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Abstract

We give a polynomial-time algorithm for learning latent-state linear dynamical
systems without system identification, and without assumptions on the spectral
radius of the system’s transition matrix. The algorithm extends the recently in-
troduced technique of spectral filtering, previously applied only to systems with
a symmetric transition matrix, using a novel convex relaxation to allow for the
efficient identification of phases.

1 Introduction

Linear dynamical systems (LDSs) are a cornerstone of signal processing and time series analysis.
The problem of predicting the response signal arising from a LDS is a fundamental problem in
machine learning, with a history of more than half a century.

An LDS is given by matrices (𝐴,𝐵,𝐶,𝐷). Given a sequence of inputs {𝑥𝑡}, the output {𝑦𝑡} of the
system is governed by the linear equations

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 + 𝜂𝑡 (1)
𝑦𝑡 = 𝐶ℎ𝑡 + 𝐷𝑥𝑡 + 𝜉𝑡,

where 𝜂𝑡, 𝜉𝑡 are noise vectors, and ℎ𝑡 is a hidden (latent) state.

Roweis and Ghahramani [RG99] show that special cases of this formulation capture a host of ma-
chine learning models, including hidden Markov models, Gaussian mixture models, principal com-
ponent analysis, and linear Gaussian models. It has been observed numerous times in the literature
that if there is no hidden state, or if the transition matrices are known, then the formulation is essen-
tially convex and amenable to efficient optimization.

In this paper we are concerned with the general and more challenging case, arguably the one which
is more applicable as well, in which the hidden state is not observed, and the system dynamics
are unknown to the learner. In this setting, despite the vast literature on the subject from various
communities, there is a lack of provably efficient methods for learning the LDS without strong
generative or other assumptions.
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Building on recent advances in spectral filtering, we develop a novel convex relaxation for LDSs,
resulting in an efficient algorithm for the LDS prediction problem in the general setting. Our al-
gorithm makes online predictions which are close (in terms of mean squared error) to those of the
optimal LDS in hindsight.

1.1 Problem statement and our results

An LDS prediction problem is defined as follows. Iteratively for 𝑡 = 1, 2, ..., 𝑇 , the learner observes
the input to the system 𝑥𝑡 ∈ R𝑛. The learner then makes a prediction 𝑦𝑡 ∈ R𝑚, observes true
outcome 𝑦𝑡 ∈ R𝑚, and suffers a loss ℓ(𝑦𝑡, 𝑦𝑡). For simplicity we consider the mean square error
ℓ(𝑦𝑡, 𝑦𝑡) = ‖𝑦𝑡 − 𝑦𝑡‖2, even though our techniques can handle any Lipschitz convex loss.

The goal of the online learner is to minimize its regret, or difference in loss between its prediction,
and the prediction of the best LDS in hindsight that predicts with 𝑦*1 , . . . , 𝑦

*
𝑇 :

Regret(𝑇 ) :=

𝑇∑︁
𝑡=1

‖𝑦𝑡 − 𝑦𝑡‖2 −
𝑇∑︁

𝑡=1

‖𝑦*𝑡 − 𝑦𝑡‖2.

We emphasize that 𝑦*𝑡 are not fixed vectors, but rather evolve according to a hidden state and equation
(1) according to the best possible transition matrices, in terms of mean square error fit to the data.

Our main result is a polynomial-time algorithm that predicts 𝑦𝑡 given all previous input and feedback
(𝑥1:𝑡, 𝑦1:𝑡−1), and attains a near-optimal regret bound of

Regret(𝑇 ) ≤ �̃�(
√
𝑇 ) + 𝐾 · 𝐿.

Here, 𝐿 denotes the inevitable loss incurred by perturbations to the system which cannot be antici-
pated by the learner, which are allowed to be adversarial. This 𝐿 can grow with time, and is usually
assumed to be proportional to a small constant, say 𝜀𝑇 .

The constant in the �̃�(·), as well as 𝐾, depend polynomially on the dimensionality of the system,
the norms of the inputs and outputs, and certain natural quantities related to the transition matrix
𝐴. Additionally, the running time of our algorithm is polynomial in all natural parameters of the
problem.

In comparison to previous approaches, we note:

∙ Our algorithm is the first sample-efficient and polynomial-time algorithm with this guaran-
tee. In the next section, we survey local search algorithms that either only converge to local
optima or require an exponential number of iterations in the worst case.

