
Learning Gaussian Processes by
Minimizing PAC-Bayesian Generalization Bounds

David Reeb Andreas Doerr Sebastian Gerwinn Barbara Rakitsch
Bosch Center for Artificial Intelligence∗

Robert-Bosch-Campus 1
71272 Renningen, Germany

{david.reeb,andreas.doerr3,sebastian.gerwinn,barbara.rakitsch}@de.bosch.com

Abstract

Gaussian Processes (GPs) are a generic modelling tool for supervised learning.
While they have been successfully applied on large datasets, their use in safety-
critical applications is hindered by the lack of good performance guarantees. To
this end, we propose a method to learn GPs and their sparse approximations by
directly optimizing a PAC-Bayesian bound on their generalization performance,
instead of maximizing the marginal likelihood. Besides its theoretical appeal, we
find in our evaluation that our learning method is robust and yields significantly
better generalization guarantees than other common GP approaches on several
regression benchmark datasets.

1 Introduction

Gaussian Processes (GPs) are a powerful modelling method due to their non-parametric nature
[1]. Although GPs are probabilistic models and hence come equipped with an intrinsic measure of
uncertainty, this uncertainty does not allow conclusions about their performance on previously unseen
test data. For instance, one often observes overfitting if a large number of hyperparameters is adjusted
using marginal likelihood optimization [2]. While a fully Bayesian approach, i.e. marginalizing out
the hyperparameters, reduces this risk, it incurs a prohibitive runtime since the predictive distribution
is no longer analytically tractable. Also, it does not entail out-of-the-box safety guarantees.

In this work, we propose a novel training objective for GP models, which enables us to give rigorous
and quantitatively good performance guarantees on future predictions. Such rigorous guarantees are
developed within Statistical Learning Theory (e.g. [3]). But as the classical uniform learning bounds
are meaningless for expressive models like deep neural nets [4] (as e.g. the VC dimension exceeds the
training size) and GPs or non-parametric methods in general, such guarantees cannot be employed
for learning those models. Instead, common optimization schemes are (regularized) empirical risk
minimization (ERM) [4, 3], maximum likelihood (MLE) [1], or variational inference (VI) [5, 6].

On the other hand, better non-uniform learning guarantees have been developed within the PAC-
Bayesian framework [7, 8, 9] (Sect. 2). They are specially adapted to probabilistic methods like
GPs and can yield tight generalization bounds, as observed for GP classification [10], probabilistic
SVMs [11, 12], linear classifiers [13], or stochastic NNs [14]. Most previous works used PAC-
Bayesian bounds merely for the final evaluation of the generalization performance, whereas learning
by optimizing a PAC-Bayesian bound has been barely explored [13, 14]. This work, for the first time,
explores the use of PAC-Bayesian bounds (a) for GP training and (b) in the regression setting.

Specifically, we propose to learn full and sparse GP predictors Q directly by minimizing a PAC-
Bayesian upper bound B(Q) from Eq. (5) on the true future risk R(Q) of the predictor, as a
∗https://www.bosch-ai.com

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://www.bosch-ai.com

principled method to ensure good generalization (Sect. 3). Our general approach comes naturally for
GPs because the KL divergence KL(Q‖P) in the PAC-Bayes theorem can be evaluated analytically
for GPs P,Q sharing the same hyperparameters. As this applies to popular sparse GP variants such as
DTC [16], FITC [15], and VFE [6], they all become amenable to our method of PAC-Bayes learning,
combining computational benefits of sparse GPs with theoretical guarantees. We carefully account
for the different types of parameters (hyperparameters, inducing inputs, observation noise, free-form
parameters), as only some of them contribute to the “penalty term” in the PAC-Bayes bound. Further,
we base GP learning directly on the inverse binary KL divergence [10], and not on looser bounds
used previously, such as from Pinsker’s inequality (e.g., [14]).

We demonstrate our GP learning method on regression tasks, whereas PAC-Bayes bounds have so far
mostly been used in a classification setting. A PAC-Bayesian bound for regression with potentially
unbounded loss function was developed in [17], it requires a sub-Gaussian assumption w.r.t. the
(unknown) data distribution, see also [18]. To remain distribution-free as in the usual PAC setting, we
employ and investigate a generic bounded loss function for regression.

We evaluate our learning method on several datasets and compare its performance to state-of-the-art
GP methods [1, 15, 6] in Sect. 4. Our learning objective exhibits robust optimization behaviour
with the same scaling to large datasets as the other GP methods. We find that our method yields
significantly better risk bounds, often by a factor of more than two, and that only for our approach the
guarantee improves with the number of inducing points.

2 General PAC-Bayesian Framework

2.1 Risk functions

We consider the standard supervised learning setting [3] where a set S of N training examples
(xi, yi) ∈ X × Y (i = 1, . . . , N) is used to learn in a hypothesis space H ⊆ Y X , a subset of
the space of functions X → Y . We allow learning algorithms that output a distribution Q over
hypotheses h ∈ H, rather than a single hypothesis h, which is the case for GPs we consider later on.

