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Abstract

Stochastic optimization naturally arises in machine learning. Efficient algorithms
with provable guarantees, however, are still largely missing, when the objective
function is nonconvex and the data points are dependent. This paper studies this
fundamental challenge through a streaming PCA problem for stationary time series
data. Specifically, our goal is to estimate the principle component of time series data
with respect to the covariance matrix of the stationary distribution. Computationally,
we propose a variant of Oja’s algorithm combined with downsampling to control
the bias of the stochastic gradient caused by the data dependency. Theoretically, we
quantify the uncertainty of our proposed stochastic algorithm based on diffusion
approximations. This allows us to prove the asymptotic rate of convergence and
further implies near optimal asymptotic sample complexity. Numerical experiments
are provided to support our analysis.

1 Introduction

Many machine learning problems can be formulated as a stochastic optimization problem in the
following form,

min
u

EZ∼D[f(u, Z)] subject to u ∈ U , (1.1)

where f is a possibly nonconvex loss function, Z denotes the random sample generated from some
underlying distribution D (also known as statistical model), u is the parameter of our interest, and
U is a possibly nonconvex feasible set for imposing modeling constraints on u. For finite sample
settings, we usually consider n (possibly dependent) realizations of Z denoted by {z1, ..., zn}, and
the loss function in (1.1) is further reduced to an additive form, E[f(u, z)] = 1

n

∑n
i=1 f(u, zi). For

continuously differentiable f , Robbins and Monro (1951) propose a simple iterative stochastic search
algorithm for solving (1.1). Specifically, at the k-th iteration, we obtain zk sampled from D and take

uk+1 = ΠU [uk − η∇uf(uk, zk)], (1.2)
where η is the step-size parameter (also known as the learning rate in machine learning literature),
∇uf(uk, zk) is an unbiased stochastic gradient for approximating∇uEZ∼Df(uk, Z), i.e.,

Ezk∇uf(uk, zk) = ∇uEZ∼Df(uk, Z),

and ΠU is a projection operator onto the feasible set U . This seminal work is the foundation of the
research on stochastic optimization, and has a tremendous impact on the machine learning community.

The theoretical properties of such a stochastic gradient descent (SGD) algorithm have been well
studied for decades, when both f and U are convex. For example, Sacks (1958); Bottou (1998);
Chung (2004); Shalev-Shwartz et al. (2011) show that under various regularity conditions, SGD
converges to a global optimum as k →∞ at different rates. Such a line of research for convex and
smooth objective function f is fruitful and has been generalized to nonsmooth optimization (Duchi
et al., 2012b; Shamir and Zhang, 2013; Dang and Lan, 2015; Reddi et al., 2016).
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When f is nonconvex, which appears more often in machine learning problems, however, the
theoretical studies on SGD are very limited. The main reason behind is that the optimization landscape
of nonconvex problems can be much more complicated than those of convex ones. Thus, conventional
optimization research usually focuses on proving that SGD converges to first order optimal stationary
solutions (Nemirovski et al., 2009). More recently, some results in machine learning literature show
that SGD actually converges to second order optimal stationary solutions, when the nonconvex
optimization problem satisfies the so-called “strict saddle property” (Ge et al., 2015; Lee et al.,
2017). More precisely, when the objective has negative curvatures at all saddle points, SGD can
find a way to escape from these saddle points. A number of nonconvex optimization problems in
machine learning and signal processing have been shown to satisfy this property, including principal
component analysis (PCA), multiview learning, phase retrieval, matrix factorization, matrix sensing,
matrix completion, complete dictionary learning, independent component analysis, and deep linear
neural networks (Srebro and Jaakkola, 2004; Sun et al., 2015; Ge et al., 2015; Sun et al., 2016; Li
et al., 2016; Ge et al., 2016; Chen et al., 2017).

These results further motivate many followup works. For example, Allen-Zhu (2017) improves the
iteration complexity of SGD from Õ(ε−4) in Ge et al. (2015) to Õ(ε−3.25) for general unconstrained
functions, where ε is a pre-specifed optimization accuracy; Jain et al. (2016); Allen-Zhu and Li (2016)
show that the iteration complexity of SGD for solving the eigenvalue problem is Õ(ε−1). Despite of
these progresses, we still lack systematic approaches for analyzing the algorithmic behavior of SGD.
Moreover, these results focusing on the convergence properties, however, cannot precisely capture the
uncertainty of SGD algorithms (e.g., how to escape from saddle points), which makes the theoretical
analysis less intuitive.

Besides nonconvexity, data dependency is another important challenge arising in stochastic opti-
mization for machine learning, since the samples zk’s are often collected with a temporal pattern.
For many applications (e.g., time series analysis), this may involve certain dependency. Taking
generalized vector autoregressive (GVAR) data as an example, our observed zk+1 ∈ Rm is generated
by zik+1|zk ∼ p(a>i zk), where ai’s are unknown coefficient vectors, zik+1 is the i-th component of
zk+1, p(·) denotes the density of the exponential family, and a>i zk is the natural parameter. There is
only limited literature on convex stochastic optimization for dependent data. For example, Duchi
et al. (2012a) investigate convex stochastic optimization algorithms for ergodic underlying data gener-
ating processes; Homem-de Mello (2008) investigates convex stochastic optimization algorithms for
dependent but identically distributed data. For nonconvex optimization problems in machine learning,
however, how to address such dependency is still quite open.

This paper proposes to attack stochastic nonconvex optimization problems for dependent data by
investigating a simple but fundamental problem in machine learning — Streaming PCA for stationary
time series. PCA has been well known as a powerful tool to reduce the dimensionality, and well
applied to data visualization and representation learning. Specifically, we solve the following
nonconvex problem,

U∗ ∈ argmax
U∈Rm×r

Trace(U>ΣU) subject to U>U = Ir (1.3)

where Σ is the covariance matrix of our interest. This is also known as an eigenvalue problem.
The column span of the optimal solution U∗ equals the subspace spanned by the eigenvectors
corresponding to the first r largest eigenvalues of Σ. Existing literature usually assumes that at the
k-th iteration, we observe a random vector zk independently sampled from some distribution D with
E[zk] = 0 and E[zkz

>
k ] = Σ. Our setting, however, assumes that zk is sampled from some time

series with a stationary distribution π satisfying Eπ[zk] = 0 and Eπ[zkz
>
k ] = Σ. There are two key

computational challenges in such a streaming PCA problem:

• For time series, it is difficult to get unbiased estimators of the covariance matrix of the stationary
distribution because of the data dependency. Taking GVAR as an example, the marginal distribution
of zk is different from the stationary distribution. As a result, the stochastic gradient at the k-th
iteration is biased, i.e., E[zkz

>
k Uk|Uk] 6= ΣUk;

• The optimization problem in (1.3) is nonconvex, and its solution space is rotational-invariant. Given
any orthogonal matrix Q ∈ Rr×r and any feasible solution U , the product UQ is also a feasible
solution and gives the same column span as U . When r > 1, this fact leads to the degeneracy in
the optimization landscape such that equivalent saddle points and optima are non-isolated. The
algorithmic behavior under such degeneracy is still quite open for SGD.
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To address the first challenge, we propose a variant of Oja’s algorithm to handle data dependency.
Specifically, inspired by Duchi et al. (2012a), we use downsampling to generate weakly dependent
samples. Theoretically, we show that the downsampled data point yields a sequence of stochastic
approximations of the covariance matrix of the stationary distribution with controllable small bias.
Moreover, the block size for downsampling only logarithmically depends on the optimization accuracy,
which is nearly constant (see more details in Sections 2 and 3).