∙ The main feature is that the regret does not depend on the spectral radius 𝜌(𝐴) of the sys-
tem’s hidden-state transition matrix. If one allows a dependence on the condition number,
then simple linear regression-based algorithms are known to obtain the same result, with
time and sample complexity polynomial in 1

1−𝜌(𝐴) . (See Section 6 of [HMR16].)

1.2 Related work

The prediction problems of time series for linear dynamical systems was defined in the seminal work
of Kalman [Kal60], who introduced the Kalman filter as a recursive least-squares solution for max-
imum likelihood estimation (MLE) of Gaussian perturbations to the system. For more background
see the classic survey [Lju98], and the extensive overview of recent literature in [HMR16].

For a linear dynamical system with no hidden state, the system is identifiable by a convex program
and thus well understood (see [DMM+17, AYS11], who address sample complexity issues and
regret for system identification and linear-quadratic control in this setting).

Various exponential-time approaches have been proposed to learn the system in the case that the sys-
tem is unknown. Regret bounds similar to ours are obtainable using the continuous multiplicative-
weights algorithm (see [CBL06], as well as the EWOO algorithm in [HAK07]). These methods,
mentioned briefly in [HSZ17], basically amount to discretizing the entire parameter space of LDSs,
and take time exponential in the system dimensions. Stronger guarantees are obtained in [KM17],
though still in exponential time.
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Ghahramani and Roweis [RG99] suggest using the EM algorithm to learn the parameters of an
LDS. This approach remains widely used, but is inherently non-convex and can get stuck in local
minima. Recently [HMR16] show that for a restricted class of systems, gradient descent (also widely
used in practice, perhaps better known in this setting as backpropagation) guarantees polynomial
convergence rates and sample complexity in the batch setting. Their result applies essentially only
to the SISO case, depends polynomially on the spectral gap, and requires the signal to be generated
by an LDS.

In recent work, [HSZ17] show how to efficiently learn an LDS in the online prediction setting,
without any generative assumptions, and without dependence on the condition number. Their
new methodology, however, was restricted to LDSs with symmetric transition matrices. For
the structural result, we use the same results from the spectral theory of Hankel matrices; see
[BT17, Hil94, Cho83]. Obtaining provably efficient algorithms for the general case is significantly
more challenging.

We make use of linear filtering, or linear regression on the past observations as well as inputs, as a
subroutine for future prediction. This technique is well-established in the context of autoregressive
models for time-series prediction that have been extensively studied in the learning and signal-
processing literature, see e.g. [Ham94, BJR94, BD09, KM16, AHMS13, MW07].

The recent success of recurrent neural networks (RNNs) for tasks such as speech and language
modeling has inspired a resurgence of interest in linear dynamical systems [HMR16, BK15].

2 Preliminaries

2.1 Setting

A linear dynamical system Θ = (𝐴,𝐵,𝐶,𝐷), with initial hidden state ℎ0 ∈ R𝑑, specifies a map
from inputs 𝑥1, . . . , 𝑥𝑇 ∈ R𝑛 to outputs (responses) 𝑦1, . . . , 𝑦𝑇 ∈ R𝑚, given by the recursive
equations

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡 + 𝜂𝑡 (2)
𝑦𝑡 = 𝐶ℎ𝑡 + 𝐷𝑥𝑡 + 𝜉𝑡, (3)

where 𝐴,𝐵,𝐶,𝐷 are matrices of appropriate dimension, and 𝜂𝑡, 𝜉𝑡 are noise vectors.

We make the following assumptions to characterize the “size” of an LDS we are competing against:

1. Inputs and outputs and bounded: ‖𝑥𝑡‖2 ≤ 𝑅𝑥, ‖𝑦𝑡‖2 ≤ 𝑅𝑦 .1

2. The system is Lyapunov stable, i.e., the largest singular value of 𝐴 is at most 1: 𝜌(𝐴) ≤ 1.
Note that we do not need this parameter to be bounded away from 1.

3. 𝐴 is diagonalizable by a matrix with small entries: 𝐴 = ΨΛΨ−1, with ‖Ψ‖𝐹
⃦⃦
Ψ−1

⃦⃦
𝐹
≤

𝑅Ψ. Intuitively, this holds if the eigenvectors corresponding to larger eigenvalues aren’t
close to linearly dependent.