To quantify how well a hypothesis h performs, we assume a bounded loss function ` : Y ×Y → [0, 1]
to be given, w.l.o.g. scaled to the interval [0, 1]. `(y∗, ŷ) measures how well the prediction ŷ = h(x∗)
approximates the actual output y∗ at an input x∗. The empirical risk RS(h) of a hypothesis is then
defined as the average training loss RS(h) := 1

N

∑N
i=1 `(yi, h(xi)). As in the usual PAC framework,

we assume an (unknown) underlying distribution µ = µ(x, y) on the set X × Y of examples, and
define the (true) risk as R(h) :=

∫
dµ(x, y)`(y, h(x)). We will later assume that the training set S

consists of N independent draws from µ and study how close RS is to its mean R [3]. To quantify
the performance of stochastic learning algorithms, that output a distribution Q over hypotheses, we
define the empirical and true risks by a slight abuse of notation as [7]:

RS(Q) :=Eh∼Q
[
RS(h)

]
=

1

N

N∑
i=1

Eh∼Q
[
`
(
yi, h(xi)

)]
, (1)

R(Q) :=Eh∼Q
[
R(h)

]
= E(x∗,y∗)∼µ Eh∼Q

[
`
(
y∗, h(x∗)

)]
. (2)

These are the average losses, also termed Gibbs risks, on the training and true distributions, respec-
tively, where the hypothesis h is sampled according to Q before prediction.

In the following, we focus on the regression case, where Y ⊆ R is the set of reals. An exemplary
loss function in this case is `(y∗, ŷ) := 1ŷ /∈[r−(y∗),r+(y∗)], where the functions r± specify an interval
outside of which a prediction ŷ is deemed insufficient; similar to ε-support vector regression [19], we
use r±(y∗) := y∗ ± ε, with a desired accuracy goal ε > 0 specified before learning (see Sect. 4). In
any case, the expectations over h ∼ Q in (1)–(2) reduce to one-dimensional integrals as h(x∗) is a
real-valued random variable at each x∗. See App. C, where we also explore other loss functions.

Instead of the stochastic predictor h(x∗) with h ∼ Q, one is often interested in the deterministic
Bayes predictor Eh∼Q[h(x∗)] [10]; for GP regression, this simply equals the predictive mean m̂(x∗)
at x∗. The corresponding Bayes risk is defined by RBay(Q) := E(x∗,y∗)∼µ[`(y∗,Eh∼Q[h(x∗)])].
While PAC-Bayesian theorems do not directly give a bound on RBay(Q) but only on R(Q), it is easy
to see that RBay(Q) ≤ 2R(Q) if `(y∗, ŷ) is quasi-convex in ŷ, as in the examples above, and the

2

distribution of ŷ = h(x∗) is symmetric around its mean (e.g., Gaussian) [10]. An upper bound B(Q)
on R(Q) below 1/2 thus implies a nontrivial bound on RBay(Q) ≤ 2B(Q) < 1.

2.2 PAC-Bayesian generalization bounds

In this paper we aim to learn a GP Q by minimizing suitable risk bounds. Due to the probabilistic
nature of GPs, we employ generalization bounds for stochastic predictors, which were previously
observed to yield stronger guarantees than those for deterministic predictors [10, 11, 14]. The most
important results in this direction are the so-called “PAC-Bayesian bounds”, originating from [7, 8]
and developed in various directions [10, 20, 9, 13, 21, 17].

The PAC-Bayesian theorem (Theorem 1) gives a probabilistic upper bound (generalization guarantee)
on the true risk R(Q) of a stochastic predictor Q in terms of its empirical risk RS(Q) on a training
set S. It requires to fix a distribution P on the hypothesis space H before seeing the training set
S, and applies to the true risk R(Q) of any distribution Q on H1. The bound contains a term that
can be interpreted as complexity of the hypothesis distribution Q, namely the Kullback-Leibler
(KL) divergence KL(Q‖P) :=

∫
dhQ(h) ln Q(h)

P (h) , which takes values in [0,+∞]. The bound also

contains the binary KL-divergence kl(q‖p) := q ln q
p + (1− q) ln 1−q

1−p , defined for q, p ∈ [0, 1], or
more precisely its (upper) inverse kl−1 w.r.t. the second argument (for q ∈ [0, 1], ε ∈ [0,∞]):

kl−1(q, ε) := max{p ∈ [0, 1] : kl(q ‖ p) ≤ ε}, (3)

which equals the unique p ∈ [q, 1] satisfying kl(q‖p) = ε. While kl−1 has no closed-form expression,
we refer to App. A for an illustration and more details, including its derivatives for optimization.
Theorem 1 (PAC-Bayesian theorem [7, 10, 20]). For any [0, 1]-valued loss function `, for any
distribution µ, for any N ∈ N, for any distribution P on a hypothesis setH, and for any δ ∈ (0, 1],
the following holds with probability at least 1− δ over the training set S ∼ µN :

∀Q : R(Q) ≤ kl−1

(
RS(Q),

KL(Q ‖ P) + ln 2
√
N
δ

N

)
. (4)

The RHS of (4) can be upper bounded by RS(Q) +

√(
KL(Q ‖ P) + ln 2

√
N
δ)

)
/(2N), which gives

a useful intuition about the involved terms, but can exceed 1 and thereby yield a trivial statement.
Note that the full PAC-Bayes theorem [20] gives a simultaneous lower bound on R(Q), which is
however not relevant here as we are going to minimize the upper risk bound. Further refinements
of the bound are possible (e.g., [20]), but as they improve over Theorem 1 only in small regimes
[9, 13, 21], often despite adjustable parameters, we will stick with the parameter-free bound (4).