To attack nonconvexity and the degeneracy of the solution space, we establish new convergence
analysis based on principle angle between Uk and the eigenspace of Σ. By applying diffusion
approximations, we show that the solution trajectory weakly converges to the solution of a stochastic
differential equation (SDE), which enables us to quantify the uncertainty of the proposed algorithm
(see more details in Sections 3 and 5). Investigating the analytical solution of the SDE allows us to
characterize the algorithmic behavior of SGD in three different scenarios: escaping from saddle points,
traversing between stationary points, and converging to global optima. We prove that the stochastic
algorithm asymptotically converges and achieves nearly optimal asymptotic sample complexity.

There are several closely related works. Chen et al. (2017) study the streaming PCA problem for
r = 1 also based on diffusion approximations. However, r = 1 makes problem (1.3) admit an
isolated optimal solution, unique up to sign change. For r > 1, the global optima are nonisolated due
to the rotational invariance property. Thus, the analysis is more involved and challenging. Moreover,
Jain et al. (2016); Allen-Zhu and Li (2016) provide nonasymptotic analysis for the Oja’s algorithm for
streaming PCA. Their techniques are quite different from ours. Their nonasymptotic results, though
more rigorous in describing discrete algorithms, lack intuition and can only be applied to the Oja’s
algorithm with no data dependency. In contrast, our analysis handles data dependency and provides
detailed explanation to the asymptotic algorithmic behavior.

Notations: Given a vector v = (v1, . . . , vm)> ∈ Rm, we define the Euclidean norm ‖v‖22 = v>v.
Given a matrix A ∈ Rm×n, we define the spectral norm ‖A‖2 as the largest singular value of A
and the Frobenius norm ‖A‖2F = Trace(AA>). We also define σr(A) as the r-th largest singular
value of A. For a diagonal matrix Θ ∈ Rm×m, we define sin Θ = diag (sin(Θ11), . . . , sin(Θmm))
and cos Θ = diag (cos(Θ11), . . . , cos(Θmm)). We denote the canonical basis of Rm by ei for
i = 1, . . . ,m with the i-th element being 1, and the canonical basis of Rr by e′j for j = 1, . . . , r.

2 Downsampled Oja’s Algorithm

We first explain how to construct a nearly unbiased covariance estimator for the stationary distribution,
which is crucial for our proposed algorithm. Before proceed, we briefly review geometric ergodicity
for time series, which characterizes the mixing time of a Markov chain.

Definition 2.1 (Geometric Ergodicity and Total Variation Distance). A Markov chain with state
space S and stationary distribution π on (S,F) with F being a σ-algebra on S, is geometrically
ergodic, if it is positive recurrent and there exists an absolute constant ρ ∈ (0, 1) such that the total
variation distance satisfies

DTV (pn(x, ·), π(·)) = supA∈F |pn(x,A)− π(A)| = O (ρn) for all x ∈ S,

where pn(·, ·) is the n-step transition kernel1.

Note that ρ is independent of n and only depends on the underlying transition kernel of the Markov
chain. The geometric ergodicity is equivalent to saying that the chain is β-mixing with an exponen-
tially decaying coefficient (Bradley et al., 2005).

As aforementioned, one key challenge of solving the streaming PCA problem for time series is that
it is difficult to get unbiased estimators of the covariance matrix Σ of the stationary distribution.
However, when the time series is geometrically ergodic, the transition probability ph(zk, zk+h)
converges exponentially fast to the stationary distribution. This allows us to construct a nearly
unbiased estimator of Σ as shown in the next lemma.

1The formal definitions of positive recurrent and transition kernel can be found in Durrett (2010) Chapter 6.
In short, a positive recurrent Markov chain visits each state in a finite time almost surely, and transition kernel is
a generalization of transition probability to continuous state spaces.
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Lemma 2.2. Let {zk}∞k=1 be a geometrically ergodic Markov chain with parameter ρ, and assume
zk is Sub-Gaussian. Given a pre-specified accuracy τ , there exists h = O

(
κρ log 1

τ

)
such that

E
[
(z2h+k − zh+k)(z2h+k − zh+k)>/2

∣∣∣zk] = Σ + EΣ

with ‖E‖2 ≤ τ , where κρ is a constant depending on ρ and Σ is the covariance matrix of zk under
the stationary distribution.

Lemma 2.2 shows that as h increases, the bias decreases to zero. This suggests that we can use the
downsampling method to reduce the bias of the stochastic gradient. Specifically, we divide the data
points into blocks of length 2h, i.e., z1, z2, . . . , z2h , z2h+1, . . . , z4h , . . . , z2(b−1)h+1, . . . , z2bh .

For the s-th block, we use data points z(2s−1)h and z2sh to approximate Σ by Xs = 1
2 (z2sh −

z(2s−1)h)(z2sh − z(2s−1)h)>. Later we will show that the block size h only logarithmically depends
on the optimization accuracy. Thus, the downsampling is affordable. Moreover, if the stationary
distribution has zero mean, we only need the block size to be h and Xs = zshz

>
sh.

Many time series models in machine learning are geometrically ergodic. We discuss a few examples.
Example 2.3. The vector autoregressive (VAR) model follows the update zk+1 = Azk + εk, where
εk’s are i.i.d. Sub-Gaussian random vectors with E[εk] = 0 and E[εkε

>
k ] = Γ, and A is the coefficient

matrix. When ρ = ‖A‖2 < 1, the model is stationary and geometrically ergodic (Tjøstheim, 1990).
Moreover, the mean of its stationary distribution is 0.
Example 2.4. Recall that GVAR model follows zik+1|zk ∼ p(a>i zk), where zik+1’s are independent
conditioning on zk. The density function is p(x|θ) = h(x) exp (T (x)θ −B(θ)) , where T (x) is a
statistic, and B(θ) is the log partition function. GVAR is stationary and geometrically ergodic under
certain regularity conditions (Hall et al., 2016).

As an illustrative example, we show that for Gaussian VAR with ρ = ‖A‖2 < 1 and Γ = I, the
bias of the covariance estimator can be controlled by choosing h = O

(
1

1−ρ log 1
τ

)
. The covariance

matrix of the stationary distribution is Σ =
∑∞
i=0A

i(A>)i. One can check

E
[
zh+kz

>
h+k|zk

]
− Σ = Ahzkz

>
k (A>)h +

∑∞
i=hA

i(A>)i.

