
Theoretical Linear Convergence of Unfolded ISTA and Its
Practical Weights and Thresholds (Supplementary Material)

Some notation For any n-dimensional vector x ∈ <n, subscript xS means the part of x that is
supported on the index set S:

xS , [xi1 , xi2 , · · · , xi|S| ]
T , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

where |S| is the size of set S. For any matrix W ∈ <m×n,

W (S, S) ,

 W (i1, i1),W (i1, i2), · · · ,W (i1, i|S|)
W (i2, i1),W (i2, i2), · · · ,W (i2, i|S|)

· · ·
W (i|S|, i1),W (i|S|, i2), · · · ,W (i|S|, i|S|)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

W (S, :) ,

 W (i1, 1),W (i1, 2), · · · ,W (i1, n)
W (i2, 1),W (i2, 2), · · · ,W (i2, n)

· · ·
W (i|S|, 1),W (i|S|, 2), · · · ,W (i|S|, n)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

W (:, S) ,

W (1, i1),W (1, i2), · · · ,W (1, i|S|)
W (2, i1),W (2, i2), · · · ,W (2, i|S|)

· · ·
W (n, i1),W (n, i2), · · · ,W (n, i|S|)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|.

A Proof of Theorem 1

Proof. By LISTA model (4), the output of the k-th layer xk depends on parameters, observed
signal b and initial point x0: xk

(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, b, x

0
)

. Since we assume (x∗, ε) ∈ X (B, s, 0),

the noise ε = 0. Moreover, A is fixed and x0 is taken as 0. Thus, xk therefore depends on
parameters and x∗: xk

(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, x

∗
)

In this proof, for simplicity, we use xk denote

xk
(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, x

∗
)

.

Step 1 Firstly, we prove θk → 0 as k →∞.

We define a subset of X (B, s, 0) given 0 < B̃ ≤ B:

X̃ (B, B̃, s, 0) ,
{

(x∗, ε)
∣∣∣B̃ ≤ |x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ε = 0

}
⊂ X (B, s, 0).

Since xk → x∗ uniformly for all (x∗, 0) ∈ X (B, s, 0), so does for all (x∗, 0) ∈ X̃ (B,B/10, s, 0).
Then there exists a uniform K1 > 0 for all (x∗, 0) ∈ X̃ (B,B/10, s, 0), such that |xki − x∗i | < B/10
for all i = 1, 2, · · · , n and k ≥ K1, which implies

sign(xk) = sign(x∗), ∀k ≥ K1. (21)

The relationship between xk and xk+1 is

xk+1 = ηθk
(
W k

2 x
k +W k

1 b
)
.

Let S = support(x∗). Then, (21) implies that, for any k ≥ K1 and (x∗, 0) ∈ X̃ (B,B/10, s, 0), we
have

xk+1
S = ηθk

(
W k

2 (S, S)xkS +W k
1 (S, :)b

)
.

The fact (21) means xk+1
i 6= 0,∀i ∈ S. By the definition ηθ(x) = sign(x) max(0, |x| − θ), as long

as ηθ(x)i 6= 0, we have ηθ(x)i = xi − θ sign(xi). Thus,

xk+1
S = W k

2 (S, S)xkS +W k
1 (S, :)b− θk sign(x∗S).
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Furthermore, the uniform convergence of xk tells us, for any ε > 0 and (x∗, 0) ∈ X̃ (B,B/10, s, 0),
there exists a large enough constant K2 > 0 and ξ1, ξ2 ∈ <|S| such that xkS = x∗S + ξ1, x

k+1
S =

x∗S + ξ2 and ‖ξ1‖2 ≤ ε, ‖ξ2‖2 ≤ ε. Then

x∗S + ξ2 = W k
2 (S, S)(x∗S + ξ1) +W k

1 (S, :)b− θk sign(x∗S).