We want to consider a family of prior distributions P θ parametrized by θ ∈ Θ, e.g. in GP hy-
perparameter training [1]. If this family is countable, one can generalize the above analysis by
fixing some probability distribtion pθ on Θ and defining the mixture prior P :=

∑
θ pθP

θ; when
Θ is a finite set, the uniform distribution pθ = 1/|Θ| is a canonical choice. Using the fact that
KL(Q ‖ P) ≤ KL(Q ‖ P θ) + ln 1

pθ
holds for each θ ∈ Θ (App. B), Theorem 1 yields that, with

probability at least 1− δ over S ∼ µN ,

∀θ ∈ Θ ∀Q : R(Q) ≤ kl−1

RS(Q),
KL(Q ‖ P θ) + ln 1

pθ
+ ln 2

√
N
δ

N

 =: B(Q). (5)

The bound (5) holds simultaneously for all P θ and all Q2. One can thus optimize over both θ and
Q to obtain the best generalization guarantee, with confidence at least 1 − δ. We use B(Q) for
our training method below, but we will also compare to training with the suboptimal upper bound

BPin(Q) := RS(Q) +
√(

KL(Q‖P θ) + ln 1
pθ

+ ln 2
√
N
δ

)
/(2N) ≥ B(Q) as was done previously

[14]. The PAC-Bayesian bound depends only weakly on the confidence parameter δ, which enters

1We follow common usage and call P and Q “prior” and “posterior” distributions in the PAC-Bayesian
setting, although their meaning is somewhat different from priors and posteriors in Bayesian probability theory.

2The same result can be derived from (4) via a union bound argument (see Appendix B).

3

logarithmically and is suppressed by the sample size N . When the hyperparameter set Θ is not too
large (i.e. ln 1

pθ
is small compared to N), the main contribution to the penalty term in the second

argument of kl−1 comes from 1
NKL(Q‖P θ), which must be� 1 for a good generalization statement

(see Sect. 4).

3 PAC-Bayesian learning of GPs

3.1 Learning full GPs

GP modelling is usually presented as a Bayesian method [1], in which the prior P (f) =
GP(f |m(x),K(x, x′)) is specified by a positive definite kernel K : X × X → R and a mean
function m : X → R on the input set X . In ordinary GP regression, the learned distribution
Q is then chosen as the Bayesian posterior coming from the assumption that the training outputs
yN := (yi)

N
i=1 ∈ RN are noisy versions of fN = (f(x1), . . . , f(xN)) with i.i.d. Gaussian likelihood

yN |fN ∼ N (yN |fN , σ2
n1). Under this assumption, Q is again a GP [1]:

Q(f) = GP
(
f |m(x) + kN (x)(KNN + σ2

n1)−1(yN −mN),

K(x, x′)− kN (x)(KNN + σ2
n1)−1kN (x′)T

)
,

(6)

with KNN = (K(xi, xj))
N
i,j=1, kN (x) = (K(x, x1), . . . ,K(x, xN)), mN = (m(x1), . . . ,m(xN)).

Eq. (6) is employed to make (stochastic) predictions for f(x∗) on new inputs x∗ ∈ X . In our approach
below, we do not require any Bayesian rationale behind Q but merely use its form, parametrized by
σ2
n, as an optimization ansatz within the PAC-Bayesian theorem.

Importantly, for any full GP prior P and its corresponding posterior Q from (6), the KL-divergence
KL(Q‖P) in Theorem 1 and Eq. (5) can be evaluated on finite (N -)dimensional matrices. This allows
us to evaluate the PAC-Bayesian bound and in turn to learn GPs by optimizing it. More precisely, one
can easily verify that P and Q have the same conditional distribution P (f |fN) = Q(f |fN)3, so that

KL(Q ‖ P) = KL(Q(fN)Q(f | fN) ‖ P (fN)P (f | fN)) = KL(Q(fN) ‖ P (fN)) (7)

=
1

2
ln det

[
KNN + σ2

n1
]
− N

2
lnσ2

n −
1

2
tr
[
KNN (KNN + σ2

n1)−1
]

(8)

+
1

2
(yN −mN)T (KNN + σ2

n1)−1KNN (KNN + σ2
n1)−1(yN −mN),

where in the last step we used the well-known formula [22] for the KL divergence between nor-
mal distributions P (fN) = N (fN | mN ,KNN) and Q(fN) = N

(
fN | mN + KNN (KNN +

σ2
n1)−1(yN −mN),KNN −KNN (KNN + σ2

n1)−1KNN

)
, and simplified a bit (see also App. D).

To learn a full GP means to select “good” values for the hyperparameters θ, which parametrize a
family of GP priors P θ = GP(f |mθ(x),Kθ(x, x′)), and for the noise level σn [1]. Those values
are afterwards used to make predictions with the corresponding posterior Qθ,σn from (6). In our
experiments (Sect. 4) we will use the squared exponential (SE) kernel on X = Rd, Kθ(x, x′) =

σ2
s exp[− 1

2

∑d
i=1

(xi−x′i)
2

l2i
], where σ2

s is the signal variance, li are the lengthscales, and we set the

mean function to zero. The hyperparameters are θ ≡ (l21, . . . , l
2
d, σ

2
s) (SE-ARD kernel [1]), or

θ ≡ (l2, σ2
s) if we take all lengthscales l1 = . . . = ld ≡ l to be equal (non-ARD).

The basic idea of our method, which we call “PAC-GP” is now to learn the parameters4 θ and σn by
minimizing the upper bound B(Qθ,σn) from Eq. (5), therefore selecting the GP predictor Qθ,σn with
the best generalization performance guarantee within the scope of the PAC-Bayesian bound. Note

3In fact, direct computation [1] gives P (f |fN) = GP
(
f |m(x) + kN (x)K−1

NN (fN −mN),K(x, x′) −
kN (x)K−1

NNkN (x′)T
)

= Q(f |fN). Remarkably, Q(f |fN) does not depend on yN nor on σn, even though
Q(f) from (6) does. Intuitively this is because, for the above likelihood, f is independent of yN given fN .