Here the spectrum of A acts as the geometrically decaying factor for both terms on the right
hand side, since both terms are of the order O(ρ2h). As a result, the bias of E

[
zh+kz

>
h+k|zk

]
decays to zero exponentially fast. We pick h = O

(
1

1−ρ log 1
τ

)
, and obtain E

[
zk+hz

>
k+h|zk

]
=

Σ + EΣ with ‖E‖2 ≤ τ.
We then propose a variant of Oja’s algorithm combined with our downsampling technique as sum-
marized in Algorithm 1. For simplicity, we assume the stationary distribution has mean zero.
The projection ΠOrth(U) denotes the orthogonal-
ization operator that performs on columns of U .
Specifically, for U ∈ Rm×r, ΠOrth(U) returns a
matrix U ′ ∈ Rm×r that has orthonormal columns.
Typical examples of such operators include Gram-
Schmidt method and Householder transformation.
The step,

Us+1 = ΠOrth(Us + ηXsUs),

is essentially the original Oja’s update. Our vari-
ant manipulates on data points by downsampling
such that Xs is nearly unbiased. We emphasize

Algorithm 1 Downsampled Oja’s Algorithm

Input: data points zk, block size h, step size η
Initialize U1 with orthonormal columns.
Set s← 1
repeat

Take sample zsh, and set Xs ← zshz
>
sh

Us+1 ← ΠOrth(Us + ηXsUs)
s← s+ 1

until Convergence
Output: Us

that s denotes the number of iterations, and k denotes the number of samples.

3 Theory

We exploit diffusion approximations to characterize the convergence of downsampled SGD in 3 stages.
Specifically, we use an ODE (Theorem 3.4) to analyze the global convergence and SDEs (Theorems
3.5 and 3.8) to capture the local dynamics around saddle points and global optima. By the weak
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convergence of the discrete algorithm trajectory to the ODE and SDE, we show that downsampled
SGD achieves an nearly optimal asymptotic sample complexity (Corollary 3.10). Before proceed, we
impose some model assumptions on the problem.
Assumption 3.1 . There exists an eigengap in the covariance matrix Σ of the stationary distribution,
i.e., λ1 ≥ · · · ≥ λr > λr+1 ≥ · · · ≥ λm > 0, where λi is the i-th eigenvalue of Σ.
Assumption 3.2 . Data points {zk}k≥1 are generated from a geometrically ergodic time series with
parameter ρ, and the stationary distribution has mean zero. Each zk is Sub-Gaussian, and the block
size is chosen as h = O (κρ log(1/η)) for downsampling.

The eigengap in Assumption 3.1 implies that the optimal solution is identifiable. Specifically, the
optimal solution U∗ is unique up to rotation. The positive definite assumption on Σ is for theoretical
simplicity. Assumption 3.2 implies that each zk has bounded moments of any order.

We also briefly explain the optimization landscape of streaming PCA problems as follows. Specifically,
we consider the eigenvalue decomposition Σ = RΛR> with Λ = diag(λ1, λ2, . . . , λm). Recall that
ei is the canonical basis of Rm. We distinguish stationary points U of streaming PCA problems:

• U is a global optimum, if the column span of R>U equals the subspace spanned by {e1, . . . , er};

• U is a saddle point or a global minima, if the column span of R>U equals the subspace spanned by
{ea1 , . . . , ear}, where Ar = {a1, . . . , ar} ⊂ {1, . . . ,m} and Ar 6= {1, . . . , r}.

For convenience, if the column span of R>U coincides with {ea1 , . . . , ear}, we say that U is a
stationary point corresponding to the set Ar = {a1, . . . , ar}.
To handle the rotational invariance of the solution space, we use principle angle to characterize the
distance between the column spans of U∗ and Us. The notation is as follows. Given two matrices U ∈
Rm×r1 and V ∈ Rm×r2 with orthonormal columns, where 1 ≤ r1 ≤ r2 ≤ m, the principle angle
between these two matrices is, Θ(U, V ) = diag

(
arccos

(
σ1(U>V )

)
, . . . , arccos

(
σr1(U>V )

))
.

We show the consequence of using principle angle as follows. Specifically, any optimal solution
U∗ satisfies ‖sin Θ(Rr, U

∗)‖2F =
∥∥cos Θ(Rr, U

∗)
∥∥2

F = 0, where Rr denotes the first r columns
of R, and Rr denotes the last m − r columns of R. This essentially implies that the column span
of U∗ is orthogonal to that of Rr. Thus, to prove the convergence of SGD, we only need to show∥∥cos Θ(Rr, Us)

∥∥2

F → 0. By the rotational invariance of principle angle, we obtain Θ
(
Rr, Us

)
=

Θ
(
R>Rr, R

>Us
)

= Θ
(
Er, R

>Us
)
, where Er = [er+1, . . . , em]. For notational simplicity, we

denote Us = R>Us. Then the convergence of the algorithm is equivalent to
∥∥cos Θ

(
Er, Us

)∥∥2

F →
0. We need such an orthogonal transformation, because

∥∥cos Θ
(
Er, Us

)∥∥2

F can be expressed as∥∥cos Θ
(
Er, Us

)∥∥2

F =
∑m
i=r+1

∥∥e>i Us∥∥2

2
=
∑m
i=r+1 γ

2
i,s with γ2

i,s =
∥∥e>i Us∥∥2

2
.

3.1 Global Convergence by ODE

Since the sequence {zsh, Us}∞s=1 forms a discrete Markov process, we can apply diffusion ap-
proximations to establish global convergence of SGD. Specifically, by a continuous time interpo-
lation, we construct continuous time processes Uη(t) and Xη(t) such that Uη(t) = Ubt/ηc+1 and
Xη(t) = Xbt/ηc+1. The subscript bt/ηc+ 1 denotes the number of iterations, and the superscript η
highlights the dependence on η. We denote U

η
(t) = R>Uη(t) and X

η
(t) = R>Xη(t)R. The con-

tinuous time version of γ2
i,s is written as γ2

i,η(t) = ‖e>i U
η
(t)‖22. It is difficult to directly characterize

the global convergence of γ2
i,η(t). Thus, we introduce an upper bound of γ2

i,η(t) as follows.

Lemma 3.3. Let Er = [e1, . . . , er] ∈ Rm×r. Suppose U
η
(t) has orthonormal columns and

E>r U
η
(t) is invertible. We have

γ̃2
i,η(t) =

∥∥∥e>i Uη(t)
(
E>r U

η
(t)
)−1 ∥∥∥2

2
≥ γ2

i,η(t). (3.1)

The detailed proof is provided in Appendix B.1. We show γ̃2
i,η(t) converges in the following theorem.

Theorem 3.4. As η → 0, the process γ̃2
i,η(t) weakly converges to the solution of the ODE

dγ̃2
i = biγ̃

2
i dt with bi ≤ 2(λi − λr), (3.2)
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where γ̃2
i (0) =

∥∥∥e>i U(0)
(
E>r U(0)

)−1
∥∥∥2

2
, and U(0) has orthonormal columns.

The detailed proof is provided in Appendix B.2. The analytical solution to (3.2) is γ̃2
i (t) = γ̃2

i (0)ebit

with bi ≤ 2(λr+1−λr) < 0 for any i ∈ {r+ 1, . . . ,m}. Note that we need E>r U(0) to be invertible
to derive the upper bound (3.1). Under this condition, γ̃2

i (t) converges to zero. However, when
E>r U(0) is not invertible, the algorithm starts at a saddle point, and (3.2) no longer applies. As can
be seen, the ODE characterization is insufficient to capture the local dynamics (e.g., around saddle
points or global optima) of the algorithm.

3.2 Local Dynamics by SDE

The deterministic ODE characterizes the average behavior of the solution trajectory. To capture the
uncertainty of the local algorithmic behavior, we need to rescale the influence of the noise to bring
the randomness back, which leads us to a stochastic differential equation (SDE) approximation.