Since the noise is supposed to be zero ε = 0, b = Ax∗. Substituting b with Ax∗ in the above equality,
we obtain

x∗S = W k
2 (S, S)x∗S +W k

1 (S, :)A(:, S)x∗S − θk sign(x∗S) + ξ,

where ‖ξ‖2 = ‖W k
2 (S, S)ξ1 − ξ2‖2 ≤ (1 +BW )ε, BW is defined in Theorem 1. Equivalently,(

I −W k
2 (S, S)−W k

1 A(S, S)
)
x∗S = θk sign(x∗S)− ξ. (22)

For any (x∗, 0) ∈ X̃ (B/2, B/10, s, 0), (2x∗, 0) ∈ X̃ (B,B/10, s, 0) holds. Thus, the above argu-
ment holds for all 2x∗ if (x∗, 0) ∈ X̃ (B/2, B/10, s, 0). Substituting x∗ with 2x∗ in (22), we get(

I −W k
2 (S, S)−W k

1 A(S, S)
)

2x∗S = θk sign(2x∗S)− ξ′ = θk sign(x∗S)− ξ′, (23)

where ‖ξ′‖2 ≤ (1 +BW )ε. Taking the difference between (22) and (23), we have(
I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S = −ξ′ + ξ. (24)

Equations (22) and (24) imply
θk sign(x∗S)− ξ = −ξ′ + ξ.

Then θk can be bounded with

θk ≤ 3(1 +BW )√
|S|

ε, ∀k ≥ max(K1,K2). (25)

The above conclusion holds for all |S| ≥ 1. Moreover, as a threshold in ηθ, θk ≥ 0. Thus,
0 ≤ θk ≤ 3(1 +BW )ε for any ε > 0 as long as k large enough. In another word, θk → 0 as k →∞.

Step 2 We prove that I −W k
2 −W k

1 A→ 0 as k →∞.

LISTA model (4) and b = Ax∗ gives

xk+1
S =ηθk

(
W k

2 (S, :)xk +W k
1 (S, :)b

)
=ηθk

(
W k

2 (S, :)xk +W k
1 (S, :)A(:, S)x∗S

)
∈W k

2 (S, :)xk +W k
1 (S, :)A(:, S)x∗S − θk∂`1(xk+1

S ),

where ∂`1(x) is the sub-gradient of ‖x‖1. It is a set defined component-wisely:

∂`1(x)i =

{
{sign(xi)} if xi 6= 0,

[−1, 1] if xi = 0.
(26)

The uniform convergence of xk implies, for any ε > 0 and (x∗, 0) ∈ X (B, s, 0), there exists a
large enough constant K3 > 0 and ξ1, ξ2 ∈ <n such that xk = x∗ + ξ3, x

k+1 = x∗ + ξ4 and
‖ξ3‖2 ≤ ε, ‖ξ4‖2 ≤ ε. Thus,

x∗S + (ξ4)S ∈W k
2 (S, S)x∗S +W k

2 (S, :)ξ3 +W k
1 A(S, S)x∗S − θk∂`1(xk+1

S )(
I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S ∈W k

2 (S, :)ξ3 − (ξ4)S − θk∂`1(xk+1
S )

By the definition (26) of ∂`1, every element in ∂`1(x),∀x ∈ < has a magnitude less than or equal to
1. Thus, for any ξ ∈ `1(xk+1

S ), we have ‖ξ‖2 ≤
√
|S|, which implies∥∥∥(I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S

∥∥∥
2
≤ ‖W k

2 ‖2ε+ ε+ θk
√
|S|.
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Combined with (25), we obtain the following inequality for all k ≥ max(K1,K2,K3):∥∥∥(I −W k
2 (S, S)−W k

1 A(S, S)
)
x∗S

∥∥∥
2
≤ ‖W k

2 ‖2ε+ ε+ 3(1 +BW )ε = 4(1 +BW )ε.

The above inequality holds for all (x∗, 0) ∈ X (B, s, 0), which implies, for all k ≥
max(K1,K2,K3),

σmax

(
I −W k

2 (S, S)−W k
1 A(S, S)

)
= sup

support(x∗)=S
‖x∗i ‖2=B

{‖(I −W k
2 (S, S)−W k

1 A(S, S))x∗S‖2
B

}

≤ sup
(x∗,0)∈X (B,s,0)

{‖(I −W k
2 (S, S)−W k

1 A(S, S))x∗S‖2
B

}
≤4(1 +BW )

B
ε.

