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Abstract

Multichannel blind deconvolution is the problem of recovering an unknown signal
f and multiple unknown channels xi from convolutional measurements yi = xi~f
(i = 1, 2, . . . , N ). We consider the case where the xi’s are sparse, and convolution
with f is invertible. Our nonconvex optimization formulation solves for a filter
h on the unit sphere that produces sparse output yi ~ h. Under some technical
assumptions, we show that all local minima of the objective function correspond
to the inverse filter of f up to an inherent sign and shift ambiguity, and all saddle
points have strictly negative curvatures. This geometric structure allows successful
recovery of f and xi using a simple manifold gradient descent algorithm with
random initialization. Our theoretical findings are complemented by numerical
experiments, which demonstrate superior performance of the proposed approach
over the previous methods.

1 Introduction

Blind deconvolution, which aims to recover unknown vectors x and f from their convolution y =
x~ f , has been extensively studied, especially in the context of image deblurring [1, 2, 3]. Recently,
algorithms with theoretical guarantees have been proposed for single channel blind deconvolution
[4, 5, 6, 7, 8, 9, 10]. In order for the problem to be well-posed, these previous methods assume
that both x and f are constrained, to either reside in a known subspace or be sparse over a known
dictionary [11, 12]. However, these methods cannot be applied if f (or x) is unconstrained, or does
not have a subspace or sparsity structure.

In many applications in communications [13], imaging [14], and computer vision [15], convolutional
measurements yi = xi ~ f are taken between a single signal (resp. filter) f and multiple filters (resp.
signals) {xi}Ni=1. We call such problems multichannel blind deconvolution (MBD). Importantly, in
this multichannel setting, one can assume that only {xi}Ni=1 are structured, and f is unconstrained.
While there has been abundant work on single channel blind deconvolution (with both f and x
constrained), research on MBD (with f unconstrained) is relatively limited. Traditional MBD works
assumed that the channels xi’s are FIR filters [16, 17, 18] or IIR filters [19], and proposed to solve
MBD using subspace methods. The problem is generally ill-conditioned, and the recovery using the
subspace methods is highly sensitive to noise [20].

In this paper, while retaining the unconstrained form of f , we consider a different structure of the
multiple channels {xi}Ni=1: sparsity. The resulting problem is termed multichannel sparse blind
deconvolution (MSBD). The sparsity structure arises in many real-world applications.
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Opportunistic underwater acoustics: Underwater acoustic channels are sparse in nature [21].
Estimating such sparse channels with an array of receivers using opportunistic sources (e.g., shipping
noise) involves a blind deconvolution problem with multiple unknown sparse channels [22, 23].

Reflection seismology: Thanks to the layered earth structure, reflectivity in seismic signals is sparse.
It is of great interest to simultaneous recover the filter (also known as the wavelet), and seismic
reflectivity along the multiple propagation paths between the source and the geophones [24].

Functional MRI: Neural activity signals are composed of brief spikes and are considered sparse.
However, observations via functional magnetic resonance imaging (fMRI) are distorted by convolving
with the hemodynamic response function. A blind deconvolution procedure can reveal the underlying
neural activity [25].

Super-resolution fluorescence microscopy: In super-resolution fluorescence microscopic imaging,
photoswitchable probes are activated stochastically to create multiple sparse images and allow
microscopy of nanoscale cellular structures [26, 27]. One can further improve the resolution via a
computational deconvolution approach, which mitigates the effect of the point spread function (PSF)
of the microscope [28]. It is sometimes difficult to obtain the PSF (e.g., due to unknown aberrations),
and one needs to jointly estimate the microscopic images and the PSF [29].

Previous approaches to MSBD have provided efficient iterative algorithms to compute maximum
likelihood (ML) estimates of parametric models of the channels {xi}Ni=1 [23], or maximum a
posteriori (MAP) estimates in various Bayesian frameworks [24, 15]. However, these algorithms
usually do not have theoretical guarantees. Recently, guaranteed algorithms for MSBD have been
developed. Wang and Chi [30] proposed a convex formulation of MSBD based on `1 minimization.
Li et al. [31] solved a nonconvex formulation using projected gradient descent, and proposed an
initialization algorithm to compute a sufficiently good starting point. However, the theoretical
guarantees of these algorithms require restrictive assumptions (e.g., f has one dominant entry that is
significantly larger than other entries [30], or f has an approximately flat spectrum [31]).

