
Supplementary Note:
Blind Deconvolutional Phase Retrieval via Convex

Programming

Abstract
The material presented in this document is supplementary to the manuscript submitted

to NIPS 2018. The document contains extended discussions, additional technical proofs
and details of the convex program implementation.

1 Visible Light Communication

As discussed in the body of the paper, an important application domain where blind deconvo-
lution from phaseless Fourier measurements arises is the visible light communication (VLC). A
stylized VLC setup is shown in Figure 1. A messagem ∈ Rn is to be transmitted using visible
light. The message is first coded by multiplying it with a tall coding matrix C ∈ Rm×n and
the resultant information x = Cm is modulated on a light wave. The light wave propagates
through an unknown media. This propagation can be modeled as a convolution x~w of the
information signal x with unknown channel w ∈ Rm. The vector w contains channel taps,
and frequently in realistic applications has only few significant taps. In this case, one can
model

w ≈ Bh,
where h ∈ Rk is a short (k � m) vector, and B ∈ Rm×k in this case is a subset of the columns
of an identity matrix. Generally, the multipath channels are well modeled with non-zero taps
in top locations of w. In that case, B is exactly known to be top few columns of the identity
matrix.

In visible light communication, there is always a difficulty associated with measuring phase
information in the received light. Figure 1 shows a setup, where we measure the phaseless
Fourier transform (light through the lens) of this signal. The measurements are therefore

y = |F (Cm~Bh)|

and one wants to recoverm, and h given the knowledge of B, and the coding matrix C. Since
we chose C to be random Gaussian, and B is the columns of identity. As mentioned at the
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Figure 1: Visible light communication optical setup; the media block normally consists of phosphor,
filter and a linear polarizer. The lens takes the Fourier transform of the light and one can only measure
the intensity only measurements of this transformed light source signal.

end of the numerics section that with this subspace model, we obtain similar recovery results
as one would have for both B, and C being random Gaussians. The proposed convex program
solves this difficult inverse problem and recovers the true solution with these subspace models.

2 Proof of Lemma 3

The proof is based on small ball method developed in [Koltchinskii and Mendelson(2015),
Mendelson(2014)] and further studied in [Lecué et al.(2018)Lecué, Mendelson, et al.] and
[Lecué and Mendelson(2017)]. The proof is mainly repeated using a similar line of argu-
ment as in [Bahmani and Romberg(2017)], and is provided here for completeness.

Rest of the proof now concerns showing that (H̃,M̃) is the unique solution to the linearly
constrained optimization program (9). Define one sided loss function:

L(H,M) :=
m∑
`=1

(
2y2` − 1

m〈b`b
∗
` ,H〉〈c`c∗` ,M̃〉 − 〈b`b∗` , H̃〉〈c`c∗` ,M〉

)
+
, (S.1)

where (·)+ denotes the positive side. Using this definition, we rewrite (9) compactly as

minimize ‖H‖∗ + ‖M‖∗ (S.2)
subject to L(H,M) ≤ 0.

The goal of the proof is to show that all descent direction (δH, δM) ∈ Q that also obey
the constraint set have a small `2 norm. Since (δH, δM) is a feasible perturbation from the
proposed optimal (H̃,M̃), we have from the constraints above that

L
(
H̃ + δH,M̃ + δM

)
≤ 0 (S.3)
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We begin by expanding the loss function Loss(H̃ + δH,M̃ + δM) below

L(H̃ + δH,M̃ + δM)

=

m∑
`=1

(
2y2` −

1

m

(
〈b`b∗` , H̃ + δH〉〈c`c∗` ,M̃〉+ 〈b`b∗` , H̃〉〈c`c∗` ,M̃ + δM〉

))
+

=
1

m

m∑
`=1

((
〈b`b∗` , H̃〉〈c`c∗` ,M̃〉+ 〈b`b∗` , H̃〉〈c`c∗` ,M̃〉

)
−

(
〈b`b∗` , H̃ + δH〉〈c`c∗` ,M̃〉+ 〈b`b∗` , H̃〉〈c`c∗` ,M̃ + δM〉

))
+

=
1

m

m∑
`=1

(
− 〈b`b∗` , δH〉〈c`c∗` ,M̃〉 − 〈b`b∗` , H̃〉〈c`c∗` , δM〉

)
+

≥ 1

m

m∑
`=1

(
(−
〈
∇f`, (δH, δM)

〉)
+
. (S.4)

where the last equality follows from the using notation ∇f` = (ṽ`b`b
∗
` , ũ`c`c

∗
`) introduced

earlier. Let ψt(s) := (s)+ − (s − t)+. Using the fact that ψt(s) ≤ (s)+, and that for every
α, t ≥ 0, and s ∈ R, ψαt(s) = tψα(

s
t ), we have

1

m

m∑
`=1

[
−
〈
∇f`, (δH, δM)