Since s ≥ 2, I − W k
2 (S, S) − W k

1 A(S, S) → 0 uniformly for all S with 2 ≤ |S| ≤ s. Then,
I −W k

2 −W k
1 A→ 0 as k →∞.

B Proof of Theorem 2

Before proving Theorem 2, we introduce some definitions and a lemma.
Definition 1. Mutual coherence µ of A ∈ <m×n (each column of A is normalized) is defined as:

µ(A) = max
i 6=j

1≤i,j≤n

|(Ai)>Aj |, (27)

where Ai refers to the ith column of matrix A.

Generalized mutual coherence µ̃ of A ∈ <m×n (each column of A is normalized) is defined as:

µ̃(A) = inf
W∈<m×n

(Wi)
TAi=1,1≤i≤n

{
max
i 6=j

1≤i,j≤n

|(Wi)
>Aj |

}
. (28)

The following lemma tells us the generalized mutual coherence is attached at some W̃ ∈ <m×n.

Lemma 1. There exists a matrix W̃ ∈ <m×n that attaches the infimum given in (28):

(W̃i)
TAi = 1, 1 ≤ i ≤ n, max

i6=j
1≤i,j≤n

|(W̃i)
>Aj | = µ̃

Proof. Optimization problem given in (28) is a linear programming because it minimizing a piece-
wise linear function with linear constraints. Since each column of A is normalized, there is at least
one matrix in the feasible set:

A ∈ {W ∈ <m×n : (Wi)
TAi = 1, 1 ≤ i ≤ n}.

In another word, optimization problem (28) is feasible. Moreover, by the definition of infimum bound
(28), we have

0 ≤ µ̃(A) ≤ max
i6=j

1≤i,j≤n

|(Ai)>Aj | = µ(A).

Thus, µ̃ is bounded. According to Corollary 2.3 in [29], a feasible and bounded linear programming
problem has an optimal solution.

Based on Lemma 1, we define a set of “good” weights which W ks are chosen from:
Definition 2. Given A ∈ <m×n, a weight matrix is “good” if it belongs to

XW (A) = arg min
W∈<m×n

{
max

1≤i,j≤n
|Wi,j | : (Wi)

TAi = 1, 1 ≤ i ≤ n, max
i6=j

1≤i,j≤n

|(Wi)
>Aj | = µ̃

}
. (29)

Let CW = max1≤i,j≤n |Wi,j |, if W ∈ XW (A).
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With definitions (28) and (29), we propose a choice of parameters:

W k ∈ XW (A), θk = sup
(x∗,ε)∈X (B,s,σ)

{µ̃‖xk(x∗, ε)− x∗‖1}+ CWσ, (30)

which are uniform for all (x∗, ε) ∈ X (B, s, σ). In the following proof line, we prove that (30) leads
to the conclusion (14) in Theorem 2.

Proof of Theorem 2

Proof. In this proof, we use the notation xk to replace xk(x∗, ε) for simplicity.

Step 1: no false positives. Firstly, we take (x∗, ε) ∈ X (B, s, σ). Let S = support(x∗). We want
to prove by induction that, as long as (30) holds, xki = 0,∀i /∈ S, ∀k (no false positives). When
k = 0, it is satisfied since x0 = 0. Fixing k, and assuming xki = 0,∀i /∈ S, we have

xk+1
i =ηθk

(
xki −

∑
j∈S

(W k
i )T (Axk − b)

)
=ηθk

(
−
∑
j∈S

(W k
i )TAj(x

k
j − x∗j ) + (W k

i )T ε
)
, ∀i /∈ S.