We would like to emphasize that, while earlier papers on MBD [16, 17, 18, 19] consider a linear con-
volution model, more recent guaranteed methods for MSBD [30, 31] consider a circular convolution
model. By zero padding the signal and the filter, one can rewrite a linear convolution as a circular
convolution. In practice, circular convolution is often used to approximate a linear convolution when
the filter has a compact support or decays fast [32], and the signal has finite length or satisfies a
circular boundary condition [1]. The accelerated computation of circular convolution via the fast
Fourier transform (FFT) is especially beneficial in 2D or 3D applications [1, 29]. Multichannel blind
deconvolution with a circular convolution model is also related to blind gain and phase calibration
with Fourier measurements [33, 34, 35, 36, 37].

In this paper, we consider MSBD with circular convolution. In addition to the sparsity prior on the
channels {xi}Ni=1, we impose, without loss of generality, the constraint that f has unit `2 norm, i.e., f
is on the unit sphere. (This eliminates the scaling ambiguity inherent in the MBD problem.) We show
that our sparsity promoting objective function has a nice geometric landscape on the the unit sphere:
(S1) all local minima correspond to signed shifted versions of the desired solution, and (S2) the
objective function is strongly convex in neighborhoods of the local minima, and has strictly negative
curvature directions in neighborhoods of local maxima and saddle points. Similar geometric analysis
has been conducted for dictionary learning [38], phase retrieval [39], and single channel sparse blind
deconvolution [10]. Recently, Mei et al. [40] analyzed the geometric structure of the empirical risk
of a class of machine learning problems (e.g., nonconvex binary classification, robust regression, and
Gaussian mixture model). This paper is the first such analysis for MSBD.

Although our analysis of global geometry shares a similar roadmap with previous works [10, 38, 39,
40], much of our theoretical analysis is tailored for MSBD. For example, our partition of the unit
sphere into three regions (of strong convexity, negative curvature, and large gradient, respectively) is
carefully crafted for our objective function, and is closely related to our error bound. We leverage
tools that are commonly used in related works, such as concentration inequalities and union bounds,
to prove the geometric properties. However, our bounds are derived specifically for MSBD, under
new assumptions. For example, the single channel sparse blind deconvolution [10] with sparse x,
requires f to have compact support. In contrast, in this work on MSBD, other than invertibility, we
make no assumptions on f .
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Properties (S1) and (S2) allow simple manifold optimization algorithms to find the ground truth in
the nonconvex formulation. Unlike the second order methods in previous works [41, 39], we take
advantage of recent advances in the analysis of first-order methods [42, 43], and prove that a simple
manifold gradient descent algorithm, with random initialization and a fixed step size, can accurately
recover a signed shifted version of the ground truth in polynomial time almost surely. This is the first
guaranteed algorithm for MSBD that does not rely on restrictive assumptions on f or {xi}Ni=1.

Recently, many optimization methods have been shown to escape saddle points of objective functions
with benign landscapes, e.g., gradient descent [44, 45], stochastic gradient descent [46], perturbed
gradient descent [47], Natasha [48, 49], and FastCubic [50]. Similarly, optimization methods over
Riemannian manifolds that can escape saddle points include manifold gradient descent [43], the trust
region method [41, 39], and the negative curvature method [51]. Our main result shows that these
algorithms can be applied to MSBD thanks to the favorable geometric structure of our objective.

2 MSBD on the Sphere

2.1 Problem Statement

In MSBD, the measurements y1, y2, . . . , yN ∈ Rn are the circular convolutions of unknown sparse
vectors x1, x2, . . . , xN ∈ Rn and an unknown vector f ∈ Rn, i.e., yi = xi ~ f . In this paper, we
solve for {xi}ni=1 and f from {yi}Ni=1. One can rewrite the measurement as Y = CfX , where
Cf represents the circulant matrix whose first column is f , and Y = [y1, y2, . . . , yN ] and X =
[x1, x2, . . . , xN ] are n×N matrices. Without structures, one can solve the problem by choosing any
invertible circulant matrix Cf and compute X = C−1f Y . The fact that X is sparse narrows down the
search space.

Even with sparsity, the problem suffers from inherent scale and shift ambiguities. Suppose Sj :
Rn → Rn denotes a circular shift by j positions, i.e., Sj(x)(k) = x(k−j) for j, k ∈ [n]. Here we use
x(j) to denote the j-th entry of x ∈ Rn (treated as modulo n). Note that we have yi = xi ~ f =

(αSj(xi))~ (α−1S−j(f)) for every nonzero α ∈ R and j ∈ [n]. Therefore, MSBD has equivalent
solutions generated by scaling and circularly shifting {xi}ni=1 and f .