4Contrary to the usual GP viewpoint [1], σn is not a hyperparameter in our method since the prior P θ does
not depend on σn. Thus, σn does also not contribute to the “penalty term” ln |Θ|. σn is merely a free parameter
in the posterior distribution Qθ,σn . By (8), KL(Qθ,σn‖P θ) → ∞ as σn → 0, so we need this parameter
σ2
n > 0 because otherwise KL =∞ and the bound as well as the optimization objective would become trivial.

Although the parameter σ2
n is originally motivated by a Gaussian observation noise assumption, the aim here is

merely to parameterize the posterior in some way while maintaining computational tractability; cf. also Sect. 3.2.

4

that all involved terms RS(Qθ,σn) (App. C) and KL(Qθ,σn‖P θ) from (8) as well as their derivatives
(App. A) can be computed effectively, so we can use gradient-based optimization.

The only remaining issue is that the learned prior hyperparameters θ have to come from a discrete
set Θ that must be specified before seeing the training set S (Sect. 2.2). To achieve this, we first
minimize the RHS of Eq. (5) over θ and σ2

n in a gradient-based manner, and thereafter discretize
each of the components of ln θ to the closest point in the equispaced (G+ 1)-element set {−L,−L+
2L
G , . . . ,+L}; thus, when T denotes the number of components of θ, the penalty term to be used in

the optimization objective (5) is ln 1
pθ

= ln |Θ| = T ln(G+ 1). The SE-ARD kernel has T = d+ 1,
while the standard SE kernel has T = 2 parameters. In our experiments we round each component
of ln θ to two decimal digits in the range [−6,+6], i.e. L = 6, G = 1200. We found that this
discretization has virtually no effect on the predictions of Qθ,σn , and that coarser rounding (i.e.
smaller |Θ|) does not significantly improve the bound (5) (via its smaller penalty term ln |Θ|) nor the
optimization (via its higher sensitivity to Q); see App. F.

3.2 Learning sparse GPs

Despite the fact that, with confidence 1−δ, the bound in (5) holds for any Pθ from the prior GP family
and for any distribution Q, we optimized in Sect. 3.1 the upper bound merely over the parameters
θ, σn after substituting P θ and the corresponding Qθ,σn from (6). We are limited by the need to
compute KL(Q‖P) effectively, for which we relied on the property Q(f | fN) = P (f | fN) and
the Gaussianity of P (fN) and Q(fN), cf. (7). Building on this two requirements, we now construct
more general pairs P,Q of GPs with effectively computable KL(Q‖P), so that our learning method
becomes more widely applicable, including sparse GP methods.

Instead of the points x1, . . . , xN associated with the training set S as in Sect. 3.1, one may choose
from the input space any number M of points Z = {z1, . . . , zM} ⊆ X , often called inducing
inputs, and any Gaussian distribution Q(fM) = N (fM | aM , BMM) on function values fM :=
(f(z1), . . . , f(zM)), with any aM ∈ RM and positive semidefinite matrix BMM ∈ RM×M . The
distribution Q on fM can be extended to all function values at all inputs X using the conditional
Q(f | fM) = P (f | fM) from the prior P (see Sect. 3.1). This yields the following predictive GP:

Q(f) = GP
(
f |m(x) + kM (x)K−1

MM (aM −mM), (9)

K(x, x′)− kM (x)K−1
MM [KMM −BMM]K−1

MMkM (x′)T
)
,

where KMM := (K(zi, zj))
M
i,j=1, kM (x) := (K(x, z1), . . . ,K(x, zM)), and mM :=

(m(z1), . . . ,m(zM)). This form of Q includes several approximate posteriors from Bayesian infer-
ence that have been used in the literature [1, 10, 6, 26], even for noise models other than the Gaussian
one used to motivate the Q from Sect. 3.1. Analogous reasoning as in (7) now gives [10, 6, 23]:

KL(Q ‖ P) = KL(Q(fM) ‖ P (fM)) =− 1

2
ln det

[
BMMK

−1
MM

]
+

1

2
tr
[
BMMK

−1
MM

]
− M

2

+
1

2
(aM −mM)TK−1

MM (aM −mM). (10)

One can thus effectively optimize in (5) the prior P θ and the posterior distribution Qθ,{zi},aM ,BMM
by varying the number M and locations z1, . . . , zM of inducing inputs and the parameters aM and
BMM , along with the hyperparameters θ. Optimization can in this framework be organized such
that it consumes time O(NM2 +M3) per gradient step and memory O(NM +M2) as opposed to
O(N3) and O(N2) for the full GP of Sect. 3.1. This is a big saving when M � N and justifies the
name “sparse GP” [1, 24].

Some popular sparse-GP methods [24] are special cases of the above form, by prescribing certain
aM and BMM depending on the training set S, so that only the inducing inputs z1, . . . , zM and a
few parameters such as σ2

n are left free:

aM = KMMQ
−1
MMKMN (αΛ + σ2

n1)−1yN , BMM =KMMQ
−1
MMKMM , (11)

where QMM = KMM + KMN (αΛ + σ2
n1)−1KNM with KMN := (K(zi, xj))

M,N
i,j=1, KNM =

KT
MN , and Λ = diag(λ1, . . . , λN) is a diagonal N × N -matrix with entries λi = K(xi, xi) −

kM (xi)K
−1
MMkM (xi)

T . Setting α = 1 corresponds to the FITC approximation [15], whereas α = 0

5

−2

−1

0

1

kl-PAC-SGP (ε= 0.5σn = 0.14) kl-PAC-SGP (ε= 2σn) kl-PAC-SGP (ε= 5σn)