Since θk = µ̃ supx∗,ε{‖xk − x∗‖1}+ CWσ and W k ∈ XW (A),

θk ≥ µ̃‖xk − x∗‖1 + CW ‖ε‖1 ≥
∣∣∣−∑

j∈S
(W k

i )TAj(x
k
j − x∗j ) + (W k

i )T ε
∣∣∣,∀i /∈ S,

which implies xk+1
i = 0,∀i /∈ S by the definition of ηθk . By induction, we have

xki = 0,∀i /∈ S, ∀k. (31)

In another word, threshold rule in (30) ensures no false positives9 for all xk, k = 1, 2, · · ·

Step 2: error bound for one (x∗, ε). Next, let’s consider the components on S. For all i ∈ S,

xk+1
i = ηθk

(
xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε

)
∈ xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε− θk∂`1(xk+1

i ),

where ∂`1(x) is defined in (26). Since (W k
i )TAi = 1, we have

xki − (W k
i )TAS(xkS − x∗S) =xki −

∑
j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j )− (xki − x∗i )

=x∗i −
∑

j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j ).

Then,

xk+1
i − x∗i ∈ −

∑
j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j ) + (W k

i )T ε− θk∂`1(xk+1
i ), ∀i ∈ S.

By the definition (26) of ∂`1, every element in ∂`1(x),∀x ∈ < has a magnitude less than or equal to
1. Thus, for all i ∈ S,

|xk+1
i − x∗i | ≤

∑
j∈S,j 6=i

∣∣∣(W k
i )TAj

∣∣∣|xkj − x∗j |+ θk + |(W k
i )T ε|

≤µ̃
∑

j∈S,j 6=i

|xkj − x∗j |+ θk + CW ‖ε‖1

9In practice, if we obtain θk by training, but not (30), the learned θk may not guarantee no false positives for
all layers. However, the magnitudes on the false positives are actually small compared to those on true positives.
Our proof sketch are qualitatively describing the learning-based ISTA.
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Equation (31) implies ‖xk − x∗‖1 = ‖xkS − x∗S‖1 for all k. Then

‖xk+1 − x∗‖1 =
∑
i∈S
|xk+1
i − x∗i | ≤

∑
i∈S

(
µ̃
∑

j∈S,j 6=i

|xkj − x∗j |+ θk + CWσ
)

=µ̃(|S| − 1)
∑
i∈S
|xki − x∗i |+ θk|S|+ |S|CWσ

≤µ̃(|S| − 1)‖xk − x∗‖1 + θk|S|+ |S|CWσ

Step 3: error bound for the whole data set. Finally, we take supremum over (x∗, ε) ∈
X (B, x, σ), by |S| ≤ s,

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤ µ̃(s− 1) sup

x∗,ε
{‖xk − x∗‖1}+ sθk + sCWσ.

By θk = supx∗,ε{µ̃‖xk − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤ (2µ̃s− µ̃) sup

x∗,ε
{‖xk − x∗‖1}+ 2sCWσ.

By induction, with c = − log(2µ̃s− µ̃), C = 2sCW

1+µ̃−2µ̃s , we obtain

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤(2µ̃s− µ̃)k+1 sup

x∗,ε
{‖x0 − x∗‖1}+ 2sCWσ

( k+1∑
τ=0

(2µ̃s− µ̃)τ
)

≤(2µ̃s− µ̃)ksB + Cσ = sB exp(−ck) + Cσ.

Since ‖x‖2 ≤ ‖x‖1 for any x ∈ <n , we can get the upper bound for `2 norm:

sup
x∗,ε
{‖xk+1 − x∗‖2} ≤ sup

x∗,ε
{‖xk+1 − x∗‖1} ≤ sB exp(−ck) + Cσ.

As long as s < (1 + 1/µ̃)/2, c = − log(2µ̃s− µ̃) > 0, then the error bound (14) holds uniformly
for all (x∗, ε) ∈ X (B, s, σ).

C Proof of Theorem 3

Proof. In this proof, we use the notation xk to replace xk(x∗, ε) for simplicity.

Step 1: proving (17). Firstly, we assume Assumption 1 holds. Take (x∗, ε) ∈ X (B, s, σ). Let
S = support(x∗). By the definition of selecting-support operator ηss

pk

θk
, using the same argument

with the proof of Theorem 2, we have LISTA-CPSS also satisfies xki = 0,∀i /∈ S, ∀k (no false
positive) with the same parameters as (30).