• Stage 1: Escape from Saddle Points Recall that Λ = diag(λ1, . . . , λm) collects all the eigenval-
ues of Σ. We consider the eigenvalue decomposition U

>
(0)ΛU(0) = Q>Λ̃Q, where Q ∈ Rr×r

is orthogonal and Λ̃ = diag(λ̃1, . . . , λ̃r). Again, by a continuous time interpolation, we denote
ζij,η(t) = η−1/2e′>j Q[U

η
(t)]>ei, where e′j is the canonical basis in Rr. Then we decompose the

principle angle γ2
i,η(t) as γ2

i,η(t) = η
∑r
j=1 ζ

2
ij,η(t). Recall that U(0) is a saddle point, if the column

span of U(0) equals the subspace spanned by {ea1 , . . . , ear} with Ar = {a1, . . . , ar} 6= {1, . . . , r}.
Therefore, if the algorithm starts around a saddle point, there exists some i ∈ {1, . . . , r} such that
γ2
i,η(0) ≈ 0 and γ2

a,η(0) ≈ 1 for a ∈ Ar. The asymptotic behavior of γ2
i,η(t) around a saddle point is

captured in the following theorem.
Theorem 3.5. Suppose U(0) is initialized around a saddle point corresponding to Ar. As η → 0,
conditioning on the event

{
γ2
i,η(t) = O(η) for some i ∈ {1, . . . , r}

}
, ζij,η(t) weakly converges to

the solution of the following stochastic differential equation
dζij = Kijζijdt+GijdBt with Kij ∈ [λi − λ1, λi − λar ] and G2

ij <∞, (3.3)
where Bt is a standard Brownian motion, and ar is the largest element in Ar.

The detailed proof is provided in Appendix B.3. We remark that the event γ2
i,η(t) = O(η) is only a

technical assumption. This does not cause any issue, since when η−1γ2
i,η(t) is large, the algorithm

has escaped from the saddle point. Note that (3.3) admits the analytical solution

ζij(t) = ζij(0)eKijt +Gij

∫ t

0

e−Kij(s−t)dB(s), (3.4)

which is known as an O-U process. We give the following implications on different values of Kij :

(a). WhenKij > 0, rewrite (3.4) as ζij(t) =
[
ζij(0) +Gij

∫ t
0
e−KijsdB(s)

]
eKijt. The exponential

term eKijt is dominant and increases to positive infinity as t→∞. While the remaining part on the
right hand side is a process with mean ζij(0) and variance bounded by G2

ij/(2Kij). Hence, eKijt

acts as a driving force to increase ζij(t) exponentially fast so that ζij(t) quickly gets away from 0;

(b). When Kij < 0, the mean of ζij(t) is ζij(0)eKijt. The initial condition restricts ζij(0) to be
small. Thus as t increases, the mean of ζij(t) converges to zero. Thus, the drift term vanishes quickly.
The variance of ζij(t) is bounded by −G2

ij/(2Kij). Hence, ζij(t) roughly oscillates around 0;

(c). When Kij = 0, the drift term is approximately zero, meaning that ζij(t) also oscillates around 0.

We provide an example showing how the algorithm escapes from a saddle point. Suppose that the
algorithm starts at the saddle point corresponding to Ar = {1, . . . , q − 1, q + 1, . . . , r, p}. Consider
the principle angle γ2

q,η(t). By implication (a), we haveKqr = λq−λp > 0. Hence ζqr,η(t) increases
quickly away from zero. Thus, γ2

q,η(t) ≥ ηζ2
qr,η(t) also increases quickly, which drives the algorithm

away from the saddle point. Meanwhile, by (b) and (c), γ2
i,η(t) stays at 1 for i < q because of the

vanishing drift. The algorithm tends to escape from the saddle point through reducing γ2
p,η(t), since

this yields the largest eigengap, λq − λp. When we have q = r and p = r + 1, the eigengap is
minimal. Thus, it is the worst situation for the algorithm to escape from a saddle point. We give the
following proposition characterizing the time for the algorithm to escape from a saddle point.
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Proposition 3.6. Suppose that the algorithm starts around the saddle point corresponding to Ar =

{1, . . . , r − 1, r + 1}. Given a pre-specified ν and δ = O(η
1
2 ) for a sufficiently small η, we need

T1 �
1

λr − λr+1
log(K + 1) with K =

2(λr − λr+1)η−1δ2[
Φ−1( 1−ν/2

2 )
]2
G2
rr

,

such that P
(
γ2
r,η(T1) ≥ δ2

)
≥ 1− ν, where Φ is the CDF of the standard Gaussian distribution.

The detailed proof is provided in Appendix B.4. This implies that, asymptotically, we need

S1 �
T1

η
� log(K + 1)

η(λr − λr+1)

iterations to escape from a saddle point, and the algorithm enters the second stage.

• Stage 2: Traverse between Stationary Points After the algorithm escapes from the saddle
point, the gradient is dominant, and the noise is negligible. Thus, the algorithm behaves like
an almost deterministic traverse between stationary points, which can be viewed as a two-step
discretization of the ODE with an error of the order O(η) (Griffiths and Higham, 2010). Hence,
we focus on γ2

i,η(t) to characterize the algorithmic behavior in this stage. Recall that we assume
Ar = {1, . . . , r−1, r+1}.When the algorithm escapes from the saddle point, we have γ2

r,η(T1) ≥ δ2,
which implies

∑m
i=r+1 γ

2
i,η(t) ≤ 1− δ2. The following proposition assumes that the algorithm starts

at this initial condition.
Proposition 3.7. Restarting the counter of time, for a sufficiently small η and δ = O(η

1
2 ). We need

T2 �
1

λr − λr+1
log

1

δ2

such that P
(∑m

i=r+1 γ
2
i,η(t) ≤ δ2

)
≥ 3

4 .

The detailed proof is provided in Appendix B.5. This implies that, asymptotically, we need

S2 �
T2

η
� 1

η(λr − λr+1)
log

1

δ2

iterations to reach the neighborhood of the global optima.

• Stage 3: Converge to Global Optima Similar to stage 1, we focus on ζij,η(t) to characterize the
dynamics of the algorithm around the global optima using an SDE approximation.

Theorem 3.8. Suppose U(0) is initialized around the global optima with
∑m
i=r+1 γ

2
i,η(0) = O(η).

Then as η → 0, for i = r + 1, . . . ,m and j = 1, . . . , r, ζij,η(t) weakly converges to the solution of
the following SDE

dζij = Kijζijdt+GijdBt with Kij ∈ [λi − λ1, λi − λr] and G2
ij <∞, (3.5)

where Bt is a standard Brownian motion.

The detailed proof is provided in Appendix B.6. The analytical solution of (3.5) is

ζij(t) = ζij(0)eKijt +Gij

∫ t

0

e−Kij(s−t)dB(s).

We then establish the following proposition.

Proposition 3.9. For a sufficiently small ε and η, δ = O(η
1
2 ), restarting the counter of time, we need

T3 �
1

λr − λr+1
logK ′ with K ′ =

8(λr − λr+1)δ2

(λr − λr+1)ε− 4ηrGm
,

such that we have P
(∑m

i=r+1 γ
2
i,η(T3) ≤ ε

)
≥ 3

4 , where Gm = max1≤j≤r
∑m
i=r+1G

2
ij .