Throughout this paper, we assume that the circular convolution with the signal f is invertible, i.e.,
there exists a filter g such that f ~ g = e1 (the first standard basis vector). Equivalently, Cf is
an invertible matrix, and the discrete Fourier transform (DFT) of f is nonzero everywhere. Since
yi ~ g = xi ~ f ~ g = xi, one can find g by solving the following optimization problem:

(P0) min
h∈Rn

1

N

N∑
i=1

‖Cyih‖0, s.t. h 6= 0.

The constraint eliminates the trivial solution that is 0. If the solution to MSBD is unique up to the
aforementioned ambiguities, then the only minimizers of (P0) are h = αSjg (α 6= 0, j ∈ [n]).

2.2 Smooth Formulation

Figure 1: Unit `1, `2, and `4 spheres
in 2-D.

Minimizing the non-smooth `0 “norm” is usually challeng-
ing. Instead, one can choose a smooth surrogate function for
sparsity. It is well-known that minimizing the `1 norm can
lead to sparse solutions [52]. An intuitive explanation is that
the sparse points on the unit `2 sphere (which we call unit
sphere from now on) have the smallest `1 norm. As demon-
strated in Figure 1, these sparse points also have the largest `4
norm. Therefore, maximizing the `4 norm, a surrogate for the
“spikiness” [53] of a vector, is akin to minimizing its sparsity.

Here, we make two observations: (1) one can eliminate the
scaling ambiguity by restricting h to the unit sphere Sn−1; (2) sparse recovery can be achieved by
maximizing ‖·‖44. Based on these observations, we adopt the following optimization problem:

(P1) min
h∈Rn

− 1

4N

N∑
i=1

‖CyiRh‖44, s.t. ‖h‖ = 1.
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The matrix R := ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2 ∈ Rn×n is a preconditioner, where θ is a parameter that
is proportional to the sparsity level of {xi}Ni=1. In Section 3, under specific probabilistic assumptions
on {xi}Ni=1, we explain how the preconditioner R works.

Problem (P1) can be solved using first-order or second-order optimization methods over Riemannian
manifolds. The main result of this paper provides a geometric view of the objective function over the
sphere Sn−1 (see Figure 3). We show that some off-the-shelf optimization methods can be used to
obtain a solution ĥ close to a scaled and circularly shifted version of the ground truth. Specifically, ĥ
satisfies CfRĥ ≈ ±ej for some j ∈ [n], i.e., Rĥ is approximately a signed and shifted version of the
inverse of f . Given solution ĥ to (P1), one can recover f and xi (i = 1, 2, . . . , N ) as follows:

f̂ = F−1
[
F(Rĥ)�−1

]
, x̂i = CyiRĥ. (1)

Here, we use x�−1 to denote the entrywise inverse of x.

3 Global Geometric View

In this paper, we assume that {xi}Ni=1 are random sparse vectors, and f is invertible:

(A1) The channels {xi}Ni=1 follow a Bernoulli-Rademacher model. More precisely, xi(j) = AijBij
are independent random variables, Bij’s follow a Bernoulli distribution Ber(θ), and Aij’s
follow a Rademacher distribution (taking values 1 and −1, each with probability 1/2).

(A2) The circular convolution with the signal f is invertible. We use κ to denote the condition
number of f , which is defined as κ :=

maxj |(Ff)(j)|
mink |(Ff)(k)|

=
σ1(Cf )
σn(Cf )

, i.e., the ratio of the largest
and smallest magnitudes of the DFT of f .

The Bernoulli-Rademacher model is a special case of the Bernoulli–sub-Gaussian models. The
derivation in this paper can be repeated for other sub-Gaussian nonzero entries, with different tail
bounds. We use the Rademacher distribution for simplicity.

Figure 2: A demonstration of the tan-
gent space of Sn−1 at h, the origin of
which is translated to h. The Rieman-
nian gradient and Riemannian Hes-
sian are defined on tangent spaces.