For all i ∈ S, by the definition of ηss
pk

θk
, there exists ξk ∈ <n such that

xk+1
i =ηss

pk

θk

(
xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε

)
=xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε− θkξki ,

where

ξki


= 0 if i /∈ S
∈ [−1, 1] if i ∈ S, xk+1

i = 0

= sign(xk+1
i ) if i ∈ S, xk+1

i 6= 0, i /∈ Spk(xk+1),

= 0 if i ∈ S, xk+1
i 6= 0, i ∈ Spk(xk+1).

The set Sp
k

is defined in (12). Let

Sk(x∗, ε) = {i|i ∈ S, xk+1
i 6= 0, i ∈ Sp

k

(xk+1)},

where Sk depends on x∗ and ε because xk+1 depends on x∗ and ε. Then, using the same argument
with that of LISTA-CP (Theorem 2), we have

‖xk+1
S − x∗S‖1 ≤ µ̃(|S| − 1)‖xkS − x∗S‖1 + θk

(
|S| − |Sk(x∗, ε)|

)
+ |S|CW ‖ε‖1.
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Since xki = 0,∀i /∈ S, ‖xk − x∗‖2 = ‖xkS − x∗S‖2 for all k. Taking supremum over (x∗, ε) ∈
X (B, s, σ), we have

sup
x∗,ε
‖xk+1 − x∗‖1 ≤ (µ̃s− 1) sup

x∗,ε
‖xk − x∗‖1 + θk(s− inf

x∗,ε
|Sk(x∗, ε)|) + sCWσ.

By θk = supx∗,ε{µ̃‖xk − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤

(
2µ̃s− µ̃− µ̃ inf

x∗,ε
|Sk(x∗, ε)|

)
sup
x∗,ε
{‖xk − x∗‖1}+ 2sCWσ.

Let
ckss =− log

(
2µ̃s− µ̃− µ̃ inf

x∗,ε
|Sk(x∗, ε)|

)
Css =2sCW

∞∑
k=0

k∏
t=0

exp(−ctss)).

Then,

sup
x∗,ε
{‖xk − x∗‖1}

≤
( k−1∏
t=0

exp(−ctss)
)

sup
x∗,ε
{‖x0 − x∗‖1}+ 2sCW

( 0∏
t=0

exp(−ctss)) + · · ·+
k−1∏
t=0

exp(−ctss))
)
σ

≤sB
( k−1∏
t=0

exp(−ctss)
)

+ Cssσ ≤ B exp
(
−
k−1∑
t=0

ctss

)
+ Cssσ.

With ‖x‖2 ≤ ‖x‖1, we have

sup
x∗,ε
{‖xk − x∗‖2} ≤ sup

x∗,ε
{‖xk − x∗‖1} ≤ sB

( k−1∏
t=0

exp(−ctss)
)

+ Cssσ.

Since |Sk| means the number of elements in Sk, |Sk| ≥ 0. Thus, ckss ≥ c for all k. Consequently,

Css ≤ 2sCW

( ∞∑
k=0

exp(−ck))
)

= 2sCW

( ∞∑
k=0

(2µ̃s− µ̃)k
)

=
2sCW

1 + µ̃− 2µ̃s
= C.

Step 2: proving (18). Secondly, we assume Assumption 2 holds. Take (x∗, ε) ∈ X̄ (B,B, s, σ).
The parameters are taken as

W k ∈ XW (A), θk = sup
(x∗,ε)∈X̄ (B,B,s,σ)

{µ̃‖xk(x∗, ε)− x∗‖1}+ CWσ.

With the same argument as before, we get

sup
(x∗,ε)∈X̄ (B,B,s,σ)

{‖xk − x∗‖2} ≤ sB exp
(
−
k−1∑
t=0

c̃tss

)
+ C̃ssσ,

where
c̃kss =− log

(
2µ̃s− µ̃− µ̃ inf

(x∗,ε)∈X̄ (B,B,s,σ)
|Sk(x∗, ε)|

)
≥ c

C̃ss =2sCW

( ∞∑
k=0

k∏
t=0

exp(−c̃tss))
)
≤ C.

