φ), ε/2}),

Dt(ζ) ⊆ {φ′u is ergodic ∀u ∈ [it1, t]} ∩ E ′′t (ε) (S44)

where

E ′′t (ε) :=
{
|rφ′u(x, f(x))− rφ(x, f(x))|+ |hfφ′u(x)− hfφ(x)| ≤ ε ∀u ∈ [it1, t],∀f ∈ ΠD(Cu),∀x ∈ S

}
,

and where for restriction C : S � A, we denote by ΠD(C) the set of all the possible deterministic
policies on the restricted MDP φ(C).

Monotone improvement. Based on (S44), we can identify instrumental properties of DEL algorithm
when Dt(ζ) occurs:

Lemma S12. For structure Φ with Bernoulli rewards and an ergodic MDP φ ∈ Φ, consider
π = DEL. There exists ζ1 > 0 and t1 > 0 such that for any ζ ∈ (0, ζ1) and t > t1, the occurrence
of the event Dt(ζ) implies that

Π∗(φ′u) ⊆ Π∗(φ(Cu)), and g∗u+1 ≥ g∗u, ∀u ∈ [it1, t] (S45)

where we denote by g∗u := g∗φ(Cu) and h∗u := h∗φ(Cu) the optimal gain and bias functions, respectively,
on the restricted MDP φ(Cu) with true parameter φ.

The proof of Lemma S12 is presented in Section F.3.2.

Define the event

Mt :=
{
g∗itk+1

> g∗itk
∀k ∈ [1,K] or g∗itk+1

= g∗itk
= g∗φ for some k ∈ [1,K]

}
.

Then, by selecting ζ as in in Lemma S12 and (S44), we can connect the eventsMt and Dt(ζ) to the
event Et(ε) as follows: for ζ ∈ (0,min{ζ0(ε/2, φ), ε/2, ζ1}) and sufficiently large t > t1,

Mt ∩ Dt(ζ) ⊆ Et(ε). (S46)

On the event Mt, there must exists k ∈ [1,K + 1] such that g∗itk = g∗φ since the number K of
subintervals is the number of all the possible policy Π∗. In addition, for such a k ∈ [1,K + 1], on the
event Dt(ζ), it follows from Lemma S12 that for all u ∈ [itk, t], g

∗
itk

= g∗φ ≤ g∗u ≤ g∗t , i.e., g∗t = g∗φ
and thus Π∗(φ(Ct)) ⊆ Π∗(φ). Therefore, when both of the eventsMt and Dt(ζ) occur,

Π∗(φ) ⊇ Π∗(φ(Ct)) ⊇ Π∗(φ′t)

(again thanks to Lemma S12). Then, we indeed get Mt ∩ Dt(ζ) ⊆ Et(ε): the ergodicity of φ′t
guaranteed from (S44) implies that the optimal bias function h′t of φ′t is unique, and the event E ′′t (ε)
in (S44) always occurs on the event Dt(ζ). Thus the estimated bias function h′t is close to h∗φ.

Using (S46) and (S43), for small enough ζ ∈ (0,min{ζ0(ε/2, φ), ε/2, ζ1}) and for large enough
t > 0, we get

Pπφ|x1
[¬Et(ε)] ≤ +Pπφ|x1

[¬Dt(ζ)] + Pπφ|x1
[Dt(ζ),¬Mt]

≤ O(1) + Pπφ|x1
[¬D′t] + Pπφ|x1

[D′t,¬E ′t(ζ)] + Pπφ|x1
[Dt(ζ),¬Mt] (S47)
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where the first and last inequalities are from (S46) and (S43), respectively. To complete the proof of
Lemma S5, we provide upper bounds of each term in the r.h.s. of (S47). the first term can be easily
bounded. Indeed, using (S4) and a union bound, we get for t sufficiently,

Pπφ|x1
[¬D′t] ≤

∑
x∈S

∑
k∈[0,K]

Pπφ|x1
[N t

k(x) ≤ ρβt] = o(1/t) (S48)

where the last equality is from (S4) conditioned on Xitk
for each k.

