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Abstract

Identifying the top-K frequent items in a collection or data stream is one of the
most common and important operations in large data processing systems. As a re-
sult, several solutions have been proposed to solve this problem approximately. We
observe that the existing algorithms, although theoretically sound, are suboptimal
from the performance perspective because of their limitations in exploiting paral-
lelism in modern distributed compute settings. In particular, for identifying top-K
frequent items, Count-Min Sketch (CMS) has an excellent update time, but lacks the
important property of reducibility which is needed for exploiting available massive
data parallelism. On the other end, the popular Frequent algorithm (FA) leads to
reducible summaries but its update costs are significant. In this paper, we present
Topkapi, a fast and parallel algorithm for finding top-K frequent items, which
gives the best of both worlds, i.e., it is reducible and has fast update time similar
to CMS. Topkapi possesses strong theoretical guarantees and leads to significant
performance gains due to increased parallelism, relative to past work.

1 Introduction

Counting and identifying frequently occurring items, or “heavy hitters”, is one of the most important
and intuitive metrics to gain insight into large-scale data. The naive way to extract top-K items from a
data stream is to count the exact number of occurrences of each distinct item, then sort the histogram
to obtain the most frequent items. This naive but popular approach suffers from a time complexity of
O(n log n), in which n is the total number of elements in the dataset, and also a space requirement
of O(n), assuming sorting is performed in linear space. In a distributed environment, where data
sharding is common, the problem is quite severe. We would have to keep a local frequency histogram
on each node, which is usually of size n itself. These local histograms will need to be communicated
across the nodes, and followed by global merge and sort operations. Thus, each node would need
to communicate O(n) sized histograms, which can lead to a significant communication bottleneck.
Consider the simple task of keeping track of most popular phrases, of up to 4 words, on twitter feeds.
With a vocabulary of over a million, the total number of items we need to keep track of becomes
n = (106)4 = 1024. Similarly, counts of the number of clicks on “Amazon.com”, given specific
user’s features and their combinations, in the past hour, are common in clickthrough prediction [12].
In general, the O(n) time complexity becomes unacceptably large for “big data”.
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Fortunately, approximations often suffice in practice. Frequencies in most real word applications
follow the Power Law [7], and therefore even approximately knowing the counts are enough to identify
frequent items, also known as heavy hitters, efficiently. This feasibility for approximations allows for
a significant reduction in computational and memory requirements. As a result, approximate counting
is a very active and widely studied research area. There has been a remarkable success in obtaining
algorithms for finding heavy hitters with exponential improvements in memory requirements, and a
lot is known about the theoretical complexity of these algorithms [3]. Several of these algorithms are
deployed in practice. Two notable algorithms include Count-Min Sketch (CMS) [7] which is hashing
based and the Frequent algorithm (FA) [10] which is based on maps (or dictionaries).

However, even after 30 years of research on approximate counting over data streams, developing a
practical algorithm that can fully utilize the massive amounts of available parallelism in the form
of multi-core and multi-node (or distributed parallelism) is still an active area of research. Prior
algorithms, such as [18], only rely on the theoretical reduction in communication, but require
synchronized updates, for every increment, making them expensive in practice. In [2], the authors
identify mergeable or reducible as a critical property that eliminates the need for synchronization.
With the reducibility property, every node can create its summarization of the local data and transmit
this exponentially small summary. Each of these little sketches can be merged to obtain the global
summary of the data from which global heavy hitters can be identified.

It was argued in [2] that most popular algorithms, including CMS, are not suitable for the distributed
setting because they lose the reducibility property, i.e., it is not possible to identify top-K by merging
local top-K and their CMS summaries. Our experiments (section 5.2.8) confirm the significantly poor
precision for CMS in distributed settings. Fortunately, the same paper [2] showed that FA is reducible
and thus suitable for distributed computing. However, FA is costly to update; an update operation
requires time that is linear in the size of the summary. Slow updates are also one of the main reason
why CMS, despite being theoretically inferior, is preferred [7]. In contrast, CMS has only logarithmic
update cost, which is desirable, but local CMS summaries cannot be combined (since they are not
reducible). Thus, even if CMS is known to be faster than FA, it is not a suitable option in distributed
setting.