The detailed proof is provided in Appendix B.7. The subscript m in Gm highlights its dependence on
the dimension m. Proposition 3.9 implies that, asymptotically, we need

S3 �
T3

η
� logK ′

η(λr − λr+1)

iterations to converge to an ε-optimal solution in the third stage. Combining all the results in three
stages, we know that after T1 + T2 + T3 time, the algorithm converges to an ε-optimal solution
asymptotically. This further leads us to a more refined result in the following corollary.

7



Corollary 3.10. For a sufficiently small ε, we choose

η � (λr − λr+1)ε

5rGm
.

Suppose we start the algorithm near a saddle point, then we need T = T1 + T2 + T3 such that

P
(∥∥∥cos Θ

(
Er, U

η
(T )
)∥∥∥2

F
≤ ε
)
≥ 3

4 .

The detailed proof is provided in Appendix B.8. Recall that we choose the block size h of downsam-
pling to be h = O

(
κρ log 1

η

)
. Thus, the asymptotic sample complexity satisfies

N � Th

η
� rGm
ε(λr − λr+1)2

log2 rGm
ε(λr − λr+1)

.

From the perspective of statistical recovery, the obtained estimator Û enjoys a near-optimal asymptotic

rate of convergence
∥∥∥cos Θ(Û , U∗)

∥∥∥2

F
� rGm logN

(λr−λr+1)2N/κρ
, where N is the number of data points.

4 Numerical Experiments

We demonstrate the effectiveness of our proposed algorithm using both simulated and real datasets.

• Simulated Data We first verify our analysis of streaming PCA problems for time series using a
simulated dataset. We choose a Gaussian VAR model with dimension m = 16. The random vector
εk’s are independently sampled from N(0, S), where

S = diag(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3).

We choose the coefficient matrix A = V >DV , where V ∈ R16×16 is an orthogonal matrix that we
randomly generate, and D = 0.1D0 is a diagonal matrix satisfying
D0 = diag(0.68, 0.68, 0.69, 0.70, 0.70, 0.70, 0.72, 0.72, 0.72, 0.72, 0.72, 0.72, 0.80, 0.80, 0.85, 0.90).

By solving the discrete Lyapunov equation Σ = AΣA> + S, we calculate the covariance matrix of
the stationary distribution, which satisfies Σ = U>ΛU , where U ∈ R16×16 is orthogonal and

Λ = diag(3.0175, 3.0170, 3.0160, 1.0077, 1.0070, 1.0061, 1.0058, 1.0052,

1.0052, 1.0052, 1.0052, 1.0051, 1.0049, 1.0049, 1.0047, 1.0047).

We aim to find the leading principle components of Σ corresponding to the first 3 largest eigenvalues.
Thus, the eigengap is λ3 − λ4 = 2.0083. We initialize the solution at the saddle point whose column
span is the subspace spanned by the eigenvectors corresponding to 3.0175, 3.0170 and 1.0077. The
step size is η = 3 × 10−5, and the algorithm runs with 8 × 105 total samples. The trajectories of
the principle angle over 20 independent simulations with block size h = 4 are shown in Figure 1a.
We can clearly distinguish three different stages. Figure 1c and 1d illustrate that entries of principle
angles, ζ33 in stage 1 and ζ42 in stage 3, are Ornstein-Uhlenbeck processes. Specifically, the estimated
distributions of ζ33 and ζ42 over 100 simulations follow Gaussian distributions. We can check that
the variance of ζ33 increases in stage 1 as iteration increases, while the variance of ζ42 in stage 3
approaches a fixed value. All these simulated results are consistent with our theoretical analysis.

Stage 1

Stage 2

Stage 3

(a) Solution trajectories (b) Different block sizes (c) Distribution of ζ33(t) (d) Distribution of ζ42(t)

Figure 1: Illustrations of various algorithmic behaviors in simulated examples: (a) presents three
stages of the algorithm; (b) compares the performance of different block sizes; (c) and (d) demonstrate
the Ornstein-Uhlenbeck processes of ζ33 in stage 1 and ζ42 in stage 3.
We further compare the performance of different block sizes of downsampling with step size annealing.
We keep using Gaussian VAR model with D = 0.9D0 and
S = diag(1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.45, 1.455, 1.455, 1.455).
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The eigengap is λ3 − λ4 = 0.005. We run the algorithm with 5× 105 samples and the chosen step
sizes vary according to the number of samples k. Specifically, we set the step size η = η0 × h

4000 if
k < 2× 104, η = η0 × h

8000 if k ∈ [2× 104, 5× 104), η = η0 × h
48000 if k ∈ [5× 104, 10× 104),

and η = η0 × h
120000 if k ≥ 10× 104. We choose η0 in {0.125, 0.25, 0.5, 1, 2} and report the final

principle angles achieved by different block sizes h in Table 1. Figure 1b presents the averaged
principle angle over 5 simulations with η0 = 0.5. As can be seen, choosing h = 4 yields the
best performance. Specifically, the performance becomes better as h increases from 1 to around 4.
However, the performance becomes worse, when h = 16 because of the lack of iterations.

Table 1: The final principle angles achieved by different block sizes with varying η0.
η0 = 0.125 η0 = 0.25 η0 = 0.5 η0 = 1 η0 = 2

h = 1 0.7775 0.3595 0.2320 0.2449 0.3773
h = 2 0.7792 0.3569 0.2080 0.2477 0.2290
h = 4 0.7892 0.3745 0.1130 0.3513 0.4730
h = 6 0.7542 0.3655 0.1287 0.3317 0.3983
h = 8 0.7982 0.3933 0.2828 0.3820 0.4102
h = 16 0.7783 0.4324 0.3038 0.5647 0.6526

• Real Data We adopt the Air Quality dataset (De Vito et al., 2008), which contains 9358 instances
of hourly averaged concentrations of totally 9 different gases in a heavily polluted area. We remove
measurements with missing data. We aim to estimate the first 2 principle components of the series.
We randomly initialize the algorithm, and choose the block size of downsampling to be 1, 3, 5, 10,
and 60. Figure 2 shows that the projection of each data point onto the leading and the second principle
components. We also present the result of projecting data points onto the eigenspace of sample
covariance matrix indicated by Batch in Figure 2. All the projections have been rotated such that
the leading principle component is parallel to the horizontal axis. As can be seen, when h = 1, the
projection yields some distortion in the circled area. When h = 3 and h = 5, the projection results are
quite similar to the Batch result. As h increases, however, the projection displays obvious distortion
again compared to the Batch result. The concentrations of gases are naturally time dependent. Thus,
we deduce that the distortion for h = 1 comes from the data dependency, while for the case h = 60,
the distortion comes from the lack of updates. This phenomenon coincides with our simulated data
experiments.

h = 1 h = 5 h = 10 h = 30 h = 60 Batch

Figure 2: Projections of air quality data onto the leading and the second principle components with
different block sizes of downsampling. We highlight the distortions for h = 1 and h = 60.

5 Discussions

We remark that our analysis characterizes how our proposed algorithm escapes from the saddle point.
This is not analyzed in the related work, Allen-Zhu and Li (2016), since they use random initialization.
Note that our analysis also applies to random initialization, and directly starts with the second stage.