Lemma S13 below deals with the last term.

Lemma S13. For structure Φ with Bernoulli rewards and an ergodic MDP φ ∈ Φ, consider
π = DEL. Suppose φ is in the interior of Φ, i.e., there exists a constant ζ0 > 0 such that for any
ζ ∈ (0, ζ0), ψ ∈ Φ if ‖φ− ψ‖ ≤ ζ. There exists ζ2 > 0 such that for ζ ∈ (0, ζ2),

Pπφ|x1
[DT (ζ),¬MT ] = o(1/T ) as T →∞.

We provide the proof of Lemma S13 in Section F.3.3. There, the assumption that φ is in the interior
of Φ plays an important role when studying the behavior of the algorithm in the exploitation phase.

To bound the second term in the r.h.s. of (S47), we use the following concentration inequality:

Lemma S14. Consider any π and x1 ∈ S. There exist C0, c0, u0 > 0 such that for any (x, a) ∈
S ×A and u ≥ u0,

Pπφ|x1
[|φt(x, a)− φ(x, a)| > ζ,Nt(x, a) = u] ≤ C0e

−c0u.

Proof of Lemma S14. The proof is immediate from Lemma 4(i) in [Burnetas and Katehakis, 1997],
which is an application of Cramer’s theorem for estimating Bernoulli random variables. Let φ̂t(x, a)
be the estimator of φ(x, a) from t i.i.d. reward and transition samples when action a is selected in
state x. From Lemma 4(i) in [Burnetas and Katehakis, 1997], there are positive constants C(x, a),
c(x, a), and u0(x, a) (which may depend on (x, a)), such that for u ≥ u0(x, a),

Pπφ|x1
[|φt(x, a)− φ(x, a)| > ζ,Nt(x, a) = u] ≤ P[|φ̂u(x, a)− φ(x, a)| > ζ]

≤ C0(x, a)e−c0(x,a)u.

We complete the proof by taking C0 := max(x,a)∈S×A C0(x, a), c0 := min(x,a)∈S×A c0(x, a), and
u0 := max(x,a)∈S×A u0(x, a). �

Now observe that:

Pπφ|x1
[D′t,¬E ′t(ζ)]

= Pπφ|x1
[D′t, ‖φu(x, a)− φ(x, a)‖ > ζ, for some u ∈ [it1, t], x ∈ S, a ∈ Cu(x)]

≤
t∑

u=it1

∑
x∈S

∑
a∈Cu(x)

Pπφ|x1
[D′t, ‖φu(x, a)− φ(x, a)‖ > ζ]

≤
t∑

u=it1

∑
x∈S

∑
a∈Cu(x)

Pπφ|x1
[‖φu(x, a)− φ(x, a)‖ > ζ,Nu(x, a) ≥ log2Nu(x), ρβt ≤ Nu(x) ≤ u]

≤
t∑

u=it1

∑
x∈S

∑
a∈Cu(x)

u∑
u′=ρβt

u′∑
u′′=log2 u′

Pπφ|x1
[‖φu(x, a)− φ(x, a)‖ > ζ,Nu(x, a) = u′′]
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where the second inequality follows from the definition of Cu(x) and the fact that on the event D′t,
ρβt ≤ N t

0(x) ≤ Nu(x) for u ∈ [it1, t]. Then, applying Lemma S14, we have

Pπφ|x1
[D′t,¬E ′t(ζ)] ≤

t∑
u=it1

∑
x∈S

∑
a∈Cu(x)

u∑
u′=ρβt

∞∑
u′′=log2 u′

C0e
−c0u′′

≤ SAC0t
2 e
−c0 log2(ρβt)

1− e−c0

=
SAC0

1− e−c0
t2e−c0(log2(ρβ)+log t(log t+2 log(ρβ)))

=
SAC0

1− e−c0
e−c0 log2(ρβ)t2−2c0 log(ρβ)−c0 log t = o(1/t). (S49)

Combining Lemma S13, (S48) and (S49) to (S47), we complete the proof of Lemma S5.

