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Abstract

Beyond local convolution networks, we explore how to harness various external
human knowledge for endowing the networks with the capability of semantic
global reasoning. Rather than using separate graphical models (e.g. CRF) or
constraints for modeling broader dependencies, we propose a new Symbolic Graph
Reasoning (SGR) layer, which performs reasoning over a group of symbolic nodes
whose outputs explicitly represent different properties of each semantic in a prior
knowledge graph. To cooperate with local convolutions, each SGR is constituted
by three modules: a) a primal local-to-semantic voting module where the features
of all symbolic nodes are generated by voting from local representations; b) a
graph reasoning module propagates information over knowledge graph to achieve
global semantic coherency; c) a dual semantic-to-local mapping module learns
new associations of the evolved symbolic nodes with local representations, and
accordingly enhances local features. The SGR layer can be injected between
any convolution layers and instantiated with distinct prior graphs. Extensive
experiments show incorporating SGR significantly improves plain ConvNets on
three semantic segmentation tasks and one image classification task. More analyses
show the SGR layer learns shared symbolic representations for domains/datasets
with the different label set given a universal knowledge graph, demonstrating its
superior generalization capability.

1 Introduction

Despite significant advances in standard recognition tasks such as image classification [12] and
segmentation [6] achieved by convolution networks, the dominant paradigm lies in the stack of deeper
and complicated local convolutions, and we hope it captures everything about the relationship between
inputs and targets. But such networks compromise the feature interpretability and also lack the global
reasoning capability that is crucial for complicated real-world tasks. Some works [51, 41, 5] thus
formulated graphical models and structure constraints (e.g. CRF [22, 19]) as recurrent works to effect
on final convolution predictions. However, they cannot explicitly enhance feature representations,
leading to the limited generalization capability. The very recent capsule network [39, 14] extends
to learn the sharing of knowledge across locations to find feature clusters, but it can only exploit
implicit and uncontrollable feature hierarchy. As emphasized in [3], visual reasoning over external
knowledge is crucial for human decision-making. The lack of explicitly reasoning over contexts and
high-level semantics would hinder the advances of convolution networks in recognizing objects in a
large concept vocabulary where exploring semantic correlations and constraints plays an important
role. On the other hand, structured knowledge provides rich cues to record human observations and
commonsense using symbolic words (e.g. nouns or predicates). It is thus desirable to bridge symbolic
semantics with learned local feature representations for better graph reasoning.
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In this paper, we explore how to incorporate rich commonsense human knowledge [33, 53] into
intermediate feature representation learning beyond local convolutions, and further achieve global
semantic coherency. The commonsense human knowledge can be formed as various undirected graphs
consisting of rich relationships (e.g. semantic hierarchy, spatial/action interactions and attributes,
concurrence) among concepts. For example, “Shetland Sheepdog" and “Husky" share one superclass
“dog" due to some common characteristics; people wear a hat and play guitar not vice-versa; orange
is yellow color. After associating structured knowledge with the visual domain, all these symbolic
entities (e.g. dog) can be connected with visual evidence from images, and human can thus integrate
visual appearance and commonsense knowledge to help recognize.

We attempt to mimic this reasoning procedure and integrate it into convolution networks, that is,
first characterize representations of different symbolic nodes by voting from local features; then
perform graph reasoning for enhancing visual evidence of these symbolic nodes via graph propagation
to achieve semantic coherency; finally mapping the evolved features of symbolic nodes back into
facilitating each local representation. Our work takes an important next step beyond prior approaches
in that it directly incorporates the reasoning over external knowledge graph into local feature learning,
called as Symbolic Graph Reasoning (SGR) layer. Note that, here we use “Symbolic" to denote
nodes with explicit linguistic meaning rather than conventional/hidden graph nodes used in graphical
models or graph neural networks [40, 18].

The core of our SGR layer consists of three modules, as illustrated in Figure 1. First, personalized
visual evidence of each symbolic node can be produced by voting from all local representations,
named as a local-to-semantic voting module. The voting weights stand for the semantic agreement
confidence of each local features to a certain node. Second, given a prior knowledge graph, the graph
reasoning module is instantiated to propagate information over this graph for evolving visual features
of all symbolic nodes. Finally, a dual semantic-to-local module learns appropriate associations
between the evolved symbolic nodes and local features to join forces of local and global reasoning.
It thus enables the evolved knowledge of a specific symbolic node to only drive the recognition of
semantically compatible local features with the help of global reasoning.