Figure 1: Predictive distributions. The predictive distributions (mean ±2σ as shaded area) of our
kl-PAC-SGP (blue) are shown for various choices of ε together with the full-GP’s prediction (red).
(Note that by Eqs. (9,11), kl-PAC-SGP’s predictive variance does not include additive σ2

n, whereas
full-GP’s does [1].) The shaded green area visualizes an ε-band, centered around the kl-PAC-SGP’s
predictive mean; datapoints (black dots) inside this band do not contribute to the risk RS(Q). Crosses
above/below the plots indicate the inducing point positions (M = 15) before/after training.

is the VFE and DTC method [6, 16] (see App. D for their training objectives); one can also linearly
interpolate between both choices with α ≥ 0 [25]. Another form of sparse GPs where the latent
function values fM are fixed and not marginalized over, corresponds to BMM = 0, which however
gives diverging KL(Q ‖ P) =∞ via (10) and therefore trivial bounds in (4)–(5).

Our learning method for sparse GPs (“PAC-SGP”) follows now similar steps as in Sect. 3.1: One has
to include a penality ln 1

pθ
= ln |Θ| for the prior hyperparameters θ, which are to be discretized into

the set Θ after the optimization of (5). Note, θ contains the prior hyperparameters only and not the
inducing points z1, . . . , zM nor aM , BMM , σn, or α from (11); all these quantities can be optimized
over simultaneously with θ, but do not need to be discretized. The number M of inducing inputs
can also be varied, which determines the required computational effort, and all optimizations can be
both discrete [16] or continuous [15, 6]. When optimizing over positive BMM , the parametrization
BMM = LLT with a lower triangular matrix L ∈ RM×M can be used [26]. For the experiments
below we always employ the FITC parametrization (fixed α = 1) in our proposed PAC-SGP method,
i.e. our optimization parameters are σ2

n and {zi} besides the length scale hyperparameters θ.

4 Experiments5

We now illustrate our learning method and compare it with other GP methods on various regression
tasks. In contrast to prior work [14], we found the gradient-based training with the objective (5) to
be robust enough, such that no pretraining with conventional objectives (such as from App. D) is
necessary. We set δ = 0.01 throughout [10, 14], cf. Sect. 2.2, and use (unless specified otherwise)
the generic bounded loss function `(y, ŷ) = 1ŷ /∈[y−ε,y+ε] for regression, with accuracy goal ε > 0 as
specified below.

We evaluate the following methods: (a) PAC-GP: Our proposed method (cf. Sect. 3.1) with the
training objective B(Q) (5) (kl-PAC-GP) and for comparison with the looser training objective
BPin (sqrt-PAC-GP) (see below (5), similar to e.g. [14]); (b) PAC-SGP: Our sparse GP method
(Sect. 3.2), again with objectives B(Q) (kl-PAC-SGP) and BPin(Q) (sqrt-PAC-SGP), respectively;
(c) full-GP: The ordinary full GP for regression [1]; (d) VFE: Titsias’ sparse GP [6]; (e) FITC:
Snelson-Ghahramani’s sparse GP [15]. Note that full-GP, VFE, and FITC as well as sqrt-PAC-GP and
sqrt-PAC-SGP are trained on other objectives (see App. D), and we will evaluate the upper bound
(5) on their generalization performance by evaluating KL(Q ‖ P) via (8) or (10). To obtain finite
generalization bounds, we discretize θ for all methods at the end of training as in Sect. 3.1 and use
the appropriate ln 1

pθ
= ln |Θ| in (5).

(a) Predictive distribution. To get a first intuition, we illustrate in Fig. 1 the effect of varying ε in
the loss function on the predictive distribution of our sparse PAC-SGP. The accuracy goal ε defines
a band around the predictive mean within which data-points do not contribute to the empirical risk
RS(Q). We thus chose the accuracy goal ε relative to the observation noise σn obtained from an

5Python code (building on GPflow [27] and TensorFlow [28]) implementing our method is available at
https://github.com/boschresearch/PAC_GP.

6

https://github.com/boschresearch/PAC_GP

0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

Up
pe

r B
ou

nd

0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

R S
[T

ra
in

]

0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

R S
[T

es
t]

0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

M
SE

0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.1

0.2

0.3

0.4

KL
 /

N

kl-PAC-GP sqrt-PAC-GP full-GP

Figure 2: Dependence on the accuracy goal ε. For each ε, the plots from left to right show (means as
bars, standard errors after ten iterations as grey ticks) the upper bound B(Q) from Eq. (5), the Gibbs
training risk RS(Q), the Gibbs test risk as a proxy for the true R(Q), MSE, and KL(Q ‖ P θ)/N ,
after learning Q on the dataset boston housing by three different methods: our kl-PAC-GP method
from Sect. 3.1 with sqrt-PAC-GP and the ordinary full-GP.

ordinary full-GP. Results are presented on the 1D toy dataset6 from the original FITC [15] and VFE
[6] publications (for a comparison to the predictive distributions of FITC and VFE see App. E, which
also contains an illustration that our kl-PAC-SGP avoids FITC’s known overfitting on pathological
datasets.). Here and below, we optimize the hyperparameters in each experiment anew.

We find that for large ε (right plot) the predictive distribution (blue) becomes smoother: Due to the
wider ε-band (green), the PAC-SGP does not need to adapt much to the data for the ε-band to contain
many data points. Hence the predictive distribution can remain closer to the prior, which reduces the
KL-term in the objective (5). For the same reason, the inducing points need not adapt much compared
to their initial positions for large ε. For smaller ε, the PAC-SGP adapts more to the data, whereas
for very small ε (left plot), it is anyhow not possible to place many data points within the narrow
ε-band, so the predictive distribution can again be closer to the prior (compare e.g. in the first and
second plots the blue curves near the rightmost datapoints) for a smaller KL-term. In particular, the
KL-divergence (divided by number of training points) for the three settings in Fig.1 are: 0.097 (left),
0.109 (middle), and 0.031 (right).