To summarize, the popular hashing based CMS has logarithmic update cost but do not have the crucial
reducibility property required for utilizing massive parallelism. On the other hand, non-hashing
based FA summaries are reducible, but updates are significantly costly. In this paper, we show a
theoretically sound and superior algorithm which combines both CMS and FA in a novel way that
achieves the best-of-the-both worlds – logarithmic (efficient) updates as well as reducibility needed
for parallelism. Our experiments show that the new proposal is on average 2.5x faster in practice than
FA for distributed and multi-threaded execution.

Our Contributions The problem addressed by this paper is to identify the top-K frequent items in
a given data stream(formal definition in sec 2.1). For this problem, we present Topkapi, a fast and
parallel approximate algorithm. 1) Topkapi combines CMS and FA in a novel way that makes the
summary reducible and at the same time capable of enabling parallelism. 2) We show that Topkapi
retains the provable probabilistic error guarantees analogous to popular sketching algorithms in the
literature. 3) We provide optimized parallel implementations for FA, CMS and our proposed Topkapi
algorithm. Our implementation is optimized to overlap communication with computation and is
capable of exploiting both multi-node and multi-core parallelism effectively. 4) We provide rigorous
evaluations, profiling, and comparisons of two popular algorithms CMS and FA with Topkapi on
large-scale word counting benchmarks. Our experiments indicate significant performance gains with
Topkapi compared to existing approximate heavy hitters problem. 5) Our work also provides empirical
quantifications of the benefits of using approximate algorithms over exact state-of-art distributed
implementation in Spark. Our results show disruptive performance gains (sec 6 of Supplementary
document), with Topkapi, over some of the fastest known exact implementations, at the cost of small
approximations.

2 Background
2.1 Notations
We will refer the problem of finding the top-K most frequent items in the data stream as the “top-K
problem”. Let’s assume we have D distributed data streams {S1...SD}, for example, D text streams.
Let us assume that there are in total M words {w1...wm}. Our goal here is to find K most frequent
words in these streams as an aggregate, i.e., ∪Di=0Si where the union represents concatenation (or
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aggregation) of the streams. We represent the frequency of a word w by f . Also, let N denotes the
summation of all the frequencies, i.e., N =

∑
f . If the K-th most frequent word has frequency fK ,

then we want to report all the words for which f ≥ fK .

Several approximate formulations of the heavy hitter problem were proposed to overcome the
linear memory barrier. We use the standard formulation given in [2]. For details, refer to sec 1 of
Supplementary document.

We will interchangeably use the word sketches and summary. They mean the same thing. Approximate
algorithms for heavy-hitters produce a summary output which is typically much smaller than the data.
This summary can be used to answer the heavy-hitters or other estimation queries.

Since we will be using approximate (lossy) algorithms over distributed clusters, where we will need
to merge different summaries from different nodes, we need to define reducibility of the summaries
(or sketches). Reducibility will ensure that the algorithm can be parallelized efficiently. Our definition
of reducibility is inspired from the definition of mergeability in [2]. However, our definition is simpler
and more generic for better readability.

Reducible Summary: Given the output summary O1 from running algorithm A on data stream S1

and output summary O2 with running the same A on data S2. We call an algorithm reducible if we
can recover some summary Ô directly from the two output summaries O1 and O2, such that, if we
use the combined summary Ô to replace O, which is a summary obtained after running A on S1 ∪S2,
we still retain all theoretical guarantees of algorithm A. In addition, we want two more conditions: –
1) The computation cost of calculating Ô from O1 and O2 should be less than the cost of running A
over S1 ∪ S2 and 2) The space required by Ô should not be more than that of O.

Note that sometimes the algorithm A, such as FA (defined later), is sensitive to the order in which it
sees the input data. In such cases, we cannot guarantee that the combined summary O will be equal
to Ô, but so long as the final outputs have same accuracy guarantees and computation time, we can
distribute it efficiently.

2.2 Exact Algorithms
Exactly solving the top-K problem requires O(M) memory and have O(MlogM) runtime complex-
ity. One can compute all the frequencies f using standard word count or histogram computation.
Then sort the words based on the frequencies f as the key and report the top-K words. We can utilize
hash-maps to store words and update frequencies as we read the data. Finally, we sort the map.

