Variational Inverse Control with Events: A General
Framework for Data-Driven Reward Definition

Justin Fu* Avi Singh* Dibya Ghosh Larry Yang Sergey Levine
University of California, Berkeley
{justinfu, avisingh, dibyaghosh, larrywyang, svlevinel}@berkeley.edu

Abstract

The design of a reward function often poses a major practical challenge to real-
world applications of reinforcement learning. Approaches such as inverse rein-
forcement learning attempt to overcome this challenge, but require expert demon-
strations, which can be difficult or expensive to obtain in practice. We propose
variational inverse control with events (VICE), which generalizes inverse reinforce-
ment learning methods to cases where full demonstrations are not needed, such as
when only samples of desired goal states are available. Our method is grounded in
an alternative perspective on control and reinforcement learning, where an agent’s
goal is to maximize the probability that one or more events will happen at some
point in the future, rather than maximizing cumulative rewards. We demonstrate
the effectiveness of our methods on continuous control tasks, with a focus on high-
dimensional observations like images where rewards are hard or even impossible
to specify.

1 Introduction

Reinforcement learning (RL) has shown remarkable promise in recent years, with results on a range
of complex tasks such as robotic control (Levine et al., 2016) and playing video games (Mnih
et al.l 2015) from raw sensory input. RL algorithms solve these problems by learning a policy
that maximizes a reward function that is considered as part of the problem formulation. There is
little practical guidance that is provided in the theory of RL about how these rewards should be
designed. However, the design of the reward function is in practice critical for good results, and
reward misspecification can easily cause unintended behavior (Amodei et al.,2016). For example, a
vacuum cleaner robot rewarded to pick up dirt could exploit the reward by repeatedly dumping dirt on
the ground and picking it up again (Russell & Norvig,2003). Additionally, it is often difficult to write
down a reward function at all. For example, when learning policies from high-dimensional visual
observations, practitioners often resort to using motion capture (Peng et al.l |2017) or specialized
computer vision systems (Rusu et al.,[2017) to obtain rewards.

As an alternative to reward specification, imitation learning (Argall et al., 2009) and inverse rein-
forcement learning (Ng & Russell, 2000) instead seek to mimic expert behavior. However, such
approaches require an expert to show how to solve a task. We instead propose a novel problem
formulation, variational inverse control with events (VICE), which generalizes inverse reinforcement
learning to alternative forms of expert supervision. In particular, we consider cases when we have
examples of a desired final outcome, rather than full demonstrations, so the expert only needs to
show what the desired outcome of a task is (see Figure [I)). A straightforward way to make use of
these desired outcomes is to train a classifier (Pinto & Gupta, 2016 Tung et al., 2018) to distinguish
desired and undesired states. However, for these approaches it is unclear how to correctly sample
negatives and whether using this classifier as a reward will result in the intended behavior, since an

*equal contribution

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

RL agent can learn to exploit the classifier, in the same way it can exploit human-designed rewards.
Our framework provides a more principled approach, where classifier training corresponds to learning
probabilistic graphical model parameters (see Figure [2), and policy optimization corresponds to
inferring the optimal actions. By selecting an inference query which corresponds to our intentions,
we can mitigate reward hacking scenarios similar to those previously described, and also specify the
task with examples rather than manual engineering.

Our inverse formulation is based on a corre-

. . Supervision Learned Policy
sponding forward control framework which re- %\ %\
frames control as inference in a graphical model. f\i\ ‘ ﬁ
Our framework resembles prior work (Kappen Eo /j)\v, -
et al., 2009; Toussaint, 2009; Rawlik et al., NI 2
2012), but we extend this connection by re- -7 X
placing the conventional notion of rewards with
event occurence variables. Rewards correspond
to log-probabilities of events, and value func- " 2\7‘\ yﬁ\
tions can be interpreted as backward messages g A
that represent log-probabilities of those events o @
occurring. This framework retains the full ex- N

pressivity of RL, since any rewards can be ex- Figure 1: Standard IRL requires full expert demon-
pressed as log-probabilities, while providing strations and aims to produce an agent that mimics the
more intuitive guidance on task specification. expert. VICE generalizes IRL to cases where we only
It further allows us to express various intentions, observe final desired outcomes, which does not require
such as for an event to happen at least once, ex- the expert to actually know how to perform the task.
actly once at any time step, or once at a specific timestep. Crucially, our framework does not require
the agent to observe the event happening, but only to know the probability that it occurred. While
this may seem unusual, it is more practical in the real world, where success may be determined
by probabilistic models that themselves carry uncertainty. For example, the previously mentioned
vacuum cleaner robot needs to estimate from its observations whether its task has been accomplished
and would never receive direct feedback from the real world whether a room is clean.