4. 𝐵,𝐶,𝐷 have bounded spectral norms: ‖𝐵‖2 , ‖𝐶‖2 , ‖𝐷‖2 ≤ 𝑅Θ.

5. Let 𝑆 =
{︁

𝛼
|𝛼| : 𝛼 is an eigenvalue of 𝐴

}︁
be the set of phases of all eigenvalues of 𝐴. There

exists a monic polynomial 𝑝(𝑥) of degree 𝜏 such that 𝑝(𝜔) = 0 for all 𝜔 ∈ 𝑆, the 𝐿1 norm
of its coefficients is at most 𝑅1, and the 𝐿∞ norm is at most 𝑅∞. We will explain this
condition in Section 4.1.

In our regret model, the adversary chooses an LDS (𝐴,𝐵,𝐶,𝐷), and has a budget 𝐿. The dynamical
system produces outputs given by the above equations, where the noise vectors 𝜂𝑡, 𝜉𝑡 are chosen
adversarially, subject to a budget constraint:

∑︀𝑇
𝑡=1 ‖𝜂𝑡‖2 + ‖𝜉𝑡‖2 ≤ 𝐿.

Then, the online prediction setting is identical to that proposed in [HSZ17]. For each iteration
𝑡 = 1, . . . , 𝑇 , the input 𝑥𝑡 is revealed, and the learner must predict a response 𝑦𝑡. Then, the true 𝑦𝑡
is revealed, and the learner suffers a least-squares loss of ‖𝑦𝑡 − 𝑦𝑡‖2. Of course, if 𝐿 scales with

1Note that no bound on ‖𝑦𝑡‖ is required for the approximation theorem; 𝑅𝑦 only appears in the regret
bound.
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the time horizon 𝑇 , it is information-theoretically impossible for an online algorithm to incur a loss
sublinear in 𝑇 , even under non-adversarial (e.g. Gaussian) perturbations. Thus, our end-to-end goal
is to track the LDS with loss that scales with the total magnitude of the perturbations, independently
of 𝑇 .

This formulation is fundamentally a min-max problem: given a limited budget of perturbations, an
adversary tries to maximize the error of the algorithm’s predictions, while the algorithm seeks to be
robust against any such adversary. This corresponds to the 𝐻∞ notion of robustness in the control
theory literature; see Section 15.5 of [ZDG+96].

2.2 Spectral filtering for time series

The spectral filtering technique is introduced in [HSZ17], which considers a spectral decomposition
of the derivative of the impulse response function of an LDS with a symmetric transition matrix. A
crucial object of consideration in spectral filtering is the set of wave-filters 𝜑1, . . . , 𝜑𝑘, which are
the top 𝑘 eigenvectors of the deterministic Hankel matrix 𝑍𝑇 ∈ R𝑇×𝑇 , whose entries are given by
𝑍(𝑖, 𝑗) = 2

(𝑖+𝑗)3−(𝑖+𝑗) . Bounds on the 𝜀-rank of positive semidefinite Hankel matrices can be found
in [BT17]. Our algorithm will “compress” the input time series using a time-domain convolution of
the input time series with filters derived from these eigenvectors.

2.3 Notation for matrix norms

We will consider a few “mixed” ℓ𝑝 matrix norms of a 4-tensor 𝑀 , whose elements are indexed
by 𝑀(𝑝, ℎ, 𝑗, 𝑖) (the roles and bounds of these indices will be introduced later). For conciseness,
whenever the norm of such a 4-tensor is taken, we establish the notation for the mixed matrix norm

‖𝑀‖2,𝑞 :=

⎡⎢⎣∑︁
𝑝

⎛⎝∑︁
ℎ,𝑖,𝑗

𝑀(𝑝, ℎ, 𝑗, 𝑖)2

⎞⎠𝑞/2
⎤⎥⎦
1/𝑞

,

and the limiting case

‖𝑀‖2,∞ := max
𝑝

√︃∑︁
ℎ,𝑖,𝑗

𝑀(𝑝, ℎ, 𝑗, 𝑖)2.

These are the straightforward analogues of the matrix norms defined in [KSST12], and appear in the
regularization of the online prediction algorithm.