Our analysis is inspired by diffusion approximations in existing applied probability literature (Glynn,
1990; Freidlin and Wentzell, 1998; Kushner and Yin, 2003; Ethier and Kurtz, 2009), which target to
capture the uncertainty of stochastic algorithms for general optimization problems. Without explicitly
specifying the problem structures, these analyses usually cannot lead to concrete convergence
guarantees. In contrast, we dig into the optimization landscape of the streaming PCA problem.
This eventually allows us to precisely characterize the algorithmic dynamics and provide concrete
convergence guarantees, which further lead to a deeper understanding of the uncertainty in nonconvex
stochastic optimization.

The block size h of downsampled Oja’s algorithm is based on the mixing property of the time series.
We believe estimating the mixing coefficient is an interesting problem. The procedure in Hsu et al.
(2015) estimates the mixing time of Markov chains, which may possibly be adapted to our time series
setting. Moreover, estimating the covariance matrix of the stationary distribution is also interesting
but challenging. We leave them for future investigation.
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A Detailed Proofs in Section 2

A.1 Proof of Lemma 2.2

Proof. We first assume the stationary distribution has zero mean and denote the covariance matrix as
Σ. The total variation distance of ph(z, ·) and π(·) is equivalent to

DTV(ph(z, ·), π(·)) =
1

2

∫ ∣∣ph(z, x)− π(x)
∣∣ dx.

Then we try to find the conditional expectation,

E
[
zk+hz

>
k+h|zk

]
=

∫
xx>ph(zk, x)dx

=

∫
xx>(π(x) + ph(zk, x)− π(x))dx

=

∫
xx>π(x)dx+

∫
xx>(ph(zk, x)− π(x))dx

= Σ +

∫
xx>(ph(zk, x)− π(x))dx.

We bound the second term by the following,∥∥∥∥∫ xx>(ph(zk, x)− π(x))dx

∥∥∥∥
2

≤
∫
‖x‖22

∣∣ph(zk, x)− π(x)
∣∣ dx

≤
∫
‖x‖22≤t

‖x‖22
∣∣ph(zk, x)− π(x)

∣∣ dx+

∫
‖x‖2>t

‖x‖22
∣∣ph(zk, x)− π(x)

∣∣ dx
≤ C1tρ

h +

∫
‖x‖22>t

‖x‖22
∣∣ph(zk, x)− π(x)

∣∣ dx
≤ C1tρ

h +

∫
‖x‖22>t

‖x‖22ph(zk, x)dx+

∫
‖x‖22>t

‖x‖2π(x)dx

≤ C1tρ
h +

∫ ∞
t

Pph(‖x‖22 > s)ds+

∫ ∞
t

Pπ(‖x‖22 > s)ds.

By our assumption, x is a Sub-Gaussian random vector, then Pph(‖x‖2 > t) ≤ C2 exp(−C3t
2) and

Pπ(‖x‖2 > t) ≤ C ′2 exp(−C ′3t2). The integration is bounded by∫ ∞
√
t

exp(−s2)ds =

∫ ∞
0

exp(−(s+
√
t)2)ds ≤ exp(−t)

∫ ∞
0

exp(−2s
√
t)ds =

1√
t

exp(−t).

Thus, we have
∥∥∫ xx>(ph(zk, x)− π(x))dx

∥∥
2
≤ C1tρ

h+C2
1√
t
e−C3t. Optimize over t and neglect

the exponential term, we pick t = O
(
ρ−

2h
3

)
to reach

∥∥∫ xx>(ph(zk, x)− π(x))dx
∥∥

2
≤ O(ρh/3).

Therefore, we have E
[
zk+hz

>
k+h|zk

]
= Σ + EΣ with ‖E‖2 = O(ρh/3), which implies that if we

pick h = O
(

1
1−ρ log 1

τ

)
, then we have ‖E‖2 ≤ τ .

For the general case, i.e., the stationary distribution has nonzero mean µ, we proceed with double
conditioning. Specifically, we calculate

E
[
(zk+2h − zk+h)(zk+2h − zk+h)>

∣∣zk] = E
[
E
[
(zk+2h − zk+h)(zk+2h − zk+h)>

∣∣zk+h, zk
] ∣∣∣zk] .

Then by the Markov property, the inner expectation is equal to
E
[
(zk+2h − zk+h)(zk+2h − zk+h)>

∣∣zk+h

]
. By a similar reasoning to the zero mean case,

we first calculate the conditional expectation
E
[
(zk+2h − zk+h)(zk+2h − zk+h)>

∣∣zk+h

]
= Σ + µµ> − µz>k+h − zk+hµ

> + zk+hz
>
k+h +W,

where the remainder W satisfies ‖W‖2 = O(ρh/3). Then taking expectation conditioning on zk, we
can derive

E
[

1

2
(zk+2h − zk+h)(zk+2h − zk+h)>

∣∣∣zk] = Σ + EΣ with ‖E‖2 = O
(
ehκρ

)
.

The calculation is a repetition of the zero mean case with the extra mean term µ.
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B Detailed Proofs in Section 3

B.1 Proof of Lemma 3.3

Proof. We omit the time indicator t. Since U and Er has orthonormal columns, we have
∥∥E>r U∥∥2

≤
1. Thus
γi(t) =

∥∥e>i U∥∥2
≤
∥∥e>i U(E>r U)−1(E>r U)

∥∥
2
≤
∥∥e>i U(E>r U)−1

∥∥
2

∥∥E>r U∥∥2
≤
∥∥e>i U(E>r U)−1

∥∥
2

= γ̃i(t)

B.2 Proof of Theorem 3.4

Proof. Compute the infinitesimal increments of γ̃2
i (t), which is defined to be

∆γ̃2
i,s(t) = γ̃2

i,s+1 − γ̃2
i,s.

The sequence {zsh, Us} forms a Markov chain. By Corollary 4.2 of chapter 7.4 of Ethier and Kurtz
(2009), once

bi = lim
η→0

E
[

∆γ̃2
i (t)

η

∣∣∣∣Us, zsh] <∞,
σ2
i = lim

η→0
E
[

[∆γ̃2
i (t)]2

η

∣∣∣∣Us, zsh] = 0,

the sequence γ̃2
i,s(t) weakly converges to the solution of the following ODE,

dγ̃2
i = biγ̃

2
i dt.

Hence, we must find the mean and variance of ∆γ̃2
i,s(t). For simplicity, we omit the subscript s.

∆γ̃2
i,s = e>i (U + ∆U)(E>r (U + ∆U))−1(E>r (U + ∆U))−>(U + ∆U)>ei − e>i U(E>r U)−1(E>r U)−>U

>
ei

= 2e>i ∆U(E>r U)−>(E>r U)−1U
>
ei − 2e>i U(E>r U)−1(E>r U)−>(E>r ∆U)>(E>r U)−>U

>
ei +O(‖∆U‖22)

= 2ηe>i U(E>r U)−1(E>r U)−>U
>
Xei − 2ηe>i U(E>r U)−1(E>r U)−>(E>r XU)>(E>r U)−>U

>
ei +O(η2‖X‖22)

where ∆U = η(I − UU>)XU +O(η2X
2
). We have used the fact that

(E>r (U + ∆U))−1 = ((E>r U)(I + (E>r U)−1(E>r ∆U)))−1

= (I − (E>r U)−1(E>r ∆U) +O(∆U
2
))(E>r U)−1.