(b) Full-GP experiments – dependence on the accuracy goal ε. To explore the dependence on
the desired accuracy ε further, we compare in Fig. 2 the ordinary full-GP to our PAC-GPs on the
boston housing dataset7. As pre-processing we normalized all features and the output to mean zero
and unit variance, then analysed the impact of the accuracy goal ε ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. We
used 80% of the dataset for training and 20% for testing, in ten repetitions of the experiment.

Our PAC-GP yields significantly better generalization guarantees for all accuracy goals ε compared to
full-GP, since we are directly optimizing the bound (5). This effect is stronger for large ε, where the
KL-term of PAC-GP can decrease as Q may again remain closer to P while keeping the training loss
low. Although better bounds do not necessarily imply better Gibbs test risk, kl-PAC-GP performs only
slightly below the ordinary full-GP in this regard. Moreover, our PAC-GPs exhibit less overfitting
than the full-GP, for which the training risks are significantly larger than the test risks (see Table 1 in
App. G for numerical values). On the other hand, the tighter objective (5) in the kl-PAC-GP allows
learning a slightly more complex GP Q in terms of the KL-divergence compared to the sqrt-PAC-GP,
which results in better test risks and at the same time better guarantees. This confirms that kl-PAC-GP
is always preferable to sqrt-PAC-GP. However, as any prediction within the full ±ε-band around the
ground truth incurs no risk for our PAC-GPs, their mean squared error (MSE) increases with ε.

The fact that our learned PAC-GPs exhibit higher training and test errors (Gibbs risk and esp. MSE)
than full-GP can be explained by their underfitting in order to hedge against violating Eq. (5) (i.e.
Theorem 1). This underfitting is evidenced by PAC-GP’s significantly less complex learned posterior
Q as measured by KL(Q‖P θ)/N (Fig. 2), or similarly (via Eqs. (8,10)), by its larger learned noise
variance σ2

n compared to full-GP’s (Table 1 in App. G). It is exactly this stronger regularization of
PAC-GP in terms of the KL divergence that leads to its better generalization guarantees.

In the following, we will fix ε = 0.6 after pre-processing data as above, to illustrate PAC-GP further.
Note however that in a concrete application, ε should be fixed to a desired accuracy goal using domain

6snelson: dimensions 200 × 1, available at www.gatsby.ucl.ac.uk/~snelson.
7boston: dimensions 506 × 13, available at http://lib.stat.cmu.edu/datasets/boston

7

www.gatsby.ucl.ac.uk/~snelson
http://lib.stat.cmu.edu/datasets/boston

100 200 300 400 500
nInd

0.00

0.08

0.16

0.24

Up
pe

r B
ou

nd

100 200 300 400 500
nInd

0.00

0.08

0.16

0.24

R S
[T

ra
in

]

100 200 300 400 500
nInd

0.00

0.08

0.16

0.24

R S
[T

es
t]

100 200 300 400 500
nInd

0.00
0.01
0.02
0.03
0.04

M
SE

100 200 300 400 500
nInd

0.00

0.05

0.10

0.15

0.20

KL
 /

N

kl-PAC-SGP VFE FITC

100 200 300 400 500
nInd

0.00

0.04

0.08

0.12

Up
pe

r B
ou

nd

100 200 300 400 500
nInd

0.00

0.04

0.08

0.12

R S
[T

ra
in

]

100 200 300 400 500
nInd

0.00

0.04

0.08

0.12

R S
[T

es
t]

100 200 300 400 500
nInd

0.00

0.01

0.02

0.03

0.04

M
SE

100 200 300 400 500
nInd

0.00

0.02

0.04

0.06

0.08

KL
 /

N

100 200 300 400 500
nInd

0.0

0.1

0.2

0.3

Up
pe

r B
ou

nd

100 200 300 400 500
nInd

0.0

0.1

0.2

0.3

R S
[T

ra
in

]

100 200 300 400 500
nInd

0.0

0.1

0.2

0.3

R S
[T

es
t]

100 200 300 400 500
nInd

0.00

0.02

0.04

0.06

0.08

M
SE

100 200 300 400 500
nInd

0.00

0.05

0.10

0.15

0.20

KL
 /

N

Figure 3: Dependence on the number of inducing variables. Shown is the average (± stan-
dard error over 10 repetitions) upper bound B, Gibbs training risk RS , Gibbs test risk, MSE, and
KL(Q‖P θ)/N as a function of the number M of inducing inputs (from left to right). We compare
our sparse kl-PAC-SGP (Sect. 3.2) with the two popular GP approximations VFE and FITC. Each
row corresponds to one dataset: pol (top), sarcos (middle) and kin40k (bottom). kl-PAC-SGP has the
best guarantee in all settings (left column), due to a lower model complexity (right column), but this
comes at the price of slightly larger test errors.

knowledge, but before seeing the training set S. Alternatively, one can consider a set of ε-values
ε1, . . . , εE chosen in advance, at the cost of a term lnE in addition to log 1

pθ
in the objective (5).