3 Algorithm and main theorem

We begin by describing the algorithm in terms of a linear model 𝑦(Θ̂𝑡;𝑥1:𝑡; 𝑦𝑡−1:𝑡−𝜏 ), the details of
which occur in Definition 2.

Algorithm 1 Phased wave-filtered regression

1: Input: time horizon 𝑇 , parameters 𝑘,𝑊, 𝜏,𝑅Θ̂, regularization weight 𝜂.
2: Compute {(𝜎𝑗 , 𝜑𝑗)}𝑘𝑗=1, the top 𝑘 eigenpairs of 𝑍𝑇 .
3: Initialize Θ̂1 ∈ 𝒦 arbitrarily.
4: for 𝑡 = 1, . . . , 𝑇 do
5: Predict 𝑦𝑡 := 𝑦(Θ̂𝑡;𝑥1:𝑡; 𝑦𝑡−1:𝑡−𝜏 ).
6: Observe 𝑦𝑡. Suffer loss ‖𝑦𝑡 − 𝑦𝑡‖2.
7: Solve FTRL convex program:

Θ̂𝑡+1 ← arg min
Θ̂∈𝒦

𝑡−1∑︁
𝑢=0

‖𝑦(Θ̂;𝑥1:𝑢, 𝑦𝑢−1:𝑢−𝜏 )− 𝑦𝑢‖2 +
1

𝜂
𝑅(Θ̂).

8: end for

The central result in the paper is stated below.
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Theorem 1 (Main; informal). Consider a LDS with noise (given by (2) and (3)) satisfying the
assumptions in Section 2.1, where total noise is bounded by 𝐿. Then there is a choice of parameters
such that Algorithm 1 learns a linear model Θ̂ whose predictions 𝑦𝑡 satisfy

𝑇∑︁
𝑡=1

‖𝑦𝑡 − 𝑦𝑡‖2 ≤ �̃�
(︁

poly(𝑅, 𝑑′)
√
𝑇 + 𝑅2

∞𝜏3𝑅2
Θ𝑅

2
Ψ𝐿
)︁

(4)

where 𝑅1, 𝑅𝑥, 𝑅𝑦, 𝑅Θ, 𝑅Ψ ≤ 𝑅, 𝑚,𝑛, 𝑑 ≤ 𝑑′.

To define the algorithm, we specify a reparameterization of linear dynamical systems. To this end,
we define a pseudo-LDS, which pairs a subspace-restricted linear model of the impulse response
with an autoregressive model:

Definition 2. A pseudo-LDS Θ̂ = (𝑀,𝑁, 𝛽, 𝑃 ) is given by two 4-tensors 𝑀,𝑁 ∈ R𝑊×𝑘×𝑛×𝑚 a
vector 𝛽 ∈ R𝜏 , and matrices 𝑃0, . . . , 𝑃𝜏−1 ∈ R𝑚×𝑛. Let the prediction made by Θ̂, which depends
on the entire history of inputs 𝑥1:𝑡 and 𝜏 past outputs 𝑦𝑡−1:𝑡−𝜏 be given by

𝑦(Θ̂;𝑥1:𝑡, 𝑦𝑡−1:𝑡−𝜏 )(:) :=
𝜏∑︁

𝑢=1

𝛽𝑢𝑦𝑡−𝑢 +
𝜏−1∑︁
𝑗=0

𝑃𝑗𝑥𝑡−𝑗

+

𝑊−1∑︁
𝑝=0

𝑛∑︁
𝑖=1

𝑘∑︁
ℎ=1

𝑡∑︁
𝑢=𝜏

[︃(︃
𝑀(𝑝, ℎ, 𝑖, :) cos

(︂
2𝜋𝑢𝑝

𝑊

)︂
+ 𝑁(𝑝, ℎ, 𝑖, :) sin

(︂
2𝜋𝑢𝑝

𝑊

)︂)︃
𝜎

1
4

ℎ 𝜑ℎ(𝑢)𝑥𝑡−𝑢(𝑖)

]︃

Here, 𝜑1, . . . , 𝜑𝑘 ∈ R𝑇 are the top 𝑘 eigenvectors, with eigenvalues 𝜎1, . . . , 𝜎𝑘, of 𝑍𝑇 . These
can be computed using specialized methods [BLV98]. Some of the dimensions of these tensors are
parameters to the algorithm, which we list here:

∙ Number of filters 𝑘.
∙ Phase discretization parameter 𝑊 .
∙ Autoregressive parameter 𝜏 .