A unique advantage of this exact method is that it is easy to parallelize. We can perform separate hash
map updates with separate data in parallel, and at the end, we perform reduction by key to get the
final frequencies. Then we sort the words to get the top-K frequent words. Several state-of-the-art
implementations, such as Spark based wordcount() + sort() use this method. However, our
experiments (sec 6 of Supplementary document) reveal that O(M) storage and communication, even
with the best possible distributed implementation can be orders of magnitude slower compared to
approximate solutions in a distributed setting.

2.3 Approximate Algorithms
Algorithms for finding approximate heavy hitters is a heavily studied topic in database and theory
community. These algorithms mainly come in two flavors - 1) counter-based and 2) sketch-based.

Counter-based Algorithms: Counter-based algorithms maintain a set of counters (maps) associated
with a subset of words (or maps with counters) from the data stream it has traversed. This subset
of words is called the monitored set. There are several variants, such as Frequent [10], Lossy
Counting [11], and Space Saving [13]. Please see [6] for a good survey on them. Note that, [6]
explored only sequential version of these algorithms whereas we are mainly interested in parallelism
here. In our work, for comparison with counter-based approach in general from the perspective
of parallelism, we consider one of the most popular variant – Frequent Items or simply Frequent
algorithm (FA) (a brief description of important features is given in sec 2 of Supplementary document).
The main advantage of this approach is the summaries are reducible whereas the main disadvantage
is high update time.

Sketch-based Algorithms: Instead of maintaining counters for a monitored set of words, sketch-
based algorithms use lossy hashes to create a summary which can be used to estimate the frequency of
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any given item. For this study, we consider one of the most popular and efficient among the sketching
algorithms – Count-Min Sketch (CMS), which is widely adopted in practice. Important algorithmic
aspects of CMS are described in sec 3 of Supplementary document. Sketch-based approach provides
fast update of summary but has significant disadvantage when it comes to reducibility because heap,
which is not reducible, is needed for recovering identity of counters.

Although there has been a significant development in past years on approximate heavy hitters [3; 14;
7; 11; 8], little focus has been given on the parallelism aspects except a very few, such as [17; 4; 5; 15].
When it comes to parallelism, there are several choices. Parallelizing the individual updates is not a
good option as the computation is too low to justify parallelism. Exploiting parallelism just for one
update is too fine-grained, and the overhead of parallelism would be much higher than the gain from
parallelism. Data parallelism, i.e., performing computation for different blocks of data in parallel, is
more preferred because we have a much better granularity of parallelism. Thus, with enough data, it
is always preferred to have each parallel process work on its own memory and later a one-time merge.
We also get a very high degree of parallelism due to the large size of the data. Thus, it is essential for
the algorithm to be reducible. However, with data parallelism, the algorithmic update time becomes
a factor with a significant impact on performance. [17; 4; 5] discuss parallel counter-based Space
Saving [13] algorithm over CPU, GPU, and distributed environment respectively. However, none
of them addresses distributed environment with multi-threading. Also, we can see in [4] that the
counter-based approach has significant update time even on massively-parallel architecture such as
GPU. Interestingly, [15] explored fine grain parallelism to speedup Space Saving on modern CPUs
with advanced vector instructions. This kind of exploitation of fine grain parallelism is complementary
to coarse grain parallelism which is the main focus of this work.

3 Our Proposal: Topkapi
3.1 Intuition
Consider the CMS matrix M (sec 3 of Supplementary document) without the overhead of updating
the heap for identifiability. Note that every row of this matrix is a simple hashed counter, and all rows
are independent. Thus, without the heaps, CMS are reducible summaries, i.e., different summaries
with the same hash functions can be merged by simply adding the sketches. The update time is
mere log 1

δ (δ is failure probability) which is also the number of independent hash functions needed.
Following [16], in all our experiments, only 4 hash functions suffice in practice. An important
observation is that the sketch matrix M is enough to estimate the counts of any given item accurately
but cannot identify the frequent items on its own. Thus, without identifiability, we need another pass
over every item, estimate its count, and then report top-K. Given the number of unique items is
astronomical, this is prohibitive. However, if we can somehow efficiently identify a small enough set
of candidates CS which likely contains the most frequent elements then we just have to check every
element in CS, instead of all the items.