(c) Sparse-GP experiments – dependence on number of inducing inputs M . We now examine
our sparse PAC-SGP method (Sect. 3.2) on the three large data sets pol, sarcos, and kin40k8, again
using 80%–20% train-test splits and ten iterations. The results are shown in Fig. 3. Here, we vary the
number of inducing points M ∈ {100, 200, 300, 400, 500}. For modelling pol and kin40k, we use
the SE-ARD kernel due to its better performance on these datasets, whereas we model sarcos without
ARD (cf. Table 2 in App. G for the comparison ARD vs. non-ARD). The corresponding penalty terms
for the three plots are 1

N ln |Θ| = 0.0160, 0.0003, 0.0020 and 1
N ln 2

√
N
δ = 0.0008, 0.0003, 0.0003;

when compared to KL(Q‖P)/N from Fig. 3, their contribution is largest for the pol dataset.

Our kl-PAC-SGP achieves significantly better upper bounds than VFE and FITC, by more than a
factor of 3 on sarcos, a factor of roughly 2 on pol, and a factor between 1.3 and 2 on kin40k (Fig.
3, cf. also Table 2 in App. G). Also, the PAC-Bayes upper bound is much tighter for kl-PAC-SGP
than for VFE or FITC, i.e. closer to the Gibbs risk, often by factors exceeding 3. Our kl-PAC-SGP
behaves also more favorably in terms of generalization guarantee when inducing points are added and
more complex models are allowed: our upper bound improves substantially with M (kin40) or does
at least not degrade (pol and sarcos), as opposed to VFE and FITC, whose complexities KL/N grow
substantially with M . Since very low training risks can already be achieved by a moderate number of
inducing points for pol and sarcos, a growing KL with M deteriorates the upper bound. Regarding
the upper bound, the increased flexibility from larger M only pays off for the kin40k dataset, whereas
the MSE improves with increasing M for all models and datasets. As above, kl-PAC-SGP is always
slightly preferrable to sqrt-PAC-SGP, not only for the upper bound and Gibbs risks as expected but
also for MSE (see Table 2 in App. G).

8pol: 15,000 × 26, kin40k: 40,000 × 8 (both from https://github.com/trungngv/fgp.git);
sarcos: 48,933 × 21 (http://www.gaussianprocess.org/gpml/data)

8

https://github.com/trungngv/fgp.git
http://www.gaussianprocess.org/gpml/data

Similarly to the boston dataset, the higher test errors of kl-PAC-SGP compared to VFE and FITC
can be explained by underfitting due to the stronger regularization, again shown by lower KL and
significantly larger learned σ2

n (by factors of 4–28 compared to VFE), cf. Table 2 in App. G. In
fact, although our implementation of PAC-SGP employs the FITC parametrization, the PAC-(S)GP
optimization is not prone to FITC’s well-known overfitting tendency [2], due to the regularization via
the KL-divergence (see App. E, and in particular Supplementary Figure 7).

To investigate whether the higher test MSE of PAC-GP compared to VFE and FITC (and the full-GP
above) is a consequence of the 0-1-loss `(y, ŷ) = 1ŷ /∈[y−ε,y+ε] used so far, we re-ran the PAC-
SGP experiments for M = 500 inducing inputs with the more distance-sensitive loss function
`exp(y, ŷ) = 1− exp[−((y− ŷ)/ε)2] (Eq. (20)), which is MSE-like for small deviations |y− ŷ| . ε,
i.e. `exp(y, ŷ) ≈ (y − ŷ)2/ε2 (Supplementary Figure 5). Our results are tabulated in Table 3 in
App. G. The findings are inconclusive and range from an improvement w.r.t. MSE of 25% (pol) over
little change (sarcos) to a decline of 12% (kin40k), showing that the effect of the loss function is
smaller than might have been expected. Nevertheless, generalization guarantees of PAC-SGP remain
much better than the ones of the other methods. While the MSE of our PAC-GPs would improve by
choosing smaller ε (e.g., Fig. 2), this comes at the disadvantage of worse generalization bounds.

We further note that no method shows significant overfitting in Fig. 3, in the sense that the differences
between test and training Gibbs risks are all rather small, despite the KL-complexity increasing with
M for VFE and FITC. This is unlike for Boston housing above, and may be due to the much larger
training sets here. When comparing VFE and FITC, we observe that VFE consistently outperforms
FITC in terms of both MSE as well as generalization guarantee, where VFE’s higher KL-complexity
is offset by its much lower Gibbs risk. This fortifies the results in [2]. We lastly note that, since for
our PAC-SGP the obtained guarantees B are much smaller than 1/2, we obtain strong guarantees
even on the Bayes risk RBay ≤ 2B < 1 (Sect. 2.1).

5 Conclusion

In this paper, we proposed and explored the use of PAC-Bayesian bounds as an optimization objective
for GP training. Consequently, we were able to achieve significantly better guarantees on the out-
of-sample performance compared to state-of-the-art GP methods, such as VFE or FITC, while
maintaining computational scalability. We further found that using the tighter generalization bound
B(Q) (5) based on the inverse binary kl-divergence leads to an increase in the performance on all
metrics compared to a looser bound BPin as employed in previous works (e.g. [14]).

Despite the much better generalization guarantees obtained by our method, it often yields worse
test error, in particular test MSE, than standard GP regression methods; this largely persists even
when using more distance-sensitive loss functions than the 0-1-loss. The underlying reason could
be that all loss functions considered in this work were bounded, as necessitated by our desire to
provide generalization guarantees irrespective of the true data distribution. While rigorous PAC-
Bayesian bounds exist for MSE-like unbounded loss functions under special assumptions on the data
distribution [17], it may nevertheless be worthwhile to investigate whether these training objectives
lead to better test MSE in examples. A drawback is that those assumptions are usually impossible to
verify, thus the generalization guarantees are not comparable. Note that the design of a loss function
is dependent on the application domain and there is no ubiquitous choice across all settings. In many
safety-critical applications, small deviations are tolerable whereas larger deviations are all equally
catastrophic, thus a 0-1-loss as ours and a rigorous bound on it can be more useful than the MSE test
error.