Additionally, we define the following:

∙ Regularizer 𝑅(𝑀,𝑁, 𝛽, 𝑃 ) := ‖𝑀‖22,𝑞 + ‖𝑁‖22,𝑞 + ‖𝛽‖2𝑞′ +
∑︀𝜏

𝑗=1 ‖𝑃𝑗‖2𝐹 , where 𝑞 =
ln(𝑊 )

ln(𝑊 )−1 , and 𝑞′ = ln(𝜏)
ln(𝜏)−1 .

∙ Composite norm ‖(𝑀,𝑁, 𝛽, 𝑃 )‖ := ‖𝑀‖2,1 + ‖𝑁‖2,1 + ‖𝛽‖1 +
√︁∑︀𝜏

𝑗=1 ‖𝑃𝑗‖2𝐹 .

∙ Composite norm constraint 𝑅Θ̂, and the corresponding set of pseudo-LDSs 𝒦 = {Θ̂ :

‖Θ̂‖ ≤ 𝑅Θ̂}.

Crucially, 𝑦(Θ̂;𝑥1:𝑡, 𝑦𝑡−1:𝑡−𝑑) is linear in each of 𝑀,𝑁,𝑃, 𝛽; consequently, the least-squares loss
‖𝑦(Θ̂;𝑥1:𝑡)− 𝑦‖2 is convex, and can be minimized in polynomial time. To this end, our online pre-
diction algorithm is follow-the-regularized-leader (FTRL), which requires the solution of a convex
program at each iteration. We choose this regularization to obtain the strongest theoretical guarantee,
and provide a brief note in Section 5 on alternatives to address performance issues.

At a high level, our algorithm works by first approximating the response of an LDS by an au-
toregressive model of order (𝜏, 𝜏), then refining the approximation using wave-filters with a phase
component. Specifically, the blocks of 𝑀 and 𝑁 corresponding to filter index ℎ and phase index 𝑝
specify the linear dependence of 𝑦𝑡 on a certain convolution of the input time series, whose kernel
is the pointwise product of 𝜑ℎ and a sinusoid with period 𝑊/𝑝. The structural result which drives
the theorem is that the dynamics of any true LDS are approximated by such a pseudo-LDS, with
reasonably small parameters and coefficients.

Note that the autoregressive component in our definition of a pseudo-LDS is slightly more restricted
than multivariate autoregressive models: the coefficients 𝛽𝑗 are scalar, rather than allowed to be
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arbitrary matrices. These options are interchangeable for our purposes, without affecting the asymp-
totic regret; we choose to use scalar coefficients for a more streamlined analysis.

The online prediction algorithm is fully specified in Algorithm 1; the parameter choices that give the
best asymptotic theoretical guarantees are specified in the appendix, while typical realistic settings
are outlined in Section 5.

4 Analysis

There are three parts to the analysis, which we outline in the following subsections: proving the ap-
proximability of an LDS by a pseudo-LDS, bounding the regret incurred by the algorithm against the
best pseudo-LDS, and finally analyzing the effect of noise 𝐿. The full proofs are in Appendices A, B,
and C, respectively.

4.1 Approximation theorem for general LDSs

We develop a more general analogue of the structural result from [HSZ17], which holds for systems
with asymmetric transition matrix 𝐴.
Theorem 3 (Approximation theorem; informal). Consider an noiseless LDS (given by (2) and (3)
with 𝜂𝑡, 𝜉𝑡 = 0) satisfying the assumptions in Section 2.1.

There is 𝑘 = 𝑂
(︀
poly log

(︀
𝑇,𝑅Θ, 𝑅Ψ, 𝑅1, 𝑅𝑥,

1
𝜀

)︀)︀
, 𝑊 = 𝑂 (poly(𝜏,𝑅Θ, 𝑅Ψ, 𝑅1, 𝑅𝑥, 𝑇 )) and a

pseudo-LDS Θ̂ of norm 𝑂(poly(𝑅Θ, 𝑅Ψ, 𝑅1, 𝜏, 𝑘)) such that Θ̂ approximates 𝑦𝑡 to within 𝜀 for
1 ≤ 𝑡 ≤ 𝑇 : ⃦⃦⃦

𝑦(Θ̂;𝑥1:𝑡, 𝑦𝑡−1:𝑡−𝜏 )− 𝑦𝑡

⃦⃦⃦
≤ 𝜀. (5)

For the formal statement (with precise bounds) and proof, see Appendix A.2. In this section we give
some intuition for the conditions and an outline of the proof.