Our contributions are as follows. We first in-
troduce the event-based control framework by
extending previous control as inference work to
alternative queries which we believe to be use-
ful in practice. This view on control can ease
the process of reward engineering by mapping
a user’s intention to a corresponding inference
query in a probabilistic graphical model. Our
experiments demonstrate how different queries
can result in different behaviors which align with Figure 2: Our framework learns event probabilities
the corresponding intentions. We then propose from data. We use neural networks as function approx-
methods to learn event probabilities from data, imators. to model. this Qistribution, \yhich .allo.ws us to
in a manner analogous to inverse reinforcement work with high dimensional observations like images.

learning. This corresponds to the use case where designing event probabilities by hand is difficult,
but observations (e.g., images) of successful task completion are easier to provide. This approach is
substantially easier to apply in practical situations, since full demonstrations are not required. Our
experiments demonstrate that our framework can be used in this fashion for policy learning from
high dimensional visual observations where rewards are hard to specify. Moreover, our method
substantially outperforms baselines such as sparse reward RL, indicating that our framework provides
an automated shaping effect when learning events, making it feasible to solve otherwise hard tasks.

Ples = 1]st,01)

St conv layers fc layers

2 Related work

Our reformulation of RL is based on the connection between control and inference (Kappen et al.,
2009 Ziebart, |2010; Rawlik et al., 2012). The resulting problem is sometimes referred to as maximum
entropy reinforcement learning, or KL control. Duality between control and inference in the case of
linear dynamical systems has been studied in |[Kalman|(1960); Todorov|(2008). Maximum entropy
objectives can be optimized efficiently and exactly in linearly solvable MDPs (Todorov, 2007) and

environments with discrete states. In linear-quadratic systems, control as inference techniques have
been applied to solve path planning problems for robotics (Toussaint,|2009)). In the context of deep
RL, maximum entropy objectives have been used to derive soft variants of Q-learning and policy
gradient algorithms (Haarnoja et al., 2017; |Schulman et al.| 2017 |0’ Donoghue et al.l 2016} |[Nachum!
et al.,[2017). These methods embed the standard RL objective, formulated in terms of rewards, into
the framework of probabilistic inference. In contrast, we aim specifically to reformulate RL in a way
that does not require specifying arbitrary scalar-valued reward functions.

In addition to studying inference problems in a control setting, we also study the problem of learning
event probabilities in these models. This is related to prior work on inverse reinforcement learning
(IRL), which has also sought to cast learning of objectives into the framework of probabilistic
models (Ziebart et al., 2008; Ziebart, |2010). As explained in SectionE], our work generalizes IRL to
cases where we only provide examples of a desired outcome or goal, which is significantly easier to
provide in practice since we do not need to know how to achieve the goal.

Reward design is crucial for obtaining the desired behavior from RL agents (Amodei et al.,2016)).
Ng & Russell| (2000) showed that rewards can be modified, or shaped, to speed up learning without
changing the optimal policy. |Singh et al.|(2010) study the problem of optimal reward design, and
introduce the concept of a fitness function. They observe that a proxy reward that is distinct from the
fitness function might be optimal under certain settings, and Sorg et al.| (2010) study the problem
of how this optimal proxy reward can be selected. |Hadfield-Menell et al.| (2017) introduce the
problem of inferring the true objective based on the given reward and MDP. Our framework aids task
specification by introducing two decisions: the selection of the inference query that is of interest (i.e.,
when and how many times should the agent cause the event?), and the specification of the event of
interest. Moreover, as discussed in Section [6] we observe that our method automatically provides a
reward shaping effect, allowing us to solve otherwise hard tasks.

3 Preliminaries

In this section we introduce our notation and summarize how control can be framed as infer-
ence. Reinforcement learning operates on Markov decision processes (MDP), defined by the tuple
(S, A, T,r,7v,p0). S, A are the state and action spaces, respectively, r is a reward function, which is
typically taken to be a scalar field on S x A, and v € (0, 1) is the discount factor. 7 and p, represent
the dynamics and initial state distributions, respectively.