�

F.3.1 Proof of Lemma S11

Define two strictly positive constants:

ζr(φ) := min

{
rφ(x, a)

2
: ∀x ∈ S,∀a ∈ A s.t. rφ(x, a) > 0

}

ζp(φ) := min

{
pφ(y | x, a)

2
: ∀x, y ∈ S,∀a ∈ A s.t. pφ(y | x, a) > 0

}
.

Then, it is straightforward to show that φ� ψ if ‖ψ−φ‖ < min{ζr(φ), ζp(φ)} since for any x, y ∈ S
and a ∈ A, pφ(y | x, a) > 0 implies that pψ(y | x, a) ≥ pφ(y | x, a)/2 > 0, and rφ(x, a) > 0
implies that rψ(x, a) ≥ rφ(x, a)/2 > 0. Therefore, for sufficiently small ζ0 ≤ min{ζr(φ), ζp(φ)},
the above observation and the assumption that ψ � φ ensure the mutual absolute continuity between
φ and ψ and thus the ergodicity of ψ.

Now, we focus on the continuity of gain and bias functions for given policy f . For notational
convenience, let gfφ (resp. gfψ) and hfφ (resp. hfψ) denote the (column) vector of gain and bias
functions, respectively, under φ (resp. ψ). Let P fφ (resp. P fψ ) and rfφ (resp. rfφ) are the transition
matrix and reward vector w.r.t. policy f under φ (resp. ψ), respectively. Then, we can write the policy
evaluation equations of stationary policy f under φ and ψ as vector and matrix multiplications, c.f.,
[Puterman, 1994]:

gfφ = P fφ g
f
φ

hfφ = rfφ − g
f
φ + P fφ h

f
φ.

Similarly gfψ = P fψg
f
ψ and hfψ = rfψ − g

f
ψ + P fψh

f
ψ. Since both φ and ψ are ergodic, by forcing

hfφ(x1) = hfψ(x1) = 0 for some x1 ∈ S, the bias functions hfφ and hfψ can be uniquely defined. Let
Df := P fφ − P

f
ψ and df := hfφ − h

f
ψ. Then, ‖Df‖ ≤ Sζ where ‖ · ‖ is the max norm. Noting that

the ergodicity of φ and ψ further provides the invertibility of I − P fφ and I − P fψ . A basic linear
algebra, c.f., Lemma 7 in [Burnetas and Katehakis, 1997], leads to that for any ε > 0, ‖df‖ ≤ ε if

‖Df‖ ≤ ε

‖(I − P fφ )−1‖(‖hfφ‖+ ε)

where the upper bound is independent of ψ. From the above continuity of hfψ (and thus that of
gfψ) with respect to ψ at φ, we can find ζ0(f, ε, φ) > 0 such that for any ψ, |gfψ − g

f
φ| ≤ ε and

‖hfψ − h
f
φ‖ ≤ ε if ‖ψ − φ‖ ≤ ζ0(f, ε, φ) ≤ min{ζr(φ), ζp(φ)}. Noting the arbitrary choice of

f ∈ ΠD, we conclude the proof of Lemma S11 by taking ζ0(ε, φ) = minf∈ΠD ζ0(f, ε, φ). �
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F.3.2 Proof of Lemma S12

Let ε1 := min{|gfφ−g
f ′

φ | : f, f ′ ∈ ΠD, g
f
φ 6= gf

′

φ } > 0. Let ζ1 := min{ζ0( ε12S , φ), ε12S } and consider
t sufficiently large, i.e., t > t0. For ζ ∈ (0, ζ1), assume that the event Dt(ζ) occurs.