First, we explain the condition on the polynomial 𝑝. As we show in Appendix A.1 we can predict
using a pure autoregressive model, without wavefilters, if we require 𝑝 to have all eigenvalues of
𝐴 as roots (i.e., it is divisible by the minimal polynomial of 𝐴). However, the coefficients of this
polynomial could be very large. The size of these coefficients will appear in the bound for the main
theorem, as using large coefficients in the predictor will make it sensitive to noise.

Requiring 𝑝 only to have the phases of eigenvalues of 𝐴 as roots can decrease the coefficients
significantly. As an example, consider if 𝐴 has many 𝑑/3 distinct eigenvalues with phase 1, and
similarly for 𝜔, and 𝜔, and suppose their absolute values are close to 1. Then the minimal polynomial
is approximately (𝑥−1)

𝑑
3 (𝑥−𝜔)

𝑑
3 (𝑥−𝜔)

𝑑
3 which can have coefficients as large as exp(Ω(𝑑)). On

the other hand, for the theorem we can take 𝑝(𝑥) = (𝑥− 1)(𝑥− 𝜔)(𝑥− 𝜔) which has degree 3 and
coefficients bounded by a constant. Intuitively, the wavefilters help if there are few distinct phases,
or they are well-separated (consider that if the phases were exactly the 𝑑th roots of unity, that 𝑝 can
be taken to be 𝑥𝑑 − 1). Note that when the roots are real, we can take 𝑝 = 𝑥 − 1 and the analysis
reduces to that of [HSZ17].

We now sketch a proof of Theorem 3. Motivation is given by the Cayley-Hamilton Theorem, which
says that if 𝑝 is the characteristic polynomial of 𝐴, then 𝑝(𝐴) = 𝑂. This fact tells us that the
ℎ𝑡 = 𝐴𝑡ℎ0 satisfies a linear recurrence of order 𝜏 = deg 𝑝: if 𝑝(𝑥) = 𝑥𝜏 +

∑︀𝜏
𝑡=1 𝛽𝑗𝑥

𝜏−𝑗 , then
ℎ𝑡 +

∑︀𝜏
𝑡=1 𝛽𝑗ℎ𝑡−𝑗 = 0.

If 𝑝 has only the phases as the roots, then ℎ𝑡 +
∑︀𝜏

𝑡=1 𝛽𝑗ℎ𝑡−𝑗 ̸= 0 but can be written in terms of
the wavefilters. Consider for simplicity the 1-dimensional (complex) LDS 𝑦𝑡 = 𝛼𝑦𝑡−1 + 𝑥𝑡, and let
𝛼 = 𝑟𝜔 with |𝜔| = 1. Suppose 𝑝(𝑥) = 𝑥𝜏 +

∑︀𝜏
𝑡=1 𝛽

𝑗𝑥𝜏−𝑗 = 0 and 𝑝(𝜔) = 0. In general the LDS
is a “sum” of LDS’s that are in this form. Summing the past 𝜏 terms with coefficients given by 𝛽,

𝑦𝑡 = 𝑥𝑡 +𝛼𝑥𝑡−1 + · · · +𝛼𝜏𝑥𝑡−𝜏 + · · ·
+𝛽1(𝑦𝑡−1 = 𝑥𝑡−1 + · · · +𝛼𝜏−1𝑥𝑡−𝜏 + · · · )

...
...