3.1 Control as inference

In order to cast control as an inference problem,
we begin with the standard graphical model for
an MDP, which consists of states and actions.
We incorporate the notion of a goal with an ad-
ditional variable e, that depends on the state
(and possibly also the action) at time step t,
according to p(e¢|st, ar). If the goal is spec-
ified with a reward function, we can define
ples = 1|sg,a;) = €% which, as we dis-
cuss below, leads to a maximum entropy version
of the standard RL framework. This requires the
rewards to be negative, which is not restrictive
in practice, since if the rewards are bounded we
can re-center them so that the maximum value
is 0. The structure of this model is presented in
Figure[3] and is also considered in prior work, as discussed in the previous section.

Figure 3: A graphical model framework for control. In
maximum entropy reinforcement learning, we observe
e1.7 = 1 and can perform inference on the trajectory to
obtain a policy.

The maximum entropy reinforcement learning objective emerges when we condition on eq.7 = 1.
Consider computing a backward message 3(s¢,at) = pler.r = 1|8t a¢). Letting Q(s¢,ar) =
log B(s¢, at), notice that the backward messages encode the backup equations

Q(s¢,at) = r(sg, ar) + log EsHl[eV(St“)] Vist) = log/ QG0 dg
acA

We include the full derivation in Appendix [A] which resembles derivations discussed in prior
work (Ziebart et al., 2008). This backup equation corresponds to maximum entropy RL, and is
equivalent to soft Q-learning and causal entropy RL formulations in the special case of deterministic
dynamics (Haarnoja et al.l [2017; [Schulman et al.| 2017). For the case of stochastic dynamics,
maximum-entropy RL is optimistic with respect to the dynamics and produces risk-seeking behavior,
and we refer the reader to Appendix|B| which covers a variational derivation of the policy objective
which properly handles stochastic dynamics.

4 Event-based control

In control as inference, we chose log p(e; = 1|s¢, at) = 7(s, a) so that the resulting inference problem
matches the maximum entropy reinforcement learning objective. However, we might also ask: what
does the variable e;, and its probability, represent? The connection to graphical models lets us
interpret rewards as the log-probability that an event occurs, and the standard approach to reward
design can also be viewed as specifying the probability of some binary event, that we might call an
optimality event. This provides us with an alternative way to think about task specification: rather
than using arbitrary scalar fields as rewards, we can specify the events for which we would like to
maximize the probability of occurrence.

We now outline inference procedures for different types of problems of interest in the graphical
model depicted in Figure [3] In Section [5] we will discuss learning procedures in this graphical
model which allow us to specify objectives from data. The strength of the events framework for
task specification lies in both its intuitive interpretation and flexibility: though we can obtain similar
behavior in standard reinforcement learning, it may require considerable reward tuning and changes
to the overall problem statement, including the dynamics. In contrast, events provides a single unified
framework where the problem parameters remain unchanged, and we simply ask the appropriate
queries. We will discuss:

e ALL query: p(7|e;.7 = 1), meaning the event should happen at each time step.

e AT query: p(7|e;» = 1), meaning the event should happen at a specific time ¢t*.

e ANY query: p(7]e; = lorey = lor... er = 1) meaning the event should happen on at
least one time step during each trial.

We present two derivations for each query: a conceptually simple one based on maximum entropy
and message passing (see Section [3.1)), and one based on variational inference, (see Appendix [B)),
which is more appropriate for stochastic dynamics. The resulting variational objective is of the form:

J(m) = =D (n(7)||p(r|evidence)) = Es, 1 a1.r~g[Q(s1:7, a1.7) + H™ (+[51.7)],

where () is an empirical Q-value estimator for a trajectory and H™ (-|s1.7) = — ZtT:O log 7(a|st)
represents the entropy of the policy. This form of the objective can be used in policy gradient
algorithms, and in special cases can also be written as a recursive backup equation for dynamic
programming algorithms. We directly present our results here, and present more detailed derivations
(including extensions to discounted cases) in Appendices [C]and