The key merits of our SGR layer lie in three aspects: a) local convolutions and global reasoning
facilitated with commonsense knowledge can collaborate by learning associations between image-
specific observations with prior knowledge graph; b) each local feature is enhanced by its correlated
incoming local features whereas in standard local convolutions it is only based on a comparison
between its own incoming features and a learned weight vector; c¢) benefiting from the learned
representations of universal symbolic nodes, the learned SGR layer can be easily transferable to other
dataset domain with discrepant concept sets. And SGR layer can be plugged between any convolution
layers and personalized according to distinct knowledge graphs.

Extensive experiments show superior performance over plain ConvNets by incorporating our SGR
layer, especially on recognizing a large concept vocabulary in three semantic segmentation datasets
(COCO-Stuff, ADE20K, PASCAL-Context) and image classification dataset (CIFAR100). We further
demonstrate its promising generalization capability when transferring SGR layer trained one domain
into other domains.

2 Related Work

Recent researches that explored the context modeling for convolution networks can be categorized
into two streams. One stream exploits networks for the graph-structured data with a family of
graph-based CNNs [36, 40] and RNNs [25, 26] or advanced convolution filters [43] to discover
more complex feature dependencies. In the context of convolutional networks, the graphical models
such as conditional random fields (CRF) [22, 19] can be formulated into a recurrent network by
functioning on final predictions of basic convolutions [51, 41, 5]. In contrast, the proposed SGR layer
can be treated as a simple feedforward layer that can be injected between any convolution layers
and general-purposed for any networks for large-scale and semantic related recognition. Our work
differs in that local features are mapped into meaningful symbolic nodes. The global reasoning over
locations is directly aligned with external knowledge rather than implicit feature clusters, which is a
more effective and interpretable way to introduce structure constraints.

Another stream explored external knowledge bases into facilitating networks. For example, Deng et
al. [9] employed a label relation graph to guide network learning while Ordonez et al. [37] learned the
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Figure 1: An overview of the proposed SGR layer. Each symbolic node receives votes from all local
features via a local-to-semantic voting module (long gray arrows), and its evolved features after
graph reasoning are then mapped back to each location via a semantic-to-local mapping module (long
purple arrows). For simplicity, we omit more edges and symbolic nodes in the knowledge graph.

mapping of common concepts to entry-level concepts. Some works regularized the output of networks
by resorting to complex graphical inference [9], hierarchical loss [38] or word embedding priors [49]
on final prediction scores. However, their loss constraints can only function on final prediction layer
and indirectly guide visual features to be hierarchy-aware, which is hard to be guaranteed. More
recently, Marino et al. [32] used structure prior knowledge to enhance predictions of multi-label
classification while our SGR proposes a general neural layer that can be injected into any convolution
layers and allows the neural network to leverage semantic constraints derived from various human
knowledge. Chen et al. [7] leverage local region-based reasoning and global reasoning to facilitate
object detection. In contrast, our SGR layer directly performs reasoning over symbolic nodes and is
seamlessly interacted with local convolution layers for better flexibility. Notably, the earliest efforts
in reasoning in artificial intelligence date back to symbolic approaches [35] by performing reasoning
over abstract symbols with the language of mathematics and logic. After grounding these symbols,
statistical learning algorithm [23] is used to extract useful patterns to perform relational reasoning
on knowledge bases. An effective reasoning procedure that would be practical enough for advanced
tasks should join the force of local visual representation learning and global semantic graph reasoning.
Our reasoning layer relates to this line of research by explicitly reasoning over visual evidence of
language entities by voting from local representations.

3 Symbolic Graph Reasoning

3.1 General-purposed Graph Construction

The commonsense knowledge graph is used to depict distinct correlations between entities (e.g.
classes, attributes and relationships) in general, which can be any forms. To support the general
purposed graph reasoning, the knowledge graph can be formulated as G = (N, £), where A and £
denote the symbol set and edge set, respectively. Here we give three examples: a) class hierarchy
graph is constructed by a list of entity classes (e.g. person, motorcyclist) and its graph edges shoulder
the responsibility of concept belongings (e.g. “is kind of" or “is part of"). The networks equipped
by such hierarchy knowledge can encourage the learning of feature hierarchy by passing the shared
representations of parent classes into its child nodes; b) class occurrence graph defines the edges
as the occurrence of two classes across images, characterizing the rationality of predictions; c) as a
higher-level semantic abstraction, a semantic relationship graph can extend symbolic nodes to include
more actions (e.g. “ride", “play"), layouts (e.g. “on top of") and attributes (e.g. color or shape) while
graph edges are statistically collected from language descriptions. Incorporating such high-level
commonsense knowledge can facilitate networks to prune spurious explanations after knowing the
relationship of each entity pair, resulting in good semantic coherency.