...
+𝛽𝜏 (𝑦𝑡−𝜏 = 𝑥𝑡−𝜏 + · · · )
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The terms 𝑥𝑡, . . . , 𝑥𝑡−𝜏+1 can be taken care of by linear regression. Consider a term 𝑥𝑗 , 𝑗 < 𝑡 − 𝜏

in this sum. The coefficient is 𝛼𝑗−(𝑡−𝜏)(𝛼𝜏 + 𝛽1𝛼
𝜏−1 + · · ·+ 𝛽𝜏 ). Because 𝑝(𝜔) = 0, this can be

written as

𝛼𝑗−(𝑡−𝜏)((𝛼𝜏 − 𝜔𝜏 ) + 𝛽1(𝛼𝜏−1 − 𝜔𝜏−1) + · · · ). (6)

Factoring out 1−𝑟 from each of these terms show that 𝑦𝑡 +𝛽1𝑦𝑡−1 + · · ·+𝛽𝜏𝑦𝑡−𝜏 can be expressed
as a function of a convolution of the vector ((1 − 𝑟)𝑟𝑡−1𝜔𝑡−1) with 𝑥1:𝑇 . The wavefilters were
designed precisely to approximate the vector 𝜇(𝑟) = ((1−𝑟)𝑟𝑡−1)1≤𝑡≤𝑇 well, hence 𝑦𝑡 +𝛽1𝑦𝑡−1 +
· · ·+ 𝛽𝜏𝑦𝑡−𝜏 can be approximated using the wavefilters multiplied by phase and convolved with 𝑥.
Note that the 1− 𝑟 is necessary in order to make the 𝐿2 norm of ((1− 𝑟)𝑟𝑡−1)1≤𝑡≤𝑇 bounded, and
hence ensure the wavefilters have bounded coefficients.

4.2 Regret bound for pseudo-LDSs

As an intermediate step toward the main theorem, we show a regret bound on the total least-squares
prediction error made by Algorithm 1, compared to the best pseudo-LDS in hindsight.
Theorem 4 (FTRL regret bound; informal). Let 𝑦*1 , . . . , 𝑦

*
𝑇 denote the predictions made by the

fixed pseudo-LDS minimizing the total squared-norm error. Then, there is a choice of parameters
for which the decision set 𝒦 contains all LDSs which obey the assumptions from Section 2.1, for
which the predictions 𝑦1, . . . , 𝑦𝑇 made by Algorithm 1 satisfy

𝑇∑︁
𝑡=1

‖𝑦𝑡 − 𝑦𝑡‖2 −
𝑇∑︁

𝑡=1

‖𝑦*𝑡 − 𝑦𝑡‖2 ≤ �̃�
(︁

poly(𝑅, 𝑑′)
√
𝑇
)︁
.

where 𝑅1, 𝑅𝑥, 𝑅𝑦, 𝑅Θ, 𝑅Ψ ≤ 𝑅, 𝑚,𝑛, 𝑑 ≤ 𝑑′.

The regret bound follows by applying the standard regret bound of follow-the-regularized-leader
(see, e.g. [Haz16]). However, special care must be taken to ensure that the gradient and diameter
factors incur only a poly log(𝑇 ) factor, noting that the discretization parameter 𝑊 (one of the di-
mensions of 𝑀 and 𝑁 ) must depend polynomially on 𝑇/𝜀 in order for the class of pseudo-LDSs
to approximate true LDSs up to error 𝜀. To this end, we use a modification of the strongly convex
matrix regularizer found in [KSST12], resulting in a regret bound with logarithmic dependence on
𝑊 .

Intuitively, this is possible due to the 𝑑-sparsity (and thus ℓ1 boundedness) of the phases of true
LDSs, which transfers to an ℓ1 bound (in the phase dimension only) on pseudo-LDSs that compete
with LDSs of the same size. This allows us to formulate a second convex relaxation, on top of that of
wave-filtering, for simultaneous identification of eigenvalue phase and magnitude. For the complete
theorem statement and proof, see Appendix B.

We note that the regret analysis can be used directly with the approximation result for autoregressive
models (Theorem 1), without wave-filtering. This way, one can straightforwardly obtain a sublinear
regret bound against autoregressive models with bounded coefficients. However, for the reasons
discussed in Section 4.1, the wave-filtering technique affords us a much stronger end-to-end result.