It should be noted that due to simple hashing, every cell of CMS will count the total occurrence of
a small set of items ( εN in expectation). ε is approximation parameter. If a heavy hitter item HH
with f ≥ φ×N hashes to this counter, it is very likely to be the most frequent item in the cell. Thus,
if we can identify the heaviest element in the subset of stream in every cell efficiently, then there is
hope of getting a good enough candidate set CS.

FA keeps the identity of the heavy hitters in a map. The update time is equal to the size of the map,
which needs to be 1

ε for reporting all the heavy hitters. However, if we are interested in just the
heaviest item, then we don’t need maps and the update time will be constant. We just need two cells;
one stores the identity of the heaviest element and another a counter to increment/decrement.

The above observations form the basis of our proposal. We propose to associate a FA summary of
size 1 to each counter of CMS. We later show that it has sound theoretical guarantees analogous to
CMS for solving approximate heavy hitters problem. Furthermore, this modification eliminates all
the issues mentioned in section 2.3.

3.2 Topkapi: Algorithm Descriptions
Topkapi contains a CMS summary, i.e., a two-dimensional array l×b M . As a reminder, b represents
number of buckets for a hash function and l represents the number of hash functions. We have
l pair-wise independent hash functions h1, h2, ..., hl to map words to the range {1, 2, ..., b}. b is
set to ( 1ε ) and l is set to log 2

δ . Now, each cell Mi,j has in addition two more components: - 1)
LHHcountij representing the count of frequent item associated with Mij (Local Heavy Hitter
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count) and 2) LHHij containing the word (identity) whose frequency is stored in the LHHcountij .
This LHHij will ideally be the most frequent item mapping to Mij . Note, each item is mapped to l
cells in M .

During initialization, all the LHHcounts as well as M are set to 0. During processing of data
stream, we do the usual update of M , the CMS. In addition, for each word w, we compare w with the
LHH of the cell at hi(w). If it matches, then we increment the corresponding LHHcount of the
cell at hi(w). Otherwise, we decrement the LHHcount. If the decrement causes the LHHcount to
become 0, then we replace the LHH of hi(w) with w and set the corresponding LHHcount to 1.
We do this ∀i : 1 ≤ i ≤ l.
In the end, we consider the union of all the unique LHH values as the candidate set CS. We estimate
their counts using the CMS and finally report all elements with the count higher than some threshold
like φ×N for φ-heavy hitters problem.

3.3 Topkapi: Properties
Here, we summarize the main algorithmic properties of Topkapi. For detailed theoretical analysis of
Topkapi, please see sec 4 of Supplementary document. An important thing to note here is that we do
not require any heap for Topkapi.

1. Topkapi with size l = log[ 2δ ] and b = 1
ε solves the φ-approximate heavy hitter problem

provided (ε < φ).

2. Topkapi data structure is reducible. As a result, Topkapi can exploit parallelism easily.

3. Topkapi data structure has update cost of log 2
δ which is similar to logarithmic update cost

of CMS.

It is noteworthy to mention that if we want to get the frequency estimates along with the identities of
top-K frequent elements, we can use both CMS count (overestimates) and LHH count (underestimates)
to take an average and decrease the error constants, else we can always use the estimate from CMS.
So, we are strictly better.

3.4 Practical Considerations
In Topkapi, the only use of CMS counters in M is estimation. It turns out that in practice LHHcount
itself is also a good estimator of the true frequency of LHH . This is because we are using FA
summary of size 1 on a tiny stream. Thus, if our goal is only to get the identities of top-K frequent
elements, we can altogether get rid of CMS counters and reduce the memory overhead significantly.

Finally, towards the end, instead of considering all the unique LHHs, we can be little smarter. Note
that every item is mapped to every row and all the rows are independent. The idea is to perform a
linear scan over only the 1st array (l = 1) of counters and add LHH into CS if the corresponding
LHH is greater than a threshold in any of the l rows. Then we sort the candidate set CS to identify
top-K candidates according to their LHHcounts and report the LHHs associated with highest
LHHcounts. Pseudocode of this practical version of Topkapi is given in Algorithm 1. We will use
this algorithm in experiments.

4 Implementation

It is imperative that we use multi-core parallelism along with distributed parallelism to make effective
use of current and future computing systems.