〉]
+
≥ 1

m

m∑
`=1

ψτ‖(δH,δM)‖F

(
−
〈
∇f`, (δH, δM)

〉)
= ‖(δH, δM)‖F ·

1

m

m∑
`=1

ψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
= ‖(δH, δM)‖F

[
1

m

m∑
`=1

Eψτ
(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
− 1

m

m∑
`=1

[
Eψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
〉
)
− ψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)]]
. (S.5)

Define a centered random process R(B,C) as follows

R(B,C) := sup
(δH,δM)∈Q

1

m

m∑
`=1

[
Eψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
− ψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)]
and an application of bounded difference inequality [McDiarmid(1989)] yields that R(B,C) ≤
ER(B,C) + tτ/

√
m with probability at least 1− e−2mt

2 . It remains to evaluate ER(B,C),
which after using a simple symmetrization inequality [van der Vaart and Wellner(1997)] yields

ER(B,C) ≤ 2E sup
(δH,δM)∈Q

1

m

m∑
`=1

ε`ψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
, (S.6)
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where ε1, ε2, . . . , εm are independent Rademacher random variables. Using the fact that
ψt(0) = 0, and ψt(s) is a contraction: |ψt(α1)−ψt(α2)| ≤ |α1−α2| for all α1, α2 ∈ R, we have
from the Rademacher contraction inequality Theorem 4.12 in [Ledoux and Talagrand(2013)]
that

E sup
(δH,δM)∈Q

1

m

m∑
`=1

ε`ψτ

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
≤ E sup

(δH,δM)∈Q

1

m

m∑
`=1

−ε`
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
= E sup

(δH,δM)∈Q

1

m

m∑
`=1

ε`
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
, (S.7)

where the last equality is the result of the fact that a global sign change of a sequence of
Rademacher random variables does not change their distribution. In addition, using the facts
that t1(s ≥ t) ≤ ψt(s), and that random vectors ∇f1,∇f2, . . . ,∇fm are identically distributed
and the distribution is symmetric, it follows

τP
(〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
≥ τ

)
= τE

(
1
[〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
≥ τ

])
≤ Eψτ

(〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
. (S.8)

Plugging (S.8), and (S.7) in (S.5), we have

1
m

m∑
`=1

(
−
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉)
+
≥ τ‖(δH, δM)‖F · P

(〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
≥ τ

)
− 2‖(δH, δM)‖F · E sup

(δH,δM)∈Q

[
1

m

m∑
`=1

ε`
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉]
− 2‖(δH, δM)‖F

tτ√
m
.

Combining this with (S.3) and (S.4), we obtain the final result

‖(δH, δM)‖F
[
τP
(〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉
≥ τ

)
− 2E sup

(δH,δM)∈Q

1

m

m∑
`=1

ε`
〈
∇f`, (δH,δM)

‖(δH,δM)‖F

〉]
− 2‖(δH, δM)‖F

tτ√
m
≤ 0.

Using the definitions in (12), and (13), we can write

‖(δH, δM)‖F
(
τpτ (Q)−

(2C(Q) + tτ)√
m

)
≤ 0.

It is clear that choosing m ≥
(
2C(Q)+tτ
τpτ (Q)

)2
implies

(δH, δM) = (0,0).

The proof is complete.
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3 Probability pτ(Q)
In this section, we determine the probability pτ (Q), and the positive parameter τ in (13) for
the set Q in (11). For a point (δH, δM) ∈ Q, and randomly chosen ∇f`, we have via Paley
Zygmund inequality that

P
(
|〈∇f`, (δH, δM)〉|2 ≥ 1

2
E |〈∇f`, (δH, δM)〉|2

)
≥ 1

4

(
E |〈∇f`, (δH, δM)〉|2

)2
E |〈∇f`, (δH, δM)〉|4

.

The particular choice of random gradient vectors we are using is ∇f` = (ṽ`b`b
∗
` , ũ`c`c

∗
` ) giving

us 〈∇f`, (δH, δM)〉 = ṽ`〈b`b∗` , δH〉+ ũ`〈c`c∗` , δM〉. Since b`, and c` are standard Gaussian
vectors, using the equivalence of Lp-norms for Gaussians, we deduce that(

E |ṽ`〈b`b∗` , δH〉+ ũ`〈c`c∗` , δM〉|
4
)1/4

≤ c
(
E |ṽ`〈b`b∗` , δH〉+ ũ`〈c`c∗` , δM〉|

2
)1/2

.