4.1 ALL and AT queries

We begin by reviewing the ALL query, when we wish for an agent to trigger an event at every timestep.
This can be useful, for example, when expressing some continuous task such as maintaining some
sort of configuration (such as balancing on a unicycle) or avoiding an adverse outcome, such as not
causing an autonomous car to collide. As covered in Section[3.1] conditioning on the event at all time
steps mathematically corresponds to the same problem as entropy maximizing RL, with the reward
given by log p(e; = 1|sy, ay).
Theorem 4.1 (ALL query). In the ALL query, the message passing update for the Q-value can be
written as:

Q(s¢,a) = logp(er = 1|5y, at) + log Es, | [eV (0]
where Q(st, az) represents the log-message logp(er.7 = 1|st,at). The corresponding empirical
Q-value can be written recursively as:

Q(St:T7at:T) = 10gp(6t = 1|5t7 at) + Q(5t+1:Ta at+1:T)~

Proof. See Appendices|C.T|and [D.1] O

The AT query, or querying for the event at a specific time step, results in the same equations, except
log p(e = 184, az), is only given at the specified time ¢*. While we generally believe that the ANY
query presented in the following section will be more broadly applicable, there may be scenarios
where an agent needs to be in a particular configuration or location at the end of an episode. In these
cases, the AT query would be the most appropriate.

4.2 ANY query

The ANY query specifies that an event should happen at least once before the end of an episode,
without regard for when in particular it takes place. Unlike the ALL and AT queries, the ANY query
does not correspond to entropy maximizing RL and requires a new backup equation. It is also in
many cases more appropriate: if we would like an agent to accomplish some goal, we might not care
when in particular that goal is accomplished, and we likely don’t need it to accomplish it more than
once. This query can be useful for specifying behaviors such as reaching a goal state, completion of a
task, etc. Let the stopping time t* = min{¢ > 0|e; = 1} denote the first time that the event occurs.

Theorem 4.2 (ANY query). In the ANY query, the message passing update for the Q-value can be
written as:

Q(s¢,ar) = log (p(et = 1]s¢,ar) + ples = 0‘5t7at>E3t+1[€V(st+l)])

where Q(s¢, at) represents the log-message log p(t < t* < T'|s, at). The corresponding empirical
Q-value can be written recursively as:

Q(se.r, apr) = log (p(et = 1fs¢,a;) + ple; = O‘St,at)eQ(st“:T’at“:T)) .

Proof. See Appendices|C.2]and O

This query is related to first-exit RL problems, where an agent receives a reward of 1 when a specified
goal is reached and is immediately moved to an absorbing state but it does not require the event
to actually be observed, which makes it applicable to a variety of real-world situations that have
uncertainty over the goal. The backup equations of the ANY query are equivalent to the first-exit
problem when p(els, a) is deterministic. This can be seen by setting p(e = 1|s,a) = rg(s, a), where
rr(s,a) is an goal indicator function that denotes the reward of the first-exit problem. In this case,
we have (s, a) = 0if the goal is reachable, and Q(s, a) = —oo if not. In the first-exit case, we have
Q(s,a) = 1if the goal is reachable and Q(s, a) = 0 if not - both cases result in the same policy.

4.3 Sample-based optimization using policy gradients

In small, discrete settings with known dynamics, we can use the backup equations in the previous
section to solve for optimal policies with dynamic programming. For large problems with unknown
dynamics, we can also derive model-free analogues to these methods, and apply them to complex
tasks with high-dimensional function approximators. One commonly used method is the policy
gradient, and which we can derive via logarithmic differentiation as:

Vo J(0) = =VoDx (7o (7)||p(7|evidence))
T
= Esl:T,a1:T~7r9 Z VIOg’/TG(atLSt)(QA(sl:Tval:T) + HW("St:T))

t=1

Under certain assumptions we can replace Q(sl;T7 ay.7) with Q(st;T, ag.) to obtain an estimator
which only depends on future returns. See Appendix [E|for further explanation.

This estimator can be integrated into standard policy gradient algorithms, such as TRPO |Schulman
et al.| (2015)), to train expressive inference models using neural networks. Extensions of our approach
to other RL methods with function approximation, such as Q-learning and approximate dynamic
programming, can also be derived from the backup equations, though this is outside the scope of the
present work.

Algorithm 1 VICE: Variational Inverse Control with Events
E E
iG

: Obtain examples of expert states and actions s

. Initialize policy 7 and binary discriminator Dy.