Proof of the first part of (S45). Then, for any u ∈ [it1, t] and f ∈ ΠD(Cu), it follows from (S44)
that for any x ∈ S,

|gfφ′u − g
f
φ| = |(B

f
φ′u
hfφ′u

)(x)− (Bf
φh

f
φ)(x)|

≤ |rφ′u(x, f(x))− rφ(x, f(x))|+
∑
y∈S
|hfφ′u(y)− hfφ(y)|

≤ S ε1

2S
=
ε1

2
(S50)

where the last inequality stems from the definition of E ′′t ( ε12S ) in (S44). Then, for any u ∈ [it1, t],
f ∈ Π∗(φ′u), and f ′ ∈ ΠD(Cu), we have:

gfφ ≥ gfφ′u
− ε1

2
≥ gf

′

φ′u
− ε1

2
≥ gf

′

φ − ε1

where the first and last inequalities stem from (S50), and the second inequality is deduced from the
optimality of f under φ′u. Noting that f, f ′ ∈ ΠD(Cu), it follows that gfφ(Cu) = gfφ ≥ g

f ′

φ = gf
′

φ(Cu).
Hence f is optimal under φ(Cu) (the choice of f ′ ∈ ΠD(Cu) is arbitrary). This completes the proof
of the first part in (S45).

Proof of the second part of (S45). Fix u ∈ [it1, t]. Assume that

ΠD(Cu+1) ∩Π∗(φ′u) 6= ∅. (S51)

Then, from the first part of (S45), we deduce that:

ΠD(Cu+1) ∩Π∗(φ′u) ⊆ ΠD(Cu+1) ∩Π∗(φ(Cu)).

Combining this with the assumption (S51), we get that ΠD(Cu+1) ∩Π∗(φ(Cu)) 6= ∅, which implies
that g∗u+1 ≥ g∗u. It remains to prove (S51).

Let x = Xu. We first show that:

Cu+1(x) ∩ O(x;φ′u) 6= ∅. (S52)

If the algorithm enters the monotonization phase, i.e., the event Emnt
u occurs, then it selects action

a = Au ∈ Cu(x) ∩ O(x;φ′u). We deduce that:

Nu(x, a) ≥ log2(Nu(x)), Nu+1(x, a) = Nu(x, a) + 1, and Nu+1(x) = Nu(x) + 1

Thus, using the fact that log2(n) + 1 > log2(n+ 1), we obtain

Nu+1(x, a) ≥ log2(Nu(x)) + 1 ≥ log2(Nu(x) + 1) = log2(Nu+1(x)). (S53)

We have shown that a ∈ Cu+1(x) and thus a ∈ Cu+1(x) ∩ O(x;φ′u) 6= ∅.
In case that the event Emnt

u does not occur, there must exist an action a ∈ O(x;φ′u) such that
Nu(x, a) ≥ log2(Nu(x)) + 1. Hence, as for (S53), we get:

Nu+1(x, a) ≥ Nu(x, a) ≥ log2(Nu(x)) + 1 ≥ log2(Nu(x) + 1) = log2(Nu+1(x))

which implies a ∈ Cu+1(x) ∩ O(x;φ′u) 6= ∅.
Now (S52) implies (S51) (since for any y ∈ S such that y 6= x, Cu(y) = Cu+1(y)). This completes
the proof of the second part in (S45) and that of Lemma S12. �

F.3.3 Proof of Lemma S13

We will show that for small enough ζ > 0,

Pπφ|x1
[Dt(ζ),¬Mt] = o(1/t)
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where we recall

Mt :=
{
g∗itk+1

> g∗itk
∀k ∈ [1,K] or g∗itk+1

= g∗itk
= g∗φ for some k ∈ [1,K]

}
.

For x ∈ S and restriction C : S � A, define

A+(x;φ, C) := {a ∈ A : (Ba
φh
∗
φ(C))(x) > (B∗φ(C)h

∗
φ(C))(x)}

as the set of actions that improve the optimal policy of the restricted MDP φ(C) at state x. If
g∗φ(C) < g∗φ, then there must exist a state xwith non-emptyA+(x;φ, C). Let ε2 := min{(Ba

φh
f
φ)(x)−

(Bf
φh

f
φ)(x) : f ∈ ΠD, x ∈ S, a ∈ A+(x;φ, {f}) 6= ∅}. Note that ε2 > 0.