Based on this general formula, the graph reasoning is required to be compatible and general enough
for soft graph edges (e.g. occurrence probabilities) and hard edges (e.g. belongings), as well as
diverse symbolic nodes. Various structure constraints can thus be modeled as edge connections
over symbolic nodes, just like human use language tools. Our SGR layer is designed to achieve the
general graph reasoning that is applicable for encoding a wide range of knowledge graph forms. As
illustrated in Figure 1, it consists of a local-to-semantic voting module, a graph reasoning module
and a semantic-to-local mapping module, as presented in following sections.



Local-to-Semantic Voting Graph Reasoning Semantic-to-Local Mapping
1 L}

, \
i \
S ‘ >

MxK v

A
i 1

Softi

1
[N
v

MxHW
X! HOxW!xm © Mx+ k)  MXD MxD! RelU
Hixw!xp! Rj\fl(iD‘ : ®L T H'WixD!
'y RelU Expand HWixM
— H'WxDE G Normalization | p75 v »
H'XW'xD® MxM @ Softmax|

Hiwlxmxpl » HWXMx(D'4D)  H'XW/'xD!

H'xw'xp! @
Xl+1
Figure 2: Implementation details of one SGR layer by taking the convolution feature tensors of
H' x W' x Dt as inputs. ® denotes matrix multiplication, and ¢ denotes element-wise summation
and the circle with C denotes the concatenation. The softmax operation, tensor expansion, ReLU
operation are performed when noted. The green boxes denote 1 x 1 convolution or linear layer.

Expand

3.2 Local-to-Semantic Voting Module

Given local feature tensors from convolution layers, our target is to leverage global graph reasoning
to enhance local features with external structured knowledge. We thus first summarize the global
information encoded in local features into representations of symbolic nodes, that is, local features
that are correlated to a specific semantic meaning (e.g. cat) are aggregated to depict the characteristic
of its corresponding symbolic node. Formally, we use the feature tensor X! € RH *W'xD' after |-t
convolution layer as the module inputs, where H' and W' are height and weight of feature maps and
D' is the channel number. This module aims to produce visual representations H?* € RM xD° of
all M = |N| symbolic nodes using X', where D¢ is the desired feature dimension for each node n,
which is formulated as the function ¢:

HP® = ¢(AP® X' WP?), (1)

l . . . . .
where W?* € RP *D° is the trainable transformation matrix for converting each local feature

x; € X! into the dimension D¢, and AP* ¢ RH 'XW'XM denotes the voting weights of all local
features to each symbolic node. Specifically, visual features H2® € HP?® of each node n are computed
by summing up all weighted transformed local features via the voting weight a,, —.,, € AP® that
represents the confidence of assigning local feature z; to the node n. More specifically, the function
¢ is computed as:
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Here W = {W2} € RP XM jg a trainable weight matrix for calculating voting weights. AP* is
normalized by using a softmax at each location. In this way, different local features can adaptively
vote to representations of distinct symbolic nodes.

3.3 Graph Reasoning Module

Based on visual evidence of symbolic nodes, the reasoning guided by structured knowledge is
employed to leverage semantic constraints from human commonsense to evolve global representations
of symbolic nodes. Here, we incorporate both linguistic embedding of each symbolic node and
knowledge connections (i.e. node edges) for performing graph reasoning. Formally, for each symbolic
node n € N, we use the off-the-shelf word vectors [17] as its linguistic embedding, denoted as
S = {sn}, sn € RX. The graph reasoning module performs graph propagation over representations
HP? of all symbolic nodes via the matrix multiplication form, resulting in the evolved features HY:

HY = o(A9BWY), 3)

where B = [0(H?®),S] € RM*(P°+K) concatenates features of transformed H?* via the activation
function o(-) and the linguistic embedding S. W9 € R(" *+K)x(D%) s a trainable weight matrix.
The node adjacency weight a,,_,,,» € A9 is defined according the edge connections in (n,n’) € £.
As discussed in Section 3.1, the edge connections can be soft weights (e.g. 0.8) or hard weight (i.e.
{0,1}) according to different knowledge graph resources. The naive multiplication with AY will
