: for stepnin {1, ..., N} do
Collect states and actions s; = (s1, ..., $1),a; = (a1, ..., ar) by executing .
Train Dy via logistic regression to classify expert data s, a from samples s;, a;.
Update 7 with respect to pg using the appropriate inference objective.

end for

A A ol

5 Learning event probabilities from data

In the previous section, we presented a control framework that operates on events rather than reward
functions, and discussed how the user can choose from among a variety of inference queries to obtain
a desired outcome. However, the event probabilities must still be obtained in some way, and may be
difficult to hand-engineer in many practical situations - for example, an image-based deep RL system
may need an image classifier to determine if it has accomplished its goal. In such situations, we can
ask the user to instead supply examples of states or observations where the event has happened, and
learn the event probabilities pg(e = 1|s, a). Inverse reinforcement learning corresponds to the case
when we assume the expert triggers an event at all timesteps (the ALL query), in which case we
require full demonstrations. However, if we assume the expert is optimal under an ANY or AT query,
full demonstrations are not required because the event is not assumed to be triggered at each timestep.
This means our supervision can be of the form of a desired set of states rather than full trajectories.
For example, in the vision-based robotics case, this means that we can specify goals using images of
a desired goal state, which are much easier to obtain than full demonstrations.

Formally, for each query, we assume our dataset of states and actions (s, a) ~ pgata(s,ale = 1)
when the event has happened, assuming the data-generating policy follows one of our inference
queries. Our objective is imitation: we wish to train a model which produces samples that match the
data. To that end, we learn the parameters of the model py(s, ale = 1), trained with the maximum
likelihood objective:

[’(9) = _Epdam [1ng0(57 a|e = 1)]
The gradient of this model is:
VoL(0) = —Ep,,.. [Vologpe(s,ale = 1)] + Ep, [Vglogpy(s, ale = 1)] (1)

Where the second term corresponds to the gradient of the partition function of py(s, ale = 1). Thus,
this implies an algorithm where we sample states and actions from the model py and use them to
compute the gradient update.

5.1 Sample-based optimization with discriminators

In high-dimensional settings, a convenient method to perform the gradient update in Eqn. |1|is to
embed the model py (s, alevidence) within a discriminator between samples py and data p g4, and
take the gradient of the cross-entropy loss. Second, in order to draw samples from the model we
instead train a "generator" policy via variational inference to draw samples from pg. The variational
inference procedure corresponds to those outlined in Section [4]

Specifically, we adapt the method of [Fu et al.|(2018]), which alternates between training a discriminator
with the fixed form

Dy(s,a) = po(s, a)/(po(s, a) + 7(als))

to distinguish between policy samples and success states, and a policy that minimizes the KL
divergence between D1, (7(s,a)||pe(s,al = 1)). As shown in previous work (Finn et al.,[2016b; |[Fu
et al.| 2018]), the gradient of the cross entropy loss of the discriminator is equivalent to the gradient
of Eqn. [} and using the reward log Dy(s,a) — log(1 — Dy(s, a)) with the appropriate inference
objective is equivalent to minimizing KL between the sampler and generator. We show the latter
equivalence in Appendix [F| and pseudocode for our algorithm is presented in Algorithm T]

6 Experimental evaluation

Our experimental evaluation aims to answer the following questions: (1) How does the behavior of an
agent change depending on the choice of query? We study this question in the case where the event
probabilities are already specified. (2) Does our event learning framework (VICE) outperform simple
alternatives, such as offline classifier training, when learning event probabilities from data? We study
this question in settings where it is difficult to manually specify a reward function, such as when the
agent receives raw image observations. (3) Does learning event probabilities provide better shaped
rewards than the ground truth event occurrence indicators? Additional videos and supplementary
material are available at https://sites.google.com/view/inverse-event,

6.1 Inference with pre-specified event probabilities

We first demonstrate how the ANY and ALL queries in
our framework result in different behaviors. We adapt
TRPO (Schulman et al.,2015), a natural policy gradient
algorithm, to train policies using our query procedures
derived in Section f] Our examples involve two goal-
reaching domains, HalfCheetah and Lobber, shown in
Figure[d] The goal of HalfCheetah is to navigate a 6-DoF Figure 4: HalfCheetah and Lobber tasks.

agent to a goal position, and in Lobber, a robotic arm must throw an block to a goal position. To study
the inference process in isolation, we manually design the event probabilities as e ~||#agent —Ftarget|l2

for the HalfCheetah and e~ ll#biock—%g0at I for the Lobber.