We only assume E[‖X‖22] <∞ without assuming X is bounded. Thus, in order to take expectation
over X , we need a truncation argument. Write the SVD of X as X = V >SV . Then Xn = V >(S ∧
n)V denotes the truncated X where a∧ b = min(a, b) and S ∧n means to perform such an operation
on each diagonal elements of S. Clearly, Xn has bounded norm ‖Xn‖2 ≤ n. Thus, we can take
expectation with this truncated random variableXn. Moreover, as n increases, ‖Xn‖2 also monotone
increases to ‖X(t)‖2. Then by the monotone convergence theorem, limn→∞ E[‖Xn‖22] = E[‖X‖22].
This result allows us to take expectation on the infinitesimal increments ∆γ̃2

i,s(t).

Taking expectation conditioning on Us and zsh, then dividing both sides by η, we have

E[
∆γ2

i,s

η
|Us, zsh] = 2e>i U(E>r U)−1(E>r U)−>U

>
(I + E)Λei

− 2e>i U(E>r U)−1(E>r U)−>(E>r (I + E)ΛU)>(E>r U)−>U
>
ei +O(η‖Λ‖22)

= 2e>i U(E>r U)−1(E>r U)−>U
>

Λei + 2e>i U(E>r U)−1(E>r U)−>U
>
EΛei

− 2e>i U(E>r U)−1(E>r U)−>(E>r ΛU)>(E>r U)−>U
>
ei

− 2e>i U(E>r U)−1(E>r U)−>(E>r EΛU)>(E>r U)−>U
>
ei +O(η‖Λ‖22)

= 2σiγ̃
2
i (t)− 2e>i U(E>r U)−1Λr(E

>
r U)−>U

>
ei

+ 2e>i U(E>r U)−1(E>r U)−>U
>
EΛei − 2e>i U(E>r U)−1(E>r U)−>(E>r EΛU)>(E>r U)−>U

>
ei

+O(η‖Λ‖22).
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Under the geometric ergodicity condition, we know ‖E‖2 ≤ τ , which implies ‖EΛ‖2 ≤ τσ1. Then
we have

e>i U(E>r U)−1Λr(E
>
r U)−>U

>
ei ≥ λrγ̃2

i,s,∣∣∣e>i U(E>r U)−1(E>r U)−>U
>
EΛei

∣∣∣ = O(η),

e>i U(E>r U)−1(E>r U)−>(E>r EΛU)>(E>r U)−>U
>
ei = O(η).

Combining the above three bounds, we have

lim
η→0

E[
∆γ2

i,s

η
|Us, zsh] ≤ 2(λi − λr)γ2

i,s.

This upper bound also implies that limη→0 E[
[∆γ2

i,s]
2

η |Us, zsh] = 0, since the numerator is of order
O(η2). Thus, we can show γ̃2

i,η(t) converges weakly to the solution of
dγ̃2
i = biγ̃

2
i dt with bi ≤ 2(λi − λr).

B.3 Proof of Theorem 3.5

Proof. We need the following lemma to bound the smallest eigenvalue of U
>

ΛU . Denote by EAr =
[ea1 , ea2 , . . . , ear ] ∈ Rm×r where Ar = {a1, a2, . . . , ar} denotes an index set of {1, 2, . . . ,m}
such that a1 > a2 > · · · > ar. Further denote by Ar the complement of Ar in {1, 2, . . . ,m} and
write EAr = EAr . Additionally, write ΛAr = diag(λa1 , λa2 , . . . , λar ) and ΛAr = ΛAr .

Lemma B.1. Suppose ‖E>ArU‖
2
F ≤ O(δ) with U ∈ Rm×r having orthonormal columns, then

σmin(U
>

ΛU) ≥ λar −O(δ)

Proof. Since ‖E>ArU‖
2
F ≤ O(δ), we have ‖E>ArU‖

2
2 = r − ‖E>ArU‖

2
F ≥ r − O(δ). Therefore,

‖Ue′ai‖2 ≥ 1−O(δ) for i ∈ {1, . . . , r}. Thus, we have

e′>j U
>

ΛUe′j = e′>j U
>

(E>ArΛArEAr + E
>
ArΛEAr )Ue

′
j

≥ λare′>j U
>
E>ArEArUe

′
j + e′>j U

>
E
>
ArΛEArUe

′
j

≥ λar −O(δ).

Now we turn to the proof of Theorem 3.5. We omit (t) if there is no confusion. Denote by
∆ζij,η(t) = ζij,η(t+ η)− ζij,η(t) and Z(t) = η−1/2U

η
(t). We must show the mean and variance

of ∆ζij,η(t) satisfies

Kij = lim
η→0

E
[

∆ζij,η(t)

η

∣∣∣∣U, zbt/ηch+h

]
<∞,

G2
ij = lim

η→0
E
[

[∆ζij,η(t)]2

η

∣∣∣∣U, zbt/ηch+h

]
<∞.

Then the sequence ζij,η(t) weakly converges to the solution of the following SDE
dζij = Kijζijdt+GijdBt,

where Bt is the standard Brownian motion. In fact, we have
E
[
∆ζij,η(t)|U, zbt/ηch+h

]
= E

[
η−1/2e′>j Q(Z(t+ η)− Z(t))>ei|U, zbt/ηch+h

]
= η1/2e′>j QE

[
U
>
X − U>XUU>|U, zbt/ηch+h

]
ei +O(η3/2‖Λ‖22)

= ηe′>j QZ
>

(Λ + EΛ)ei − ηe′>j Q(U
>

(Λ + EΛ)U)Z
>
ei +O(η3/2‖Λ‖22)

= ηλie
′>
j QZ

>
ei − ηe′>j Q(U

>
ΛU)Z

>
ei + ηe′>j QZ

>
EΛei − ηe′>j Q(U

>
EΛU)Z

>
ei

+O(η3/2‖Λ‖22)

= ηλiζij,η − ηe′>j Q(U
>

ΛU)Z
>
ei + ηe′>j QZ

>
EΛei − ηe′>j Q(U

>
EΛU)Z

>
ei

+O(η3/2‖Λ‖22).
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By the Lemma, we have σmin

(
U
>

ΛU
)
≥ λar − O(δ). Observe that ‖EΛ‖2 = O(η), thus we

obtain

lim
η→0

E
[

∆ζij,η(t)

η

∣∣∣∣U, zbt/ηch] = Kijζij,η with Kij ∈ [λi − λ1, λi − λar ].

Note that when j = r, we have Kir = λi − λar , because the equality e′>r Q(U
>

ΛU)Z
>
ei =

λare
′>
r QZ

>
ei +O(δ) holds. The variance is

E
[
[∆ζij,η(t)]2|U, zbt/ηch+h

]
= E

[(
η−1/2e′>j Q(Z(t+ η)− Z(t))>ei

)2
∣∣∣∣U, zbt/ηch+h

]
= ηE

[(
e′>j QU

>
X(I − UU>)ei

)2
∣∣∣∣U, zbt/ηch+h

]
+O(η2‖Λ‖22).

Observe that we have U
>

(I − UU>) = 0, therefore, UQ>e′j and (I − UU>)ei are orthogonal.

Moreover, the norm of these two vectors satisfies
∥∥e′>j QU∥∥2

≈ 1 and
∥∥∥(I − UU>)e′j

∥∥∥
2
≤ 1. Hence,

by the assumption that X has bounded second moment, we have

lim
η→0

E
[

[∆ζij,η(t)]2

η

∣∣∣∣U, zbt/ηch+h

]
<∞.