Now we consider Sk in a more precise way. The definition of Sk implies

|Sk(x∗, ε)| = min
(
pk,# of non-zero elements of xk+1

)
. (32)

By Assumption 2, it holds that ‖x∗‖1 ≥ B ≥ 2Cσ. Consequently, if k > 1/c(log(sB/Cσ)), then

sB exp(−ck) + Cσ < 2Cσ ≤ ‖x∗‖1,

6



which implies

‖xk+1 − x∗‖1 ≤ sB(

k∏
t=0

exp(−c̃tss)) + C̃ssσ ≤ sB exp(−ck) + Cσ < ‖x∗‖1.

Then # of non-zero elements of xk+1 ≥ 1. (Otherwise, ‖xk+1 − x∗‖1 = ‖0− x∗‖1, which contra-
dicts.) Moreover, pk = min(pk, s) for some constant p > 0. Thus, as long as k ≥ 1/p, we have
pk ≥ 1. By (32), we obtain

|Sk(x∗, ε)| > 0, ∀k > max
(1

p
,

1

c
log
( sB
Cσ

))
, ∀(x∗, ε) ∈ X̄ (B,B, s, σ).

Then, we have c̃kss > c for large enough k, consequently, C̃ss < C.

D The adaptive threshold rule used to produce Fig. 4

Algorithm 1: A thresholding rule for LASSO (Similar to that in [23])

Input :Maximum iteration K, initial λ0, ε0.
Initialization :Let x0 = 0, λ1 = λ0, ε1 = ε0.

1 for k = 1, 2, · · · ,K do
2 Conduct ISTA: xk = ηλk/L

(
xk−1 − 1

LA
T (Axk−1 − b)

)
.

3 if ‖xk − xk−1‖ < εk then
4 Let λk+1 ← 0.5λk, εk+1 ← 0.5εk.
5 else
6 Let λk+1 ← λk, εk+1 ← εk.
7 end
8 end

Output: xK

We take λ0 = 0.2, ε0 = 0.05 in our experiments.

E Training Strategy

In this section we have a detailed discussion on the stage-wise training strategy in empirical exper-
iments. Denote Θ = {(W k

1 ,W
k
2 , θ

k)}K−1
k=0 as all the weights in the network. Note that (W k

1 ,W
k
2 )

can be coupled as in (7). Denote Θτ = {(W k
1 ,W

k
2 , θ

k)}τk=0 all the weights in the τ -th and all the
previous layers. We assign a learning multiplier c(·), which is initialized as 1, to each weight in the
network. Define an initial learning rate α0 and two decayed learning rates α1, α2. In real training, we
have α1 = 0.2α0, α2 = 0.02α0. Our training strategy is described as below:

• Train the network layer by layer. Training in each layer consists of 3 stages.

• In layer τ , Θτ−1 is pre-trained. Initialize c(W τ
1 ), c(W τ

2 ), c(θτ ) = 1. The actual learning
rates of all weights in the following are multiplied by their learning multipliers.

– Train (W τ
1 ,W

τ
2 , θ

τ ) the initial learning rate α0.
– Train Θτ = Θτ−1 ∪ (W τ

1 ,W
τ
2 , θ

τ ) with the learning rates α1 and α2.

• Multiply a decaying rate γ (set to 0.3 in experiments) to each weight in Θτ .

• Proceed training to the next layer.

The layer-wise training is widely adopted in previous LISTA-type networks. We add the learning
rate decaying that is able to stabilize the training process. It will make the previous layers change
very slowly when the training proceeds to deeper layers because learning rates of first several layers
will exponentially decay and quickly go to near zero when the training process progresses to deeper
layers, which can prevent them varying too far from pre-trained positions. It works well especially
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when the unfolding goes deep to K > 10. All models trained and reported in experiments section are
trained using the above strategy.

Remark While adopting the above stage-wise training strategy, we first finish a complete training
pass, calculate the intermediate results and final outputs, and then draw curves and evaluate the
performance based on these results, instead of logging how the best performance changes when the
training process goes deeper. This manner possibly accounts for the reason why some curves plotted
in Section 4.1 display some unexpected fluctuations.
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