Define an event

M′t := {Expt
u ,A+(Xu;φ, Cu) 6= ∅,∃u ∈ [it1, t]}.

Then, we obtain

Pπφ|x1
[Dt(ζ),¬Mt] ≤ Pπφ|x1

[Dt(ζ),¬Mt,¬M′t] + Pπφ|x1
[Dt(ζ),M′t] .

We first focus on the last term in the above. Let ζ ≤ min{ζ0( ε23S , φ), ε23S , ζ0} where ζ0 is taken from
the assumption that φ is in the interior of Φ, and t ≥ 1

β e
eε2/3 so that ζu ≤ ε2/3 for any u ≥ it1 ≥ βt.

Bounding Pπφ|x1
[Dt(ζ),M′t]. Suppose that for u ∈ [it1, t] and x ∈ S, the events Dt(ζ) and {Xu =

x, Expt
u ,A+(x;φ, Cu) 6= ∅} occur. From Lemma S12, it directly follows thatO(x;φ′u) ⊆ O(x;φ, Cu).

By the definition of the improving action set, O(x;φ, Cu) ∩ A+(x;φ, Cu) = ∅ and thus O(x;φ′u) ∩
A+(x;φ, Cu) = ∅. Construct ψu such that for each (y, b) ∈ S ×A,

ψu(y, b) =

{
φu(y, b) if b ∈ O(x;φ′u),

φ(y, b) otherwise.

Note that ψu(Cu) = φ′u and thus ‖ψu − φ‖ ≤ ‖φ′u − φ(Cu)‖ ≤ ζ0. This implies ψu ∈ Φ since φ is
an interior point of Φ. For any a ∈ A+(x;φ, Cu) 6= ∅, we get δ∗(x, a;ψu, Cu, ζu) = 0 as:

δ∗(x, a;ψu, Cu) = (B∗φ′uh
′
u)(x)− (Ba

ψuh
′
u)(x) = (B∗φ′uh

′
u)(x)− (Ba

φh
′
u)(x)

≤ 2

3
ε2 + (B∗φ(Cu)h

∗
φ(Cu))(x)− (Ba

φh
∗
φ(Cu))(x)

≤ 2

3
ε2 − ε2 = −1

3
ε2 ≤ ζu (S54)

where the second equality is from the construction of ψu and the fact thatO(x;φ′u)∩A+(x;φ, Cu) =
∅, i.e., a /∈ O(x;φ′u); and the first and second inequalities are from (S44), the definition of ε2.
We have obtained that ψu ∈ Φ and δ∗(x, a;ψu, Cu, ζu) = 0 for some a /∈ O(x;φ′u)). Therefore,
ψu ∈ ∆Φ(φu; Cu, ζu). Recalling the entering condition of the exploitation phase, we establish the
following relation:

Dt(ζ) ∩M′t ⊆

{∑
x∈S

∑
a∈A

Nu(x, a)KLφu|ψu(x, a) ≥ γu ∃u ∈ [it1, t]

}

⊆

{∑
x∈S

∑
a∈A

Nu(x, a)KLφu|φ(x, a) ≥ γu ∃u ∈ [it1, t]

}
where the last inclusion follows from the construction of ψu, i.e.,∑

x∈S

∑
a∈A

Nu(x, a)KLφu|ψu(x, a) =
∑
x∈S

∑
a/∈O(x;φ′u)

Nu(x, a)KLφu|ψu(x, a)

=
∑
x∈S

∑
a/∈O(x;φ′u)

Nu(x, a)KLφu|φ(x, a)

≤
∑
x∈S

∑
a∈A

Nu(x, a)KLφu|φ(x, a).

