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Here we present more details of our analysis. This document contains four sections and three figures:

S1 Variable standardization, model selection, and non-identifiability

It is important that the variables used in g are standardized such that the magnitudes of different weights are comparable.
For continuous variables (Stimuli A & B), we normalize the values such that they reflect a standard normal distribution
(i.e., subtract the mean and divide by the standard deviation). For categorical variables (previous answer, history, reward
dependencies), we constrain values to be {−1, 0,+1}. Specifically, the answer variable is coded as a -1 if the correct
answer on the previous trial was left, +1 if right; the choice variable is -1 if the animal’s choice on the previous trial
was left, +1 if right; and the reward variable is -1 if a reward was not received on the previous trial, +1 if a reward
was received. For these variables depending on the previous trial, they are set to 0 if the previous trial was a mistrial.
Mistrials (instances where the animal did not complete the trial, e.g., by breaking center fixation before the end of the
trial) are otherwise omitted from the analysis. The choice bias is fixed to be a constant +1.

The decision as to what variables to include when modeling a particular data set can be determined solely using the
log-evidence as discussed in Sec. 3.2 — the model with the highest log-evidence is considered to be best (though this
comparison could also be swapped with a more expensive comparison of cross-validated log-likelihood, see Sec. S4 and
Fig. S1). Unfortunately, there is no way to make this comparison between models without first running a model with
every combination of variables and choosing after the fact. However, the fitting can be parallelized across models (i.e.,
with 3 optional history variables, there are 8 possible models, which can each be fit in parallel).

Finally, we address a concern about non-identifiability in our model. This occurs if one variable is a linear combination
of some subset of other variables, in which case there are many weight values that all correspond to a single identical
model. Fortunately, the posterior confidence intervals discussed in Sec. S2 will indicate that a model is in a non-
identifiable regime — since the weights can take a wide range of values to represent the same model, the confidence
intervals will be very large on the weights creating the non-identifiability.

S2 Calculation of posterior credible intervals

In order to estimate the extent to which our recovered weights wMAP are constrained by the data, we adapted a fast
method for inverting block-tridiagonal matrices to calculate central blocks of the inverse of our (extremely large)
Hessian, providing a Gaussian approximate marginal posterior over the time-varying weight trajectories (as shown
in Fig. 3). The algorithm is taken from Appendix B of [S2] which discusses calculating the diagonal elements of the
inverse of a tridiagonal matrix, then describes how the approach can be generalized to block-tridiagonal matrices. The
algorithm requires order NK3 scalar operations for calculating the central blocks of our inverse Hessian. If H is the
Hessian matrix of our weights corresponding to the model with the highest log-evidence (returned at the end of the
optimization procedure outlined in Algorithm1 in the main text), then this calculation yields:

A = diag(H−1) (S1)

Using the diagonal of the inverse Hessian, we can take
√
A to estimate a one standard deviation interval on either side

of each weight on every trial. By using two standard deviations, we approximate the 95% posterior credible interval
shown throughout the paper.

S3 Calculation of empirical performance measures

Here we explain how the two empirical performance measures (shown in Fig. 4 in the main text) were calculated.

The first measure, accuracy, is empirically calculated by constructing a vector of length N where the ith entry is a 0
if the animal answered incorrectly on that trial and a 1 if answered correctly. This vector is then smoothed (we use a
Gaussian kernel of σ = 50) to get the empirical accuracy plotted in red in Fig. 4a. To calculate the predicted accuracy,
we use the cross-validated weights recovered for each trial wt (cross-validation procedure detailed below in Sec. S4)
and the inputs on that trial gt to calculate P (Right) (see Eq. 1); from that we then use the known correct answers to
calculate P (Correct) for each trial which we then smooth with the same Gaussian kernel to get the maroon line in Fig.
4a.

One of the strengths of our model is the ability to isolate a specific bias weight (blue in Figs. 3b+c) that is distinct
from other, potentially confounding aspects of behavior (e.g., increased sensitivity to a stimulus or a choice history
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dependency). What is often measured instead is simply a moving average of the fraction of trials where the animal
choose to go left (or right). Because training regimens do not always present left and right stimuli in equal proportion,
we instead define empirical bias here as a preference for left or right only on incorrect trials.

Specifically, we construct a vector of length N where the ith entry is the animal’s choice minus the correct answer,
where both choice and answer are coded such that “left” is 0 and “right” is 1. Thus, empirical bias is on each trial one
of {−1, 0,+1}. This vector is then smoothed (we use a Gaussian kernel of σ = 50) to get the empirical bias plotted in
blue in Fig. 4b. We calculate the predicted bias in a similar manner to the predicted performance, using cross-validated
weights to calculate P (Right) for each trial and substituting that value in for the animal’s choice — thus for each trial
we get a value from (−1,+1) which we then smooth with the same Gaussian kernel to get the purple line in Fig. 4b.

S4 Cross-validation

When making predictions about specific trials, the model should not be trained using those trials. We implement a
10-fold cross-validation procedure where the model uses a training set composed of a random 90% of trials at a time.
We modify the prior Σ discussed in Sec. 3.1 such that the gaps created by removing the test set are taken into account.
For example, if trial t is in the test set and trials t−1 and t+1 are in the training set, then we modify the value on the
diagonal of Σ corresponding to trial t−1 from σ2 to 2σ2 to account for the missing entry in Σ created by omitting trial
t from the training set. To predict the animal’s weights at a trial t, we use the cross-validation fold where t is in the
10% test set, and approximate wt by linearly interpolating from nearest adjacent trials in the training set. Thus, we can
infer a set of cross-validated weights for every trial from which we can use the carrier vector gt for that trial to get a
cross-validated P (Right).

Figure S1. Hyperparameter optimization Our decoupled Laplace method directly searches the hyperparameter
space to find the best set of values where the evidence (or the marginal likelihood) is maximized. In order to show the
efficacy of our method, we confirm with a grid search that the algorithm converges on the hyperparameters with the
highest evidence and highest cross-validated log-likelihood.

Figure S2. Rat data Extending from Figure 3b, we show results from an additional 8 rats not shown in the main text.
(data from [S1])

Figure S3. Human data Extending from Figure 3c, we show results from the remaining 8 human subjects not shown
in the main text. (data from [S1])
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Figure S1: Hyperparameter optimization. Here we simulate two weights and search the 2-dimensional hyperparam-
eter space of values for σ1 and σ2. Dots indicate the hyperparameter values recovered using our decoupled Laplace
algorithm, from 10 individual behavioral realizations (light blue dots, as in Fig. 2a) and averaged over all realizations
(dark blue dot with cross). We confirm that these are near the optimal pair of hyperparameters by comparing to (a) the
average log-evidence, and (b) the average cross-validated log-likelihood calculated on a fixed grid of hyperparameters
values, shown in gray-scale.
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Figure S2: Rat data. The psychometric weights recovered from the first 20,000 trials of 8 rats, as in Figure 3b. Also
included for each subject are the comparisons to conventional behavioral measures, as in Fig. 4.
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Figure S3: Human data. The psychometric weights recovered from each of the human subjects, as in Fig. 3c. Also
included for each subject are the comparisons to conventional behavioral measures, as in Fig. 4. Results for subject #6
were shown in the main text, and are omitted here.
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