The experimental results are shown in Table [T} Query Avg. Dist _ Min. Dist
While the average distance to the goal for both HalfCheetah-ANY 1.35(0.20) 0.97 (0.46)
queries was roughly the same, the ANY query HalfCheetah-ALL 1.33(0.16) 2.01 (0.48)
results in a much closer minimum distance. This ~ HalfCheetah-Random | 8.95 (5.37) ~5.41 (2.67)
makes sense, since in the ALL query the agent Lobber-ANY 0.61 (0.12) 0.25(0.20)
is punished for every time step it is not near the ~___ Lobber-ALL | 0.59 (0.11) 0.36(0.21)
goal. The ANY query can afford to receive lower Lobber-Random 0.93 (0.01) 0.91 (0.01)
cumulative returns and instead has max-seeking Table 1: Results on HalfCheetah and Lobber tasks

behavior which more accurately reaches the tar-
get. Here, the ANY query better expresses our
intention of reaching a target.

(5 trials). The ALL query generally results in superior
returns, but the ANY query results in the agent reaching
the target more accurately. Random refers to a random
gaussian policy.

6.2 Learning event probabilities

Table 2: Results on Maze, Ant and Pusher environments (5 trials).
The metric reported is the final distance to the goal state (lower is
M ational i trol with better). VICE performs better than the classifier-based setup on all
call variational 1nverse control wi the tasks, and the performance is substantially better for the Ant

e,VentS (YICE)’ agaiPSt an offline clas- and Pusher task. Detailed learning curves are provided in Appendix
sifier training baseline. We also com- Gl

pare our method to learning from

We now compare our event proba-
bility learning framework, which we

true binary event indicators, to see if Query type | Classifier VICE (ours) | True Binary
our method can provide some reward & ALL 0.35(029) 020 0.19) 1 11) 1y
shaping benefits to speed up the learn- _= ﬁiz g;z Eg%; ggi Eg ;g;
) = . . . }
e e e e o emins 21N 35050 waainsy | 1010
. = ALL 0.25(0.01) 0.09 (0.01)
cess states. That is, we have access to 2 ANY 025 (0.01) 0.11(0.01) 0.17 (0.03)

a set of states {s”};—; _,, which may
have been provided by the user, for which we know the event took place. This setting generalizes
IRL, where instead of entire expert demonstrations, we simply have examples of successful states.
The offline classifier baseline trains a neural network to distinguish success state ("positives") from
states collected by a random policy. The number of positives and negatives in this procedure is kept
balanced. This baseline is a reasonable and straightforward method to specify rewards in the standard
RL framework, and provides a natural point of comparison to our approach, which can also be viewed
as learning a classifier, but within the principled framework of control as inference. We evaluate these
methods on the following tasks:

https://sites.google.com/view/inverse-event

Maze from pixels. In this task, a point mass needs to navigate to a goal location through a small
maze, depicted in Figure[5] The observations consist of 64x64 RGB images that correspond to an
overhead view of the maze. The action space consists of X and Y forces on the robot. We use CNNs
to represent the policy and the event distributions, training with 1000 success states as supervision.

Ant. In this task, a quadrupedal “ant” (shown in Figure[3)) needs to crawl to a goal location, placed
3m away from its starting position. The state space contains joint angles and XYZ-coordinates of the
ant. The action space corresponds to joint torques. We use 500 success states as supervision.

Pusher from pixels. In this task, a 7-DoF robotic arm (shown in Figure [5)) must push a cylinder
object to a goal location. The state space contains joint angles, joint velocities and 64x64 RGB
images, and the action space corresponds to joint torques. We use 10K success states as supervision.

