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In the following, we provide the detailed proofs for Theorems 1, 2, and 3 in Section 1, further
information about applicable groups in Section 2, a formal presentation of capsule convolution with
product groups in Section 3, and a quantitative analysis of pose vectors in Section 4.

1 Proofs for theorems

Because the theorems and proofs refer to Algorithm 1, we present it again:

Algorithm 1 Group capsule layer

Input: poses P = (p1, . . . ,pn) ∈ Gn, activations a = (a1, . . . , an) ∈ Rn

Trainable parameters: transformations ti,j
Output: poses P̂ = (p̂1, . . . , p̂m) ∈ Gm, activations â = (â1, . . . , âm) ∈ Rm

——————————————————————————————————————–
vi,j ← pi ◦ ti,j for all input capsules i and output capsules j
p̂j ←M((v1,j , . . . ,vn,j),a) ∀j
for r iterations do
wi,j ← σ(−δ(p̂j ,vi,j)) · ai ∀i, j
p̂j ←M((v1,j , . . . ,vn,j),w:,j) ∀j

end for
âj ← σ(− 1

n

∑n
i=1 δ(p̂j ,vi,j)) ∀j

Return p̂1, . . . , p̂m, â

Theorem 1. LetM be a weighted averaging operation that is equivariant under left-applications
of g ∈ G and let G be closed under applications ofM. Further, let δ be chosen so that all g ∈ G
are δ-distance preserving. Then, the function Lp(P,a) = (p̂1, . . . , p̂m) defined by Algorithm 1 is
equivariant under left-applications of all g ∈ G on input pose vectors P ∈ Gn:

Lp(g ◦P,a) = g ◦ Lp(P,a), ∀g ∈ G. (1)

Proof. The theorem is shown by induction over the inner loop of the algorithm, using the equivariance
ofM, preservation of δ and group properties. The initial step is to show equivariance of the pose
vectors before the loop. After that we show that, given equivariant first pose vectors we receive
invariant routing weights w, which again leads to equivariant pose vectors in the next iteration.

Induction Basis. Let p̂0, p̂g
0 be the first computed pose vectors (before the loop) for non-transformed

and transformed inputs, respectively. The equivariance of those poses can be shown given associativity
of group law, the equivariance ofM and the invariance of activations coming from a previous layer
(input activations a are equal for transformed and non transformed inputs). Note that we show the
result for one output capsule. Therefore, index j is constant and omitted.

p̂g
0 =M(((g ◦ p1) ◦ t1, . . . , (g ◦ pn) ◦ tn),ag)
=M((g ◦ (p1 ◦ t1)), . . . ,g ◦ (pn ◦ tn)),a)
= g ◦M((p1 ◦ t1, . . . ,pn ◦ tn),a)
= g ◦ p̂0

In addition, it is clear to see that the computed votes also are equivariant.
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Induction Step. Assuming equivariance of old pose vectors (g ◦ p̂m = p̂g
m), we show equivariance of

new pose vectors (g ◦ p̂m+1 = p̂g
m+1) after the next routing iteration. First we show that calculated

weights w behave again invariant under input transformation g. This follows directly from the
induction assumption, δ-distance preservation, equivariance of the votes and the invariance of a:

wg
i = σ(−δ(p̂g

m,v
g
i )) · ai

= σ(−δ(g ◦ p̂m,g ◦ vi)) · ai
= σ(−δ(p̂m,vi)) · ai
= wi

Now we show equivariance of p̂m+1, similarly to the induction basis, but using invariance of w:

p̂g
m+1 =M(((g ◦ p1) ◦ t1, . . . , (g ◦ pn) ◦ tn),wg)

=M((g ◦ (p1 ◦ t1)), . . . ,g ◦ (pn ◦ tn)),w)

= g ◦M((p1 ◦ t1, . . . ,pn ◦ tn),w)

= g ◦ p̂m+1

Theorem 2. Given the same conditions as in Theorem 1. Then, the functionLa(P,a) = (â1, . . . , âm)
defined by Algorithm 1 is invariant under joint left-applications of g ∈ G on input pose vectors
P ∈ Gn:

La(g ◦P,a) = La(P,a), ∀g ∈ G. (2)