As a consequence, applying the following lemma, Pπφ|x1
[Dt(ζ),M′t] is bounded by o(1/t):
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Lemma S15. Consider any π and φ with Bernoulli rewards. Then, for any γ > 0 and ρ ∈ (0, 1), as
T →∞,

T∑
t=ρT

P

[∑
x∈S

∑
a∈A

Nt(x, a)KLφt|φ(x, a) ≥ (1 + γ) log t

]
= o(1/T ). (S55)

Proof of Lemma S15. The proof is an application of Theorem 2 in [Magureanu et al., 2014], which
says that for γ′ > SA+ 1 and sufficiently large t > 0,

P

[∑
x∈S

∑
a∈A

Nt(x, a)KLφt|φ(x, a) ≥ γ′
]
≤ e−γ

′
(

(γ′)2 log t

SA

)SA
eSA+1. (S56)

Then, putting (1 + γ) log t to γ′, we obtain

T∑
t=ρT

P

[∑
x∈S

∑
a∈A

Nt(x, a)KLφt|φ(x, a) ≥ (1 + γ) log t

]

≤
T∑

t=ρT

e−(1+γ) log t

(
(1 + γ)2(log t)3

SA

)SA
eSA+1

≤
T∑

t=ρT

eSA+1

(
(1 + γ)2

SA

)SA
(log t)3SA

t1+γ
.

Using that (log t)3SA/t1+γ = O(1/t1+γ/2) for t ≥ ρT and
∫ T
ρT

1/t1+γ/2dt ≤ 1/(ρT )1+γ/2 =

o(1/T ), we conclude the proof of Lemma S15. �

Bounding Pπφ|x1
[Dt(ζ),¬Mt,¬M′t]. From Lemma S12, on the event Dt(ζ), it is true that g∗u is

non-decreasing in u ∈ [it1, t], i.e., g∗itk ≤ g
∗
itk+1

. Hence,

Dt(ζ) ∩ ¬Mt ⊆ Dt(ζ) ∩
(
∪Kk=1Mk

t

)
where

Mk
t := {g∗itk = g∗itk+1

< g∗φ}.

Then, it suffices to show that for any k ∈ [1,K], Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t
]

= o(1/t).

For given k ∈ [1,K], assume that the event {Dt(ζ),Mk
t ,¬M′t} occurs. Fix x ∈ S such that

A+(x;φ, Citk) 6= ∅. Since g∗itk < g∗φ, such a x ∈ S must exist. In addition, using the second part of
Lemma S12 and recalling (S51) with the fact that the ergodic MDPs φ(Cu), φ(Cu+1) have unique
bias functions, it follows that g∗u = g∗u+1 and h∗u = h∗u+1 ∀u ∈ Itk. Therefore,

A+(x;φ, Citk) = A+(x;φ, Cu) 6= ∅ ∀u ∈ Itk (S57)

which implies ¬Expt
u ∀u ∈ Itk due to the occurrence of ¬M′t. Recall N t

k(x) := Nitk+1
(x)−Nitk(x)

and N t
k(x, a) := Nitk+1

(x, a)−Nitk(x, a). Then, for any a ∈ A, we can write

N t
k+1(x, a) =

∑
u∈Itk

1[(Xu, Au) = (x, a),¬Expt
u ]

=
∑
u∈Itk

1[(Xu, Au) = (x, a), Emnt
u ∪ Eest

u ] +
∑
u∈Itk

1[(Xu, Au) = (x, a), Expr
u ]

≤ O(log t) +
∑
u∈Itk

1[(Xu, Au) = (x, a), Expr
u ] (S58)

where the last inequality is obtained since by Lemma S9, the number of times the algorithm enters the
monotonization phase is O(log t) (c.f., (S37)), and since by design, the algorithm limits the number
of times we enter the estimation phase to O(log t/ log log t).
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Define N t,xpr
k (x, a) :=

∑
u∈Itk

1[(Xu, Au) = (x, a), Expr
u ] and

Lkt (x, a) :=

{
N t,xpr
k (x, a) ≥ ρβt

2A

}
.