4.1 Multi-core Parallelism
When considering intra-node parallelism using multi-threaded execution, we have several options for
Topkapi. We can use different threads for different hash functions in {h1, h2, ..., hl}. However, this
limits the number of threads to the number of hash functions which is usually quite low. Another
option is to use different threads to process different chunks of data and use a single sketch shared
across different threads. The threads will then have to use locks or atomic variables to perform the
shared update of counters in the sketch. The use of locks or atomic variables can create significant
contention due to the distribution of word frequencies. As the heavy hitters are most frequent, it is
highly likely that many threads encounter the same heavy hitter word and try to update the same
counter in the sketch.
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Algorithm 1: Topkapi
Data: Input text stream S, parameter K
Result: top-K frequent words in HH

1 b←− d 1ε e
2 l←− log 2

δ
3 C ←− l×b counters
4 C[i][j].LHHcount←− 0 ∀i ∈ {1, 2, .., l} and ∀j ∈
{1, 2, ..., b}

5 for w ∈ stream S do
6 for i ∈ 1, 2, ..., l do
7 calculate hi(w)
8 if C[i][hi(w)].LHH == w then
9 C[i][hi(w)].LHHcount←−

C[i][hi(w)].LHHcount+ 1
10 else
11 C[i][hi(w)].LHHcount←−

C[i][hi(w)].LHHcount− 1
12 if C[i][hi(w)].LHHcount == 0 then
13 C[i][hi(w)].LHH ←− w
14 C[i][hi(w)].LHHcount←− 1

15 for j ∈ 1, 2, ..., b do
16 if C[1][j].LHH OR C[i][hi(C[1][j].LHH)].LHH >

Threshold ∀i ∈ {2, .., l} then
17 CS.insert(C[1][j])

18 sort(CS) in descending order of LHHcount
19 report LHH of CS entries with top K highest
LHHcount

We can mitigate the problems men-
tioned in the previous options by ex-
ploiting high level of data parallelism
at the cost of extra local memory.
We can create thread-local copies of
sketches and use different threads to
process different chunks of data.Then
we exploit the reducibility property
of the sketch and merge the thread-
local sketches at the end of the data
traversal to produce a single sketch
for a node. We observe that even for
a large dataset, we only need a small
sketch. For example, with l = 4 and
b = 1024, the size of the count array
is 16KB and the size of the id array is
64KB. So, the amount of extra mem-
ory required is quite low. As different
threads are working on their own local
copies of the sketch, we do not need
locks to update a counter anymore.

4.2 Distributed Parallelism
Since our algorithm is reducible, dis-
tributed parallelism is quite straight-
forward. We start with multi-threaded
execution of Topkapi on each node
following the method mentioned in
section 4.1. When we have the final
summaries ready at each node, we per-
form a parallel reduction or merging
of the summaries to get a final sum-
mary at the root node. Once we have

that, we use the final summary at the root node to perform the potential top-K candidate set (CS)
construction, sort CS, and report top-K words steps from the sequential Topkapi pseudocode
mentioned in Algorithm 1.

Communication cost - One important factor considering distributed computation is the communica-
tion overhead. The communication traffic for merging summaries between two nodes is the size of a
single summary. As we use a parallel reduction strategy to merge the summaries at different nodes,
we perform logD such merging steps between different pairs of nodes, where D is the total number
of nodes.

Overlapping Communication with Computation - In distributed computing, one can hide some
of the communication overhead by carefully coordinating the communication so that it overlaps
with the computation. In our implementations, we also exploit such opportunities. The reduction
algorithm merges all the counters of a summary independently, i.e., a merged counter only depends
on the respective two counters from the two summaries being merged. Hence, we can overlap the
communication for a specific row of b counters with the computation of merging the previous rows of
b counters. We use MPI non-blocking communication to achieve this overlapping.

For an overview of distributed and multi-threaded implementation of Topkapi, we present the
pseudocode in Algorithm 2 which extends the pseudocode from Algorithm 1.

4.3 Parallelizing Baselines: Frequent Algorithms and Count-min Sketch
For the purpose of performance comparison, we choose the two most popular algorithms, namely
“FA” and “CMS” as representatives from counter-based algorithms and sketch-based algorithms
respectively.

As mentioned in section 2.3, CMS requires a heap for finding top-K and is not reducible. Due to this
exact reason, [2] instead used FA for mergeability. Unfortunately, without reducibility, it is hard to
exploit massive data parallelism independently, and the implementations are unlikely to be efficient.
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We made a simplifying assumption that each subsample of the stream is uniformly distributed and
hence merging two top-K still make sense.