4.3 Pseudo-LDSs compete with true LDSs

Theorem 3 shows that there exists a pseudo-LDS approximating the actual LDS to within 𝜀 in the
noiseless case. We next need to analyze the best approximation when there is noise. We show in
Appendix C (Lemma 14) that if the noise is bounded (

∑︀𝑇
𝑡=1 ‖𝜂𝑡‖

2
2 + ‖𝜉𝑡‖22 ≤ 𝐿), we incur an

additional term equal to the size of the perturbation
√
𝐿 times a competitive ratio depending on the

dynamical system, for a total of 𝑅∞𝜏
3
2𝑅Θ𝑅Ψ

√
𝐿. We show this by showing that any noise has a

bounded effect on the predictions of the pseudo-LDS.2

Letting 𝑦*𝑡 be the predictions of the best pseudo-LDS, we have
𝑇∑︁

𝑡=1

‖𝑦𝑡 − 𝑦𝑡‖22 =

(︃
𝑇∑︁

𝑡=1

‖𝑦𝑡 − 𝑦𝑡‖22 −
𝑇∑︁

𝑡=1

‖𝑦*𝑡 − 𝑦𝑡‖22

)︃
+

𝑇∑︁
𝑡=1

‖𝑦*𝑡 − 𝑦𝑡‖22 . (7)

2In other words, the prediction error of the pseudo-LDS is stable to noise, and we bound its 𝐻∞ norm.
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The first term is the regret, bounded by Theorem 4 and the second term is bounded by the discussion
above, giving the bound in the Theorem 1.

For the complete proof, see Appendix C.2.

5 Experiments

We exhibit two experiments on synthetic time series, which are generated by randomly-generated
ill-conditioned LDSs. In both cases, 𝐴 ∈ R10×10 is a block-diagonal matrix, whose 2-by-2 blocks
are rotation matrices [cos 𝜃 − sin 𝜃; sin 𝜃 cos 𝜃] for phases 𝜃 drawn uniformly at random. This
comprises a hard case for direct system identification: long-term time dependences between input
and output, and the optimization landscape is non-convex, with many local minima. Here, 𝐵 ∈
R10×10 and 𝐶 ∈ R2×10 are random matrices of standard i.i.d. Gaussians. In the first experiment,
the inputs 𝑥𝑡 are i.i.d. spherical Gaussians; in the second, the inputs are Gaussian block impulses.

System 1: MIMO with Gaussian inputs
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System 2: MIMO with block inputs
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Figure 1: Performance of Algorithm 1 on synthetic 10-dimensional LDSs. For clarity, error plots
are smoothed by a median filter. Blue = ours, yellow = EM, red = SSID, black = true responses,
green = inputs, dotted lines = “guess the previous output” baseline. Horizontal axis is time. Left:
Gaussian inputs; SSID fails to converge, while EM finds a local optimum. Right: Block impulse
inputs; both baselines find local optima.

We make a few straightforward modifications to Algorithm 1, for practicality. First, we replace
the scalar autoregressive parameters with matrices 𝛽𝑗 ∈ R𝑚×𝑚. Also, for performance reasons,
we use ridge regularization instead of the prescribed pseudo-LDS regularizer with composite norm
constraint. We choose an autoregressive parameter of 𝜏 = 𝑑 = 10 (in accordance with the theory),
and 𝑊 = 100.

As shown in Figure 1, our algorithm significantly outperforms the baseline methods of system iden-
tification followed by Kalman filtering. The EM and subspace identification (SSID; see [VODM12])
algorithms finds a local optimum; in the experiment with Gaussian inputs, the latter failed to con-
verge (left).

We note that while the main online algorithm from [HSZ17], Algorithm 1 is significantly faster
than baseline methods, ours is not. The reason is that we incur at least an extra factor of 𝑊 to
compute and process the additional convolutions. To remove this phase discretization bottleneck,
many heuristics are available for phase identification; see Chapter 6 of [Lju98].

6 Conclusion

We gave the first, to the best of our knowledge, polynomial-time algorithm for prediction in the
general LDS setting without dependence on the spectral radius parameter of the underlying system.
Our algorithm combines several techniques, namely the recently introduced wave-filtering method,
as well as convex relaxation and linear filtering.
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One important future direction is to improve the regret in the setting of (non-adversarial) Gaussian
noise. In this setting, if the LDS is explicitly identified, the best predictor is the Kalman filter, which,
when unrolled, depends on feedback for all previous time steps, and only incurs a cost 𝑂(𝐿) from
noise in (4). It is of great theoretical and practical interest to compete directly with the Kalman filter
without system identification.
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