Plugging last two inequalities in (13) reveals that

pτ (Q) ≥ c > 0 (S.9)

for an absolute constant c. To compute τ , we expand E |〈∇f`, (δH, δM)〉|2 giving us

E |ṽ`〈b`b∗` , δH〉+ ũ`〈c`c∗` , δM〉|
2 = 3‖m̃‖42(〈diag(δH), δH〉+ 2‖δH‖2F )

+ 3‖h̃‖42(〈diag(δM), δM〉+ 2‖δM‖2F ) + 2|h̃∗diag(δH)h̃+ 2h̃
∗
δHh̃|2, (S.10)

where we have made use of multiple simple facts including that E|ũ`|2 = 3‖h̃‖42, and similarly
for ṽ`, and two identities: E|b∗` h̃|2b∗`δHb` = h̃

∗
diag(δH)h̃+2h̃

∗
δHh̃, and E(b∗`δHb`)b`b∗` =

diag(δH) + 2(δH) =⇒ E|b∗`δHb`|2 = 〈diag(δH), δH〉+ 2‖δH‖2F . We also made use of the
fact that Q ⊥ N and therefore 〈H̃, δH〉−〈M̃ , δM〉 = 0, or equivalently, h̃

∗
δHh̃ = m̃∗δMm̃.

It is easy to conclude from (S.10) now that

E |ṽ`〈b`b∗` , δH〉+ ũ`〈c`c∗` , δM〉|
2 ≥ 6(‖h̃‖42‖δH‖2F + ‖m̃‖42‖δM‖2F )

≥ cmin(‖h̃‖22, ‖m̃‖22)(‖δH‖2F + ‖δM‖2F ) = cmax(‖h̃‖22, ‖m̃‖22)(‖δH‖2F + ‖δM‖2F ),

where the last equality uses the fact that Tr(H̃) = Tr(M̃) from (8), which is equivalent to
‖h̃‖22 = m̃‖22. This directly means, we can take τ = cmax(‖h̃‖22, ‖m̃‖22), where c is an absolute
constant.
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4 Implementing the Convex Program

In this section we take an alternating direction method of multipliers (ADMM) scheme to
address (5), which takes the form

minimize
X1,X2

Tr(X1) + Tr(X2) (S.11)

subject to 〈a1,`a1,`∗,X1〉 〈a2,`a2,`∗,X2〉 ≥ δ` ≥ 0,

` = 1, 2, . . . , L,

X1 < 0, X2 < 0.

Note that for a complex matrix X being Hermitian is a requirement for being positive
semidefinite. For a simpler notation we define the convex set

C =
{
(u,v) ∈ RL × RL : u`v` ≥ δ` > 0, u` ≥ 0

}
. (S.12)

In order to derive the ADMM scheme, after introducing new variables, program (S.11) can be
written as

minimize
{Xi,Zi,ui}i=1,2

IC(u1,u2) +
2∑
j=1

Tr(Xj) + I+(Zj) (S.13)

subject to uj,` = 〈aj,`aj,`∗,Xj〉 , ` = 1, 2, . . . , L, j = 1, 2,

Xj = Zj , j = 1, 2,

where the constraints are reflected in the indicator functions

IC(u,v) =
{

0 (u,v) ∈ C
+∞ (u,v) /∈ C , I+(Z) =

{
0 Z � 0
+∞ Z � 0

.

Defining the dual matrices P 1,P 2 and the dual vectors α1,α2 ∈ RL, the augmented La-
grangian for (S.13) takes the form

L ({Xi,Zi,P i,ui,αi}i=1,2) = IC(u1,u2) +
2∑
j=1

Tr(Xj) + I+(Zj)

+
ρ1
2

2∑
j=1

L∑
`=1

(uj,` − 〈aj,`aj,`∗,Xj〉+ αj,`)
2

+
ρ2
2

2∑
j=1

‖Xj −Zj + P j‖2F . (S.14)
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In an ADMM scheme the update for each variable at the k-th iteration is performed by
minimizing L with respect to that variable, while fixing the other ones. More specifically,
using the superscript (k) to denote the iteration, for j = 1, 2 we have the primal updates

X
(k+1)
j = argmin

Xj

Tr(Xj) +
ρ1
2

L∑
`=1

(
〈aj,`aj,`∗,Xj〉 − u(k)j,` − α

(k)
j,`

)2
+
ρ2
2

∥∥∥Xj −Z(k)
j + P

(k)
j

∥∥∥2
F
,

Z
(k+1)
j = argmin

Zj

1

2

∥∥∥Zj −X(k+1)
j − P (k)

j

∥∥∥2
F
+ I+(Zj),

(
u
(k+1)
1 ,u

(k+1)
2

)
= argmin

u1,u2

1

2

2∑
j=1

L∑
`=1

(
uj,` −

〈
aj,`aj,`

∗,X
(k+1)
j

〉
+ α

(k)
j,`

)2
+ IC(u1,u2),

and the dual updates

α
(k+1)
j,` = α

(k)
j,` + u

(k+1)
j,` −

〈
aj,`aj,`

∗,X
(k+1)
j

〉
P

(k+1)
j = P

(k)
j +X

(k+1)
j −Z(k+1)

j .