Training details and neural net architectures can
be found in Appendix [G] We also compare our
method against a reinforcement learning base-
line that has access to the true binary event indi-
cator. For all the tasks, we define a “goal region”,
and give the agent a +1 reward when it is in the

goal region, and 0 otherwise. Note that this RL
baseline, which is similar to vanilla RL from
sparse rewards, “observes” the event, providing
it with additional information, while our model

Figure 5: Visualizations of the Pusher, Maze, and Ant
tasks. In the Maze and Ant tasks, the agent seeks to
reach a pre-specified goal position. In the Pusher task,
the agent seeks to place a block at the goal position.

only uses the event probabilities learned from the success examples and receives no other supervision.
It is included to provide a reference point on the difficulty of the tasks. Results are summarized in
Table[2] and detailed learning curves can be seen in Figure [f]and Appendix[G] We note the following
salient points from these experiments.

VICE outperforms naive classifier. We ob- oL
serve that for Maze, both the simple classifier 024 K
and our method (VICE) perform well, though o

VICE achieves lower final distance. In the Ant
environment, VICE is crucial for obtaining good
performance, and the simple classifier fails to
solve the task. Similarly, for the Pusher task,
VICE significantly outperforms the classifier
(which fails to solve the task). Unlike the naive 008
classifier approach, VICE actively integrates
negative examples from the current policy into
the learning process, and appropriately models
the event probabilities together with the dynam-
ical properties of the task, analogously to IRL.

Shaping effect of VICE. For the more difficult

— Binary Indicator I

—— CLS-ALL ~\

012 — cis-any N
- - Oracle

0.10 VICE-ALL

Final Distance from Goal

VICE-ANY

0 200 400 600 800
Iterations

Figure 6: Results on the Pusher task (lower is better),
averaged across five random seeds. VICE significantly
outperforms the naive classifier and true binary event
indicators. Further, the performance is comparable to
learning from an oracle hand-engineered reward (de-
ant and pusher domains, VICE actually outper- noted in dashed lines). Cur_vesfor the Ant and Maze
forms RL with the true event indicators. We (@sks can be seen in Appendix (G}

analyze this shaping effect further in Figure [6} our framework obtains performance that is supe-
rior to learning with true event indicators, while requiring much weaker supervision. This indi-
cates that the event probability distribution learned by our method has a reward-shaping effect,
which greatly simplifies the policy search process. We further compare our method against a hand-
engineered shaped reward, depicted in dashed lines in Figure[6] The engineered reward is given by
—0.2% [|Zp10ck — Tarm || = ||Zoiock — Zgoat]|, and is impossible to compute when we don’t have access
to ZTpiock, Which is usually the case when learning in the real world. We observe that our method
achieves performance that is comparable to this engineered reward, indicating that our automated
shaping effect is comparable to hand-engineered shaped rewards.

7 Conclusion

In this paper, we described how the connection between control and inference can be extended to
derive a reinforcement learning framework that dispenses with the conventional notion of rewards,
and replaces them with events. Events have associated probabilities. which can either be provided

by the user, or learned from data. Recasting reinforcement learning into the event-based framework
allows us to express various goals as different inference queries in the corresponding graphical model.
The case where we learn event probabilities corresponds to a generalization of IRL where rather than
assuming access to expert demonstrations, we assume access to states and actions where an event
occurs. IRL corresponds to the case where we assume the event happens at every timestep, and we
extend this notion to alternate graphical model queries where events may happen at a single timestep.

Acknowledgements

This research was supported by an ONR Young Investigator Program award, the National Science
Foundation through IIS-1651843, IIS-1614653, and IIS-1700696, Berkeley DeepDrive, and donations
from Google, Amazon, and NVIDIA.

References

Amodei, Dario, Olah, Chris, Steinhardt, Jacob, Christiano, Paul, Schulman, John, and Mané, Dan.
Concrete problems in Al safety. ArXiv Preprint, abs/1606.06565, 2016.

Argall, Brenna D., Chernova, Sonia, Veloso, Manuela, and Browning, Brett. A survey of robot
learning from demonstration. Robotics and autonomous systems, 57(5):469—483, 2009.

Finn, C., Tan, X., Duan, Y., Darrell, T., Levine, S., and Abbeel, P. Deep spatial autoencoders for
visuomotor learning. In /CRA, 2016a.

Finn, Chelsea, Christiano, Paul, Abbeel, Pieter, and Levine, Sergey. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. abs/1611.03852,
2016b.

Fu, Justin, Luo, Katie, and Levine, Sergey. Learning robust rewards with adversarial inverse
reinforcement learning. In International Conference on Learning Representations (ICLR), 2018.