While in this work we focussed on regression tasks, the same strategy of optimizing a generalization
bound can also be applied to learn GPs for binary and categorical outputs. Note that the true KL-term
in this setting has so far been merely upper bounded by its regression proxy [10], and it would
be interesting to develop better bounds on the classification complexity term. Lastly, it may be
worthwhile to use other or more general sparse GPs within our PAC-Bayesian learning method, such
as free-form [26] or even more general GPs [29].

Acknowledgments

We would like to thank Duy Nguyen-Tuong, Martin Schiegg, and Michael Schober for helpful
discussions and proofreading.

9

References

[1] C. E. Rasmussen, C. K. I. Williams, “Gaussian Processes for Machine Learning”, The MIT
Press (2006).

[2] M. Bauer, M. v. d. Wilk, C. E. Rasmussen, “Understanding Probabilistic Sparse Gaussian
Process Approximations”, In NIPS (2016).

[3] S. Shalev-Shwartz, S. Ben-David, “Understanding Machine Learning: From Theory to Algo-
rithms”, Cambridge University Press (2014).

[4] C. Zhang, S. Bengio, M. Hardt, B. Recht, O. Vinyals, “Understanding deep learning requires
rethinking generalization”, In ICLR (2017).

[5] M. Jordan, Z. Ghahramani, T. Jaakkola, L. Saul, “Introduction to variational methods for
graphical models”, Machine Learning, 37, 183-233 (1999).

[6] M. Titsias, “Variational Learning of Inducing Variables in Sparse Gaussian Processes”, In
AISTATS (2009).

[7] D. McAllester, “PAC-Bayesian model averaging”, COLT (1999).

[8] D. McAllester, “PAC-Bayesian Stochastic Model Selection”, Machine Learning 51, 5-21 (2003).

[9] O. Catoni, “Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learn-
ing”, IMS Lecture Notes Monograph Series 2007, Vol. 56 (2007).

[10] M. Seeger, “PAC-Bayesian Generalization Error Bounds for Gaussian Process Classification”,
Journal of Machine Learning Research 3, 233-269 (2002).

[11] A. Ambroladze, E. Parrado-Hernández, J. Shawe-Taylor, “Tighter PAC-Bayes bounds”, In NIPS
(2007).

[12] J. Langford, J. Shawe-Tayor, “PAC-Bayes & margins”, In NIPS (2002).

[13] P. Germain, A. Lacasse, F. Laviolette, M. Marchand, “PAC-Bayesian Learning of Linear
Classifiers”, In ICML (2009).

[14] G. K. Dziugaite, D. M. Roy, “Computing Nonvacuous Generalization Bounds for Deep (Stochas-
tic) Neural Networks with Many More Parameters than Training Data”, In UAI (2017).

[15] E. Snelson, Z. Ghahramani, “Sparse Gaussian Processes using Pseudo-inputs”, In NIPS (2005).

[16] M. Seeger, C. K. I. Williams, N. Lawrence, “Fast Forward Selection to Seepd Up Sparse
Gaussian Process Regression”, In AISTATS (2003).

[17] P. Germain, F. Bach, A. Lacoste, S. Lacoste-Julien, “PAC-Bayesian Theory Meets Bayesian
Inference”, In NIPS (2016).

[18] R. Sheth, R. Khardon, “Excess Risk Bounds for the Bayes Risk using Variational Inference in
Latent Gaussian Models”, In NIPS (2017).

[19] V. Vapnik, “The Nature of Statistical Learning Theory”, Springer (1995).

[20] A. Maurer, “A Note on the PAC Bayesian Theorem”, arXiv:cs/0411099 (2004).

[21] L. Begin, P. Germain, F. Laviolette, J.-F. Roy, “PAC-Bayesian Bounds based on the Renyi
Divergence”, In AISTATS (2016).

[22] S. Kullback, R. Leibler, “On information and sufficiency”, Annals of Mathematical Statistics
22, 79-86 (1951).

[23] A. G. de G. Matthews, J. Hensman, R. Turner, Z. Ghahramani, “On Sparse Variational Methods
and the Kullback-Leibler Divergence between Stochastic Processes”, In AISTATS (2016).

[24] J. Quinonero-Candela, C. E. Rasmussen, “A Unifying View of Sparse Approximate Gaussian
Process Regression”, Journal of Machine Learning Research 6, 1939-1959 (2005).

[25] T. D. Bui, J. Yan, R. E. Turner, “A Unifying Framework for Gaussian Process Pseudo-Point
Approximations using Power Expectation Propagation”, Journal of Machine Learning Research
18, 1-72 (2017).

[26] J. Hensman, A. Matthews, Z. Ghahramani, “Scalable Variational Gaussian Process Classifica-
tion”, In AISTATS (2015).

10

[27] A. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá, Z.
Ghahramani, J. Hensman, “GPflow: A Gaussian process library using TensorFlow”, Journal of
Machine Learning Research 18, 1-6 (2017).

[28] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems”,
https://www.tensorflow.org/ (2015).

[29] C.-A. Cheng, B. Boots, “Variational Inference for Gaussian Process Models with Linear Com-
plexity”, In NIPS (2017).

11

https://www.tensorflow.org/

	Introduction
	General PAC-Bayesian Framework
	Risk functions
	PAC-Bayesian generalization bounds

	PAC-Bayesian learning of GPs
	Learning full GPs
	Learning sparse GPs

	Experiments
	Conclusion