In the sequel we derive closed-form expressions for all the primal updates. To formulate the
X-update, taking the derivative of the objective with respect to Xj and setting it to zero
yields

I + ρ1

L∑
`=1

(〈
aj,`aj,`

∗,X
(k+1)
j

〉
− u(k)j,` − α

(k)
j,`

)
aj,`aj,`

∗ + ρ2

(
X

(k+1)
j −Z(k)

j + P
(k)
j

)
= 0,

which after vectorizing X(k+1)
j yields

vec
(
X

(k+1)
j

)
= A−1j vec

(
ρ1

L∑
`=1

(
u
(k)
j,` + α

(k)
j,`

)
aj,`aj,`

∗ + ρ2

(
Z

(k)
j − P

(k)
j

)
− I

)
,

where

Aj = ρ1

L∑
`=1

vec (aj,`aj,`∗) vec (aj,`aj,`∗)∗ + ρ2I.

Note that A−1j only needs to be calculated once throughout the entire process.
The Z update is basically the projection of a Hermitian matrix onto the PSD cone.

Considering the eigen-decomposition of the Hermitian matrix Z̃ ∈ Cn×n:

Z̃ = Udiag (λ1, · · · , λn)U∗,
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all eigenvalues are real, and the solution to

minimize
Z

1

2

∥∥∥Z − Z̃∥∥∥2
F
+ I+(Z)

is simply Udiag (max(λ1, 0), · · · ,max(λn, 0))U
∗.

Finally, the u-update step in the proposed ADMM scheme requires a fast formulation of
the projection onto the set C. It is straightforward to see that program

minimize
u1,u2

1

2

2∑
j=1

L∑
`=1

(uj,` − ξj,`)2 + IC(u1,u2) (S.15)

decouples into L distinct programs of the form

minimize
u1,u2

1

2

2∑
j=1

(uj − ξj)2 subject to: u1u2 ≥ δ > 0, u1 ≥ 0. (S.16)

Note that since the case u1u2 = 0 leads to a trivial argument, we consider the strict inequality
δ > 0. In the sequel we focus on addressing (S.16), as solving (S.16) for each component `
would deliver the solution to (S.15). We proceed by forming the Lagrangian for the constrained
problem (S.16)

l(u1, u2, µ1, µ2) =
1

2

∥∥∥∥(u1u2
)
−
(
ξ1
ξ2

)∥∥∥∥2 + µ1 (δ − u1u2)− µ2u1.

Along with the primal constraints, the Karush-Kuhn-Tucker optimality conditions are

∂l

∂u1
= u1 − ξ1 − µ1u2 − µ2 = 0, (S.17)

∂l

∂u2
= u2 − ξ2 − µ1u1 = 0, (S.18)

µ1 ≥ 0, µ1 (δ − u1u2) = 0,

µ2 ≥ 0, µ2u1 = 0.

We now proceed with the possible cases.
Case 1. µ1 = µ2 = 0:

In this case we have (u1, u2) = (ξ1, ξ2) and this result would only be acceptable when u1u2 ≥ δ
and u1 ≥ 0.

Case 2. µ1 = 0, u1 = 0:
In this case the first feasibility constraint of (S.16) requires that δ ≤ 0, which is not a possiblity.

Case 3. δ − u1u2 = 0, u1 = 0:
Similar to the previous case, this cannot happen when δ > 0.
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Case 4. µ2 = 0, δ − u1u2 = 0:
In this case we have δ = u1u2, combining which with (S.18) yields δ = (ξ2 + µ1u1)u1, or

µ1 =
δ − ξ2u1
u21

. (S.19)

Similarly, (S.17) yields
u1 = ξ1 + µ1(ξ2 + µ1u1). (S.20)

Since the condition δ = u1u2 requires that u1 > 0, µ1 can be eliminated between (S.19) and
(S.20) to generate the following fourth order polynomial equation in terms of u1:

u41 − ξ1u31 + δξ2u1 − δ2 = 0.

After solving this 4-th order polynomial equation, we pick the real root u1 which obeys

u1 ≥ 0, δ − ξ2u1 ≥ 0. (S.21)

Note that the second inequality in (S.21) warrants nonnegative values for µ1 thanks to (S.19).
After picking the right root, we can explicitly obtain µ1 using (S.20) and calculate the u2
using (S.18). The resulting (u1, u2) pair presents the solution to (S.16), and finding such pair
for every ` provides the solution to (S.15).
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