Haarnoja, Tuomas, Tang, Haoran, Abbeel, Pieter, and Levine, Sergey. Reinforcement learning with
deep energy-based policies. In International Conference on Machine Learning (ICML), 2017.

Hadfield-Menell, Dylan, Milli, Smitha, Abbeel, Pieter, Russell, Stuart J., and Dragan, Anca D. Inverse
reward design. In NIPS, 2017.

Ho, Jonathan and Ermon, Stefano. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems (NIPS), 2016.

Kalman, Rudolf. A new approach to linear filtering and prediction problems. 82:35-45, 1960.

Kappen, Hilbert J., Gomez, Vicenc, and Opper, Manfred. Optimal control as a graphical model
inference problem. 2009.

Levine, Sergey, Finn, Chelsea, Darrell, Trevor, and Abbeel, Pieter. End-to-end training of deep
visuomotor policies. Journal of Machine Learning (JMLR), 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, Petersen, Stig,
Beattie, Charles, Sadik, Amir, Antonoglou, Ioannis, King, Helen, Kumaran, Dharshan, Wierstra,
Daan, Legg, Shane, and Hassabis, Demis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529-533, feb 2015. ISSN 0028-0836.

Nachum, Ofir, Norouzi, Mohammad, Xu, Kelvin, and Schuurmans, Dale. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems (NIPS), 2017.

Ng, Andrew and Russell, Stuart. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2000.

O’Donoghue, Brendan, Munos, Remi, Kavukcuoglu, Koray, and Mnih, Volodymyr. Combining
policy gradient and g-learning. 2016.

Peng, Xue Bin, Andrychowicz, Marcin, Zaremba, Wojciech, and Abbeel, Pieter. Sim-to-real transfer
of robotic control with dynamics randomization. CoRR, abs/1710.06537, 2017.

Pinto, Lerrel and Gupta, Abhinav. Supersizing self-supervision: Learning to grasp from 50k tries and
700 robot hours. In IEEE International Conference on Robotics and Automation (ICRA), 2016.

Rawlik, Konrad, Toussaint, Marc, and Vijayakumar, Sethu. On stochastic optimal control and
reinforcement learning by approximate inference. In Robotics: Science and Systems (RSS), 2012.

Russell, Stuart J. and Norvig, Peter. Artificial Intelligence: A Modern Approach. Pearson Education,
2 edition, 2003. ISBN 0137903952.

Rusu, Andrei A., Vecerik, Matej, Rothorl, Thomas, Heess, Nicolas, Pascanu, Razvan, and Hadsell,
Raia. Sim-to-real robot learning from pixels with progressive nets. In Conference on Robot
Learning (CoRL), 2017.

Schulman, John, Levine, Sergey, Moritz, Philipp, Jordan, Michael 1., and Abbeel, Pieter. Trust Region
Policy Optimization. In International Conference on Machine Learning (ICML), 2015.

Schulman, John, Chen, Xi, and Abbeel, Pieter. Equivalence between policy gradients and soft
g-learning. 2017.

Singh, S., Lewis, R., and Barto, A. Where do rewards come from? In Proceedings of the International
Symposium on Al Inspired Biology - A Symposium at the AISB 2010 Convention, 2010.

Sorg, Jonathan, Singh, Satinder P., and Lewis, Richard L. Reward design via online gradient ascent.
In NIPS, 2010.

Todorov, Emo. Linearly-solvable markov decision problems. In Advances in Neural Information
Processing Systems (NIPS), 2007.

Todorov, Emo. General duality between optimal control and estimation. In IEEE Conference on
Decision and Control (CDC), 2008.

Toussaint, Marc. Robot trajectory optimization using approximate inference. In International
Conference on Machine Learning (ICML), 2009.

Tung, Hsiao-Yu Fish, Harley, Adam W., Huang, Liang-Kang, and Fragkiadaki, Katerina. Reward
learning from narrated demonstrations. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2018.

Ziebart, Brian. Modeling purposeful adaptive behavior with the principle of maximum causal entropy.
PhD thesis, Carnegie Mellon University, 2010.

Ziebart, Brian, Maas, Andrew, Bagnell, Andrew, and Dey, Anind. Maximum entropy inverse
reinforcement learning. In AAAI Conference on Artificial Intelligence (AAAI), 2008.

10