Proof. The result follows by applying Theorem 1 and the δ-distance preservation. Equality of a and
ag is shown using Theorem 1 and the δ-distance preservation of G. Again, wie show the result for
one output capsule. The σ is constant and therefore omitted for simplicity.

ag =

n∑
i=1

δ(Lp(gl ◦P,a),gl ◦ pi ◦ gi)

=

n∑
i=1

δ(gl ◦ Lp(P,a),gl ◦ pi ◦ gi)

=
n∑

i=1

δ(Lp(P,a),pi ◦ gi)

= a

Theorem 3. Given pose vector outputs Lp(p,a) of a group capsule layer for group G, input signal
f : G → R and filter ψ : G → R. Then, the group convolution [f ? ψ] is invariant under joint
left-applications of g ∈ G on capsule input pose vectors P ∈ Gn and signal f :

[(g ◦ f) ? ψ] (Lp(g ◦P,a)) = [f ? ψ] (Lp(p,a)) (3)

Proof. The result is shown by applying Theorem 1, the definition of group law application on the
feature map (g ◦ f)(h) = f(g−1 ◦ h), a substitution h→ g ·h and the group property (g1◦g2)

−1 =
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g−12 ◦ g
−1
1 (using existence of inverse and neutral element properties of groups):

[(g ◦ f) ? ψ] (Lp(g ◦P,a)) = [(g ◦ f) ? ψ] (g ◦ Lp(P,a))

=

∫
h∈G

∑
i

fi(g
−1 ◦ h)ψi((g ◦ Lp(P,a))

−1 ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((g ◦ Lp(P,a))
−1 ◦ g ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((Lp(P,a)
−1 ◦ g−1 ◦ g ◦ h) dh

=

∫
h∈G

∑
i

fi(h)ψi((Lp(P,a)
−1 ◦ h) dh

= [f ? ψ] (Lp(p,a))

2 Examples for useful groups

Given the proposed algorithm,M and δ have to be chosen based on the chosen group and element rep-
resentations. Here we provide more information about Lie groups which provide useful equivariances
and can potentially be used in our framework.

The two-dimensional rotation group SO(2) The canonical application of the proposed frame-
work on images is achieved by using the two-dimensional rotation group SO(2). We chose to
represent the elements of G as two-dimensional unit vectors, choseM as the renormalized Euclidean
weighted mean and δ as the negative scalar product. Then, δ is distance preserving andM is left-
equivariant, assuming given poses do not add up to zero, which can be guaranteed through practical
measures.

Translation group (Rn,+) An potentially interesting application of group capsules are translation
groups. Essentially, a layer in the network is no longer evaluated for each spatial position, but rather
predict which positions will be of special interest and may sparsely evaluate a feature map at those
points. Therefore, the number of evaluations is heavily reduced, from number of output capsules
times number of pixels in the feature map to only the number of output capsules. However, in our
current architectures we would not expect that this construction would work, because the capsule
network would not be able to receive gradients which point in the direction of good transformations
t. It would rather be a random search, until good translational dependencies between hierarchical
parts of objects are found. Also, due to usually local filters in convolutions and sparse evaluations,
the outputs would often be zero at points of interest. ChoosingM and δ however is straight-forward:
the Euclidean weighted average and the l2-distance fulfill all requirements.

Higher dimensional groups Further interesting groups include the three-dimensional rotation
group SO(3) as well as GL(n,R), the group of general invertible matrices. For SO(3), a sufficient
averaging operatorM would be the weighted, element-wise mean of rotation matrices, orthogonally
projected onto the SO(3), as was shown by Moakher [2002] (it is not trivial to compute this operator
in a differentiable neural network module, though). Distance δ can be chosen as the Frobenius
distance, as rotation matrices are (Euclidean-)distance preserving.