Algorithm 2: Topkapi_Parallel(S[][], K, N, T)
1 for i ∈ nodes N do
2 for j ∈ threads T do
3 create thread local copies of Topkapi summary;
4 execute Topkapi for data S[i][j] in parallel using

summary j with only the summary update phases;
5 merge thread local summaryj ∀j ∈ {1, ..., T} to

produce node final summaryi;
6 use parallel reduction strategy to merge node final
summaryi ∀i ∈ {1, ..., N} to produce a final summary at
root node;

7 construct CS using final summary at root node;
8 sort CS and report top-K words from root node

There were two main quest behind
making this dumb assumption with
CMS. 1) Does Reducibility Matters
in Practice? Subsampling streams
is one of the most popular ways of
reducing computation. The assump-
tion is that the frequent item in the
whole stream is also a frequent item
in any small subsample of the stream.
If this holds, then merging top-K
across substreams should be possible
and reducibility may not matter much
in practice for accuracy. We aimed
to check this hypothesis. 2) In the
most lucky world, is CMS still the
fastest? CMS, even with heaps, has
significantly faster update time com-

pared to FA (experimental results in Figure 1f). Can Topkapi beat this cheap CMS variant on
performance?

Thus, to understand the performance benefits, we ignored the accuracy aspect and merged the heaps.
To merge the heaps, we perform naive merge where we take two heaps and sort them to make a final
heap containing top-K candidates. One can argue that increasing the heap size (e.g., 2K) would
improve the accuracy of CMS. So, we give CMS more room to get better accuracy by using a heap
size of 4K. It should be noted that only the sketch (counters) in CMS is reducible and the reduction
is performed similarly as Topkapi.

5 Evaluations
5.1 Code and Experimental Setup
The implementations of our algorithm1 and competing algorithms are in C++ under a common
framework to ensure as much of an apples-to-apples comparison as possible when presenting relative
performance results. As for data we have used text data from the Project Gutenberg [1] corpus
and PUMA Datasets [9]. The details on experimental setup and datasets are given in sec 5 of
Supplementary document. For all the experiments, K is set to 100 unless otherwise stated.

5.2 Results
5.2.1 Scalability over Number of Nodes
We present strong scaling (fixed data size) performance results over varying number of nodes for
two different data sizes: a) 16GB (Gutenberg dataset) and b) 128GB (Puma dataset). Figure 1a and
Figure 1b represents the speedup of Topkapi over Frequent(FA) and Count-Min Sketch(CMS) for
16GB and 128GB data sizes respectively for 1 to 16 nodes with each node running 8 threads. We
see that our proposal consistently get roughly 2.5x speedup over FA for both the data types whereas
we usually get sightly lower speedup over CMS. It should be noted that we used the dumb merging
of top-K heap for CMS which loses significant accuracy (see Section 5.2.8). Despite this cheap
approximation with CMS, we still observe 2x-2.6x speedup for 16GB data and 1.6x-2x speedup for
128GB data over CMS.

5.2.2 Scalability over Number of Threads
Figure 1c represents the performance improvement of Topkapi over FA and CMS for 1 to 64 threads
on a single node with 32 cores. We used 16GB data for this experiment. The plot shows that we get
around 2x speedup over CMS for all the data points whereas we get similar performance improvement
over FA till 8 threads; after that speedup over FA increases steeply and we get 22x speedup with
64 threads. As an optimized implementation of FA requires two hash-maps with size being in the
order of number of counters, the memory footprint of FA is quite high. This negatively affects the
performance after a threshold when L3 cache can not contain all the data footprint of two or more
threads in the same processor chip. This performance degradation becomes more pronounced when

1https://github.com/ankushmandal/topkapi.git
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Figure 1: Performance Results

more than one hardware thread is executed on the same core. For example, the configuration with 64
threads uses the SMT feature of Power R©7 and executes 2 threads on each core.

5.2.3 Scalability over Data Size
To see the effects of data size on performance, we fix the number of nodes to 8 and vary the data size
from 16GB to 128GB. The resulting plot with speedup over FA and CMS is given in Figure 1d. The
figure represents around 2.5x speedup over FA, and 1.5x-2x speedup over CMS. Beside these good
performance improvements, the consistency of speedup indicates that Topkapi performs well for a
wide range of data sizes.