B.4 Proof of Proposition 3.6

Proof. Since we start the algorithm at the saddle point and Krr = λr − λr+1. The continuous time
process ζrr(t) is approximately Gaussian distributed with mean 0 and variance G2

rr

2Krr
(e2Krrt − 1).

We need the following condition,

P
(∥∥e>r U(t)

∥∥2

2
≥ δ2

)
≥ P

(
ζ2
rr(t) ≥ η−1δ2

)
,

which is equivalent to

P(ζ2
rr(t) ≥ η−1δ2) = P

 |ζrr(t)|√
G2
rr

2Krr
(e2Krrt − 1)

≥ η−1/2δ√
G2
rr

2Krr
(e2Krrt − 1)

 .

Note that ζrr,η(t)√
G2
rr

2Krr
(e2Krrt−1)

converges weakly to ζrr(t)√
G2
rr

2Krr
(e2Krrt−1)

, which is a standard Gaussian

random variable. Let Φ(·) denotes the standard Gaussian CDF, then we have

η−1/2δ ≤ −Φ−1

(
1− ν/2

2

)√
G2
rr

2Krr
(e2Krrt − 1).

Rearrange the above terms, we get

T1 =
1

2(λr − λr+1)
log

(
2(λr − λr+1)η−1δ2

[Φ−1( 1−ν/2
2 )]2G2

rr

+ 1

)
.

B.5 Proof of Proposition 3.7

Proof. We know
∥∥∥cos Θ(Er, U

η
(t))
∥∥∥2

F
=
∑m
i=r+1 γ

2
i,η(t). Then using the upper bound γ̃2

i (t), we
have

‖cos Θ(Er, U
η
(t))‖2F =

m∑
i=r+1

γ2
i,η(t) ≤

m∑
i=r+1

γ̃2
i,η(t) =

m∑
i=r+1

γ̃2
i (0)ebit ≤

m∑
i=r+1

γ̃2
i (0)e2(λr−λr+1)t.
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In order for
∥∥∥cos Θ(Er, U

η
(T2))

∥∥∥2

F
≤ δ2, we need at most T2 time such that
m∑

i=r+1

γ2
i (0)e2(λr+1−λr)T2 ≤ δ2.

Since the algorithm has escaped from the saddle point, we have
∥∥e>r+1U

∥∥2

2
≤ 1− δ2 and

∥∥E>r U∥∥2

2
≥

δ2. Thus, the initial value satisfies
∑m
i=r+1 γ̃

2
i (0) ≤ (1− δ2)δ−2. Taking logarithm on both sides

yields

T2 =
1

2(λr − λr+1)
log

1− δ2

δ4
=

1

λr − λr+1
log

√
1− δ2

δ2
.

Then for a sufficiently small η, we have

P

(
m∑

i=r+1

γ2
i,η(T2) ≤ δ2

)
≥ 3

4
,

with T2 � 1
λr−λr+1

log 1
δ2 .

B.6 Proof of Theorem 3.8

Proof. The technique is almost the same as in Theorem 3.5. We have

E
[
∆ζij,η(t)|U, zbt/ηch+h

]
= E

[
η−1/2e′>j Q(Z(t+ η)− Z(t))>ei|U, zbt/ηch+h

]
= ησiζij,η − ηe′>j Q(U

>
ΛU)Z

>
ei + ηe′>j QZ

>
EΛei − ηe′>j Q(U

>
EΛU)Z

>
ei

+O(η3/2‖Λ‖22),

and the variance satisfies

E
[
(∆ζij,η(t))2|U(t), zbt/ηch+h

]
= E

[
η−1/2e′>j Q(Z(t+ η)− Z(t))>ei|U, zbt/ηch+h

]
= ηE

[
(e′>j QU

>
X(I − UU>)ei)

2|U, zbs/ηch+h

]
+O(η2‖Λ‖22).

Thus, with σmin(U
>

ΛU) ≥ λr −O(δ) by Lemma B.1, we have

lim
η→0

E
[

∆ζij,η(t)

η
|U, zbt/ηch+h

]
= Kijζij,η(t) with Kij ∈ [λi − λ1, λi − λr],

lim
η→0

E
[

[∆ζij,η(t)]2

η
|U, zbt/ηch+h

]
<∞.

B.7 Proof of Proposition 3.9

Proof. The proof is an application of Markov’s inequality. Observe again that
∥∥cos Θ(Er, U(t))

∥∥2

F =

η
∑m
i=r+1

∑r
j=1 ζ

2
ij(t). The expectation of ζ2

ij(t) can be found as follows,

E[ζ2
ij(t)] = ζ2

ij(0)e2Kijt +
G2
ij

2Kij
(e2Kijt − 1)

≤ ζ2
ij(0)e2(λr+1−λr)t +

G2
ij

2(λr − λr+1)
.

By Markov’s inequality, we have

P
(∥∥cos Θ(Er, U(t))

∥∥2

F > ε
)
≤

E
[
η
∑m
i=r+1

∑r
j=1 ζ

2
ij(t)

]
ε

≤ η

ε

m∑
i=r+1

r∑
j=1

ζ2
ij(0)e2(λr+1−λr)t +

η

ε
r

Gm
2(λr − λr+1)

.
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Note that ‖ cos Θ(Er, U
η
(t))‖2F weakly converges to ‖ cos Θ(Er, U(t))‖2F, then we need at most T3

time satisfying

η

ε

m∑
i=r+1

r∑
j=1

ζ2
ij(0)e2(λr+1−λr)T3 +

η

ε
r

Gm
2(λr − λr+1)

≤ 1

8
.

Rearrange and combine with η
∑m
i=r+1

∑r
j=1 ζ

2
ij(0) ≤ δ2, we get

T3 =
1

2(λr − λr+1)
log

(
8(λr − λr+1)δ2

(λr − λr+1)ε− 4ηrGm

)
.

B.8 Proof of Corollary 3.10

Proof. We list the time upper bound given in the Stage 1, Stage 2 and Stage 3,

T1 =
1

λr − λr+1
log

(
2(λr − λr+1)η−1δ2

[Φ−1( 1−ν/2
2 )]2G2

rr

+ 1

)
,

T2 =
1

2(λr − λr+1)
log

1

δ
,

T3 =
1

2(λr − λr+1)
log

(
8(λr − λr+1)δ2

(λr − λr+1)ε− 4ηrB

)
.

Choose the step size η satisfies

η � (λr − λr+1)ε

5rGm
.

With such a choice of η and δ = O(η1/2), we have

log

(
(λr − λr+1)δ2

(λr − λr+1)ε− 4ηrGm

)
� log

λr − λr+1

rGm
.

The total time T is upper bounded by

T = T1 + T2 + T3

=
1

2(λr − λr+1)
log

(
2(λr − λr+1)η−1δ2

[Φ−1( 1−ν/2
2 )]2G2

rr

+ 1

)
+

1

2(λr − λr+1)
log

1

δ

+
1

2(λr − λr+1)
log

(λr − λr+1)εη−1 − 4rGm
(λr − λr+1)δ2

� 1

2(λr − λr+1)
+

1

2(λr − λr+1)
log

r

ε
+

1

2(λr − λr+1)
log

1

rGm

� 1

λr − λr+1
log

rGm
ε(λr − λr+1)

.
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