It is enough to show that for a /∈ A+(x;φ, Citk),

Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t,Lkt (x, a)
]

= o(1/t) . (S59)

Indeed, it follows from (S58) that on the event {Dt(ζ),Mk
t ,¬M′t,¬Lkt (x, a) ∀a /∈ A+(x;φ, Citk)},∑

a∈A+(x;φ,Cit
k

)

N t
k+1(x, a) = N t

k+1(x)−
∑

a/∈A+(x;φ,Cit
k

)

N t
k+1(x, a)

≥ ρβt−
∑

a/∈A+(x;φ,Cit
k

)

N t
k+1(x, a)

≥ ρβt−
∑

a/∈A+(x;φ,Cit
k

)

N t,xpr
k (x, a)−O(log t)

≥ ρβt− ρβt

2
−O(log t)

which implies that for sufficiently large t, there exists a ∈ A+(x;φ, Citk) such that N t
k+1(x, a) ≥

1
3ρβt ≥ log2 t ≥ log2Nitk+1

(x), i.e., a ∈ Citk+1
, and thus g∗itk+1

> g∗itk
which contradicts to the

occurrence of the eventMk
t , i.e.,

Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t
]
≤

∑
a/∈A+(x;φ,Cit

k
)

Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t,Lkt (x, a)
]
.

Bounding Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t,Lkt (x, a)
]
. It remains to prove (S59). Fix (x, a) ∈ S ×A such

that a /∈ A+(x;φ, Citk) 6= ∅. Assume that the event {Dt(ζ),Mk
t ,¬M′t,Lkt (x, a)} occurs. Let

t3 := min

u ∈ Itk :

u∑
v=itk

1[(Xv, Av) = (x, a), Expr
v ] ≥ ρβt

4A

 .

From the assumption, t3 ∈ Itk. With a similar argument as that used to derive (S49), we can guarantee
‖φu(x, a)− φ(x, a)‖ ≤ ζ for all u ≥ t3 with probability 1− o(1/t), i.e.,

Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t,Lkt (x, a), ‖φu(x, a)− φ(x, a)‖ > ζ ∃u ∈ [t3, i
t
k+1]

]
≤

itk+1∑
u=ρβt

Pπφ|x1

[
‖φu(x, a)− φ(x, a)‖ > ζ,Nu(x, a) ≥ ρβt

4A

]

≤
itk+1∑
u=ρβt

C0e
−c0 ρβt4A ≤ C0te

−c0 ρβt4A = o(1/t) (S60)

where for the first inequality, we use union bound with the fact that t3 ≥ itk ≥ ρβt and Nu(x, a) ≥
ρβt
4A , and the second inequality is from Lemma S14.

Assume, further, that ‖φu(x, a)− φ(x, a)‖ ≤ ζ, ∀u ∈ [t3, i
t
k+1]. Then, similarly as in (S54), from

the assumption of the correctness of the estimated bias function and (S44), we can deduce that for
u ∈ [t3, i

t
k+1], δ∗(x, a;φu, Cu) > ζu and thus δ∗(x, a;φu, Cu, ζu) > ζu. Hence, in the exploration

phase, when Fu = ∅, ηu(x, a) = 0 due to the design of the algorithm, while when Fu 6= ∅,
ηu(x, a) ≤ 2SA

(
S+1
ζu

)2

due to Lemma S7. Therefore, recalling the definition of γ′t in (S30), for

any u ∈ [t3, i
t
k+1], on the event {Expr

u , Xu = x},

ηu(x, a)γu ≤ 2SA

(
S + 1

ζu

)2

γu ≤ γ′t = O(log2 t)

24



which implies that for sufficiently large t > 0 such that γ′t = O(log2 t) < ρβt
4A ≤ Nu(x, a) = Ω(t),

1[Expr
u , (Xu, Au) = (x, a)] = 0 for all u ∈ [t3, i

t
k+1] due to the design of the exploration phase.

Hence, it follows that

Pπφ|x1

[
Dt(ζ),Mk

t ,¬M′t,Lkt (x, a), ‖φu(x, a)− φ(x, a)‖ ≤ ζ ∀ u ∈ [t3, i
t
k+1]

]
= 0.

Combining the above with (S60), we have completed the proof of (S59) and thus the proof of
Lemma F.3.3.

�
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