5.2.4 Scaling over Number of Nodes with Increasing Data Size
Now, we increase the data size along with the number of nodes and use high number of threads
(32 and 64 threads) on each node to find out how we perform in terms of weak scaling. Figure 1e
presents the resulting plot. As we can find from the plot, we get consistent speedup of roughly 2x for
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Table 1: Precision Comparison between Approximate Methods

Precision(%)
Data Size Topkapi (1024

Counters)
CMS (1024 Coun-
ters)

CMS (2048 Coun-
ters)

FA (1024 Coun-
ters)

16GB 96 64.4 68.33 87
128GB 95 11.6 49.66 94

CMS. However, we see some interesting pattern for FA. For 32 threads, the speedup over FA decreases
significantly as move from one node to 2 nodes setting. On the other hand, the speedup remains high
(more than 16x) for 64 threads through out all data points. In case of FA, the merging of summaries
has lower computational overhead compared to CMS and Topkapi. So, when we move to distributed
setting with 2 or more nodes, it boils down to which factor has more impact - the performance gain
from low overhead merging step or the performance degradation from high level of multi-threading.

5.2.5 Performance Analysis
Figure 1f represents the performance break down of Topkapi, FA, and CMS execution. The plot
supports our analysis that FA, among all three algorithms, has the highest update time for the summary
but lowest cost when it comes to merging summaries across nodes. Undoubtedly, CMS has lowest
update time for the summary because it involves only calculating the bucket through hashing and
then incrementing the respective counter. However, its performance for “top-K problem” is highly
thwarted by the overhead of maintaining probable top-K words summary. So, the effective update
time for CMS becomes quite high. While Topkapi needs a slightly higher update time than CMS, its
effective update time is much lower because it does not involve any overhead from maintaining heap.
Furthermore, Topkapi has quite low computational cost for merging summaries across nodes whereas
CMS has the highest cost in this regard.

5.2.6 Performance over Varying K

1 2 4 8 16
Number of Nodes

1.00x

1.25x

1.50x

1.75x

2.00x

2.25x

2.50x

2.75x

3.00x
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ee
du

p
(t

im
es

)

Speedup over Approximate Algorithms
 for Varying K (16GB Data)

CMS (K=50)
CMS (K=200)
Frequent (K=50)
Frequent (K=200)

Figure 2: Performance comparison with FA and
CMS for K=50, 200 on 16GB data. Number of
threads per node is 8.

We carried out the experiments related to Figure 1a
for K=50 and K=200, and represented the results
in Figure 2. We used 512 and 2048 buckets or coun-
ters respectively forK=50 andK=200. Speedup of
Topkapi over FA, for K=50, increases to the range
2.73x-3.01x and for K=200, it decreases to 2.21x-
2.36x compared to K=100. However, the speedup
over CMS remained almost the same. When K is
smaller, FA should slow down since it now has a
lesser number of counters (1/ε or O(K)) or tracked
elements. So, it will more frequently perform the
computation related to element not found, which
is costly. For the same reason, FA will be faster
when K is larger. For each match, it only has to in-
crement the corresponding counter, which is cheap.
On the other hand, we do not expect the perfor-
mance of Topkapi and CMS to change much apart
from slight slowdown with increasing sketch size.

5.2.7 Comparing CMS with Separate top-K Pass
In batch processing environment, one may employ a two-pass algorithm where the first pass consists
of pure CMS to get frequency estimates and a separate second pass for hash-based top-K identification.
In our experiments using 1 to 16 nodes (8 threads on each node) with 16GB data, we find that the
execution time of this two-pass algorithm is on an average 0.97x of single-pass CMS+heap based
approach. It is noteworthy to mention that the comparison is not fair since in a streaming setting,
remembering the items itself, for the second pass, is of linear cost which is prohibitive.

5.2.8 Precision for Reported top-K
As Topkapi is reducible, it is expected to give good precision and Table 1 shows us exactly the same
thing. Topkapi outperforms CMS and FA for precision over 16GB and 128GB data. Moreover, the
poor precision observed for CMS indicates that the simplification we assumed in section 4.3 to favor
better performance for CMS does not hold true.
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