3 Product group convolutions

Using the direct product of groups allows to apply our framework for group combinations. For
example, the product SO(2) × (R2,+) is again a group. Therefore, Theorem 1 and 2 also apply
for those combinations. Acknowledging that, we can go further and only use capsule routing for a
subset of groups in the product: Given a product group (G, ◦) = (G1, ◦1)× (G2, ◦2) (note that both
can again be product groups), we can use routing by agreement with sparse convolution evaluation
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over the group (G1, ◦1) and dense convolution evaluation without routing over the group (G2, ◦2).
Evaluation of the convolution operator changes to

[f ? ψ] (r̂, t) =

∫
(g1,g2)∈G

∑
i

fi(g1,g2)ψi(r̂
−1 ◦ g1, t

−1 ◦ g2) dg1dg2. (4)

We preserve equi- and invariance results for the group with routing and equivariance for the one
without, which we show by proving the following theorem. For the given example SO(2)× (R2,+),
it leads to evaluating the feature maps densely for spatial translations while sparsely evaluating
different rotations at each position and routing between them from a layer l to layer l+1. Activations
would still be invariant under application of the group that is indexed by the capsule poses.

Theorem 4. Let (G, ◦) = (R, ◦1)× (T, ◦2) be a direct product group andM and δ be given like in
Theorem 1. Further, let e be the neutral element of group T . Then, the group convolution [f ? ψ] is
invariant under joint left-applications of r ∈ R on capsule input pose vectors P ∈ Rn and signal f ,
for all t ∈ T :

[(r, e) ◦ f ? ψ] (Lp(r ◦P,a), t) = [f ? ψ] (Lp(P,a), t) (5)

Proof. The proof is given for one output capsule j and one input feature map i (omitting the sum in the
process). We show the equality analogously to Theorem 3 by applying the result of Theorem 1, the def-
inition of group law application on the feature map ((g1,g2) ◦ f)(h1,h2) = f(g−11 ◦ h1,g

−1
1 ◦ h2),

a substitution g1 → r · g1 and the group property (g1 ◦ g2)
−1 = g−12 ◦ g

−1
1 ,using the existence of

inverse and neutral element properties of groups (omitting dg’s):

[(r, e) ◦ f ? ψ] (Lp(r ◦P,a), t)
= [(r, e) ◦ f ? ψ] (r ◦ Lp(P,a), t)

=

∫
(g1,g2)∈G

f(r−1 ◦ g1, e ◦ g2)ψ((r ◦ Lp(P,a))
−1 ◦ g1, t

−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((r ◦ Lp(P,a))
−1 ◦ r ◦ g1, t

−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((Lp(P,a)
−1
1 ◦ r−1 ◦ r ◦ g1, t

−1 ◦ g2)

=

∫
(g1,g2)∈G

f(g1,g2)ψ((Lp(P,a)
−1
1 ◦ g1, t

−1 ◦ g2)

= [f ? ψ] (Lp(P,a), t)

The theorem allows us to create several types of capsule modules which precisely allow to choose
equivariances and invariances over a set of groups. Looking again at the example SO(2)× (R2,+),
Theorem 4 also shows us a convenient procedure: The convolution for each spatial position t and
sparse rotation r can be computed by rotating a local window of the input feature map by r before
applying the convolution. Therefore, we obtain a straight-forward way to implement CNNs with
guaranteed rotational invariance (which also outputs pose vectors with guaranteed equivariance).

It should be noted that we do not use the roto-translation group SE(2) here, which is a group over
entangled rotation and translation. Though we expect that modeling with this group is also possible,
the proofs and the concepts are simpler, when using a direct product. The reason for this is that we
aim to use both parts in different ways and to keep information disentangled.

4 Quantitative analysis of pose vectors

In the main paper we showed that the exact equivariance of pose vectors can be confirmed when only
considering rotations by multiples of π/2. However, when rotating by different angles, the image
gets resampled. This leads to an error in pose vectors for arbitrary rotations, which was evaluated
quantitatively in the paper.. We plotted this error for each MNIST class individually in Figure 1. It
can be seen that, for all classes, far away predictions are rarer than those near the correct pose. We
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Figure 1: Angle error histograms for rotated inputs that require resampling. The plots are given for
each MNIST class individually. The x axis shows bins for the angle errors in degree. The y axis
represents the fraction of test examples falling in each bin.

can also observe variances between the classes. The classes with the largest errors are 1, 4 and 8
while pose vectors from classes 3, 6 and 9 are most accurate. We suspect that inherent symmetries of
the symbols cause a larger pose error.
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