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Abstract

This supplementary material contains proof of the theorems of the submission
“Lipschitz regularity of deep neural networks: analysis and efficient estimation”, as
well as more details on the parameters used for the experiments.

1 Proof of Theorem

We reduce the problem of maximizing a quadratic convex function on a hypercube to LIP-CST.
Start from the following NP-hard problem [}, Quadratic Optimization, Section 4]:

maximize Y ,(h/0)? =0 "Ho
(e}

(D
s. t. Vk,0<or <1,

where H = Y, h;h; is a positive semi-definite matrix with full rank. Let’s note

MF(;“

Ms dlag(U)M1 = : 0

ho

so that we have

The spectral norm of this 1-rank matrix is > i(hiTa)2. We proved that Eq. is equivalent to the
following optimization problem

maximize || M, diag(o)M;||3 2
s. t. o €[0,1]™.

We recover the exact formulation of Section[6Eq. (6) for a 2-layer MLP (the reader can verify there

is no recursive loop). Because H is full rank, M is surjective and all o are admissible values for

g:(x) which is the equality case. Finally, ReLU activation units take their derivative within {0, 1}
and Eq. (@) is its relaxed optimization problem, that has the same optimum points.
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2 Proof of Theorem

Consider a single factor HEV diag(o)U TS’ H with V and U unitary matrices and ¥ (resp. 3 is
2

diagonal with eigenvalues (si)y, (resp. (3;) ;) in decreasing order along the diagonal. Decompose the

eigenvalue matrices as ¥ = s1 1y + D and X = ¢} E, + D', by orthogonality we can write

~ ~ (12
HEVdiag(a)UTz’ , S s1E1,V diag(o)U " E}, s} (3)

+ 51 E11V; diag(o)U " D’

2
+ DV diag(o)U " E}, s} ,

+||DV diag(o)U T D' |5 4)

First we can bound (4) < (s255)2. For (3) denote vy, (resp. uy) the k-th column of V' (resp. of U). It
follows that

(3) < (s181)% (01,0 ua)? + > (s155) (01,0 w;)> + > (s57)* (g, 0 - ug)?.
j>1 k>1
The columns (v ) of V' form an orthonormal basis so we have
N (o0 un)? = o ul|? ~ (1,0 u)?,
k>1

and we deduce a similar equality for v1,0 - u;)?. Using s < so for k > 1 we finally obtain

i>1(
(3) < (s14)* (V1,0 - w)> (1 =71 =) + 71 +72)
with 7y = (%)2 and 75 = (2—%)2 In conclusion we proved the following inequality:
1

~ ~ 12
HEV diag(o)U" S|

< (815/1)2 ((1 — fTTl — ?2) <’Ul,0' . U1>2 —|—?1 —|—f772 —|—f771?2) .

The Lipschitz upper bound given by AutoLip of HilV diag(o)U T3, H2 is s1}. For the middle

layers, we have Y =t/ 2 and the inequality still holds for the first and last layer due to 7; < Z—f;
taking the maximum for ¢ leads to the theorem.

3 Proof of Lemma[2

Let U,V ~ N(0,1,) be two independent n-dimensional Gaussian random vectors. Then, v =
U/||U||l2 and v = V/||V||2 are uniform on the unit sphere S"~!, and

n

max [(o-u,v)| = max O U
ocj0,1]n I 0l oel0.1] | v
®)
n n
— maX{Z(uivi)"‘,Z(uivi)_} 5
i=1 i=1
where 7 = max{0,z} and = = max{0, —x} are respectively the positive and negative parts of

x. Note that Y ;- (u;v;)" and Y.~ (u;v;)” have the same law, since the distribution of u and v is
symmetric w.r.t. the coordiante axes. Moreover, we may rewrite

- 2 i (UVe)*
D (i) = S (©)
i=1 \/E i1 U \/H 2i—1Vi
and each term converges almost surely to its expectation due to the strong law of large numbers.
Finally, noting that E [U?] = E [V;?] = 1 and

E [(UVi)*] = SE[UV] = SE(UIE (Vi) Q

=
T
leads to the desired result.



4 Convolutional Neural Network of Section [7|

For each model of depth n, convolution except the last one are followed by a ReLU activation unit.

# Layer Layer | #channels out kernel stride padding

1 Conv2D + bias 32 (5,5) 2 0

2 Conv2D + bias 64 (3,3) 2 0

3 Conv2D + bias 64 (3,3) 1 1

Conv2D + bias 64 (3,3) 1 1

n—1 Conv2D + bias 128 (3,3) 2 0
n Conv2D + bias 10 (2,2) 1 0
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