Let φ(x) = − 1
4‖x‖

4
4. Its gradient and Hessian are defined by

∇φ(x)(j) = −x3j , and Hφ(x)(jk) = −3x2jδjk. (We use H(jk)

to denote the entry of H ∈ Rn×n in the j-th row and k-th
column, and use δjk to denote the Kronecker delta.) Then
the objective function in (P1) is L(h) = 1

N

∑N
i=1 φ(CyiRh),

where R = ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2. The gradient and
Hessian are ∇L(h) = 1

N

∑N
i=1R

>C>yi∇φ(CyiRh), and
HL(h) =

1
N

∑N
i=1R

>C>yiHφ(CyiRh)CyiR. Since L(h) is
to be minimized over Sn−1, we use optimization methods
over Riemannian manifolds [54]. To this end, we define the
tangent space at h ∈ Sn−1 as {z ∈ Rn : z ⊥ h} (see Figure
2). We study the Riemannian gradient and Riemannian Hes-
sian of L(h) (gradient and Hessian along the tangent space
at h ∈ Sn−1): ∇̂L(h) = Ph⊥∇L(h), and ĤL(h) = Ph⊥HL(h)Ph⊥ − 〈∇L(h), h〉Ph⊥ , where
Ph⊥ = I − hh> is the projection onto the tangent space at h. We refer the readers to [54] for a more
comprehensive discussion of these concepts.

The toy example in Figure 3 demonstrates the geometric structure of the objective function on Sn−1.
(As shown later, the quantity EL′′(h) is, up to an unimportant rotation of the coordinate system, a
good approximation to L(h).) The local minima correspond to signed shifted versions of the ground
truth (Figure 3(a)). The Riemannian gradient is zero at stationary points, including local minima,
saddle points, and local maxima of the objective function when restricted to the sphere Sn−1. (Figure
3(b)). The Riemannian Hessian is positive definite in the neighborhoods of local minima, and has at
least one strictly negative eigenvalue in the neighborhoods of local maxima and saddle points (Figure
3(c)). We say that a stationary point is a “strict saddle point” if the Riemannian Hessian has at least
one strictly negative eigenvalue. Our main result Theorem 3.1 formalizes the observation that L(h)
only has two types of stationary points: (1) local minima, which are close to signed shifted versions

4



of the ground truth, and (2) strict saddle points. Please refer to the supplementary result for the full
proof.

(a) (b) (c)

Figure 3: Geometric structure of the objective function over the sphere. For n = 3, we plot the follow-
ing quantities on the sphere S2: (a) EL′′(h), (b) ‖E∇̂L′′(h)‖, and (c) minz⊥h,‖z‖=1 z

>EĤL′′(h)z.

Theorem 3.1. Suppose Assumptions (A1) and (A2) are satisfied, and the Bernoulli probability
satisfies 1

n ≤ θ < 1
3 . Let κ be the condition number of f , and let ρ < 10−3 be a small tol-

erance constant. There exist constants c1, c′1, c2, c
′
2 > 0 (depending only on θ), such that: if

N > max{ c1n
9

ρ4 log n
ρ ,

c2κ
8n8

ρ4 log n}, then with probability at least 1 − n−c′1 − n−c′2 , every local
minimum h∗ in (P1) is close to a signed shifted version of the ground truth. I.e., for some j ∈ [n]:
‖CfRh∗ ± ej‖ ≤ 2κ

√
ρ. Moreover, one can partition Sn−1 into three setsH1,H2, andH3, which,

for some c(n, θ, ρ) > 0, satisfy:

◦ L(h) is strongly convex inH1, i.e., minz:‖z‖=1
z⊥h

z>ĤL(h)z ≥ c(n, θ, ρ) > 0.

◦ L(h) has negative curvature inH2, i.e., minz:‖z‖=1
z⊥h

z>ĤL(h)z ≤ −c(n, θ, ρ) < 0.

◦ L(h) has a descent direction inH3, i.e., ‖∇̂L(h)‖ ≥ c(n, θ, ρ) > 0.

Clearly, all the stationary points of L(h) on Sn−1 belong toH1 orH2. The stationary points inH1

are local minima, and the stationary points inH2 are strict saddle points.

Proof Sketch. Note that R = ( 1
θnN

∑N
i=1 C

>
yiCyi)

−1/2 asymptotically converges to (C>f Cf )
−1/2 as

N increases. Therefore, L(h) can be approximated by L′(h) = 1
N

∑N
i=1 φ(Cyi(C

>
f Cf )

−1/2h) =
1
N

∑N
i=1 φ(Cxi

Cf (C
>
f Cf )

−1/2h). Since Cf (C>f Cf )
−1/2 is an orthogonal matrix, one can study

the objective function L′′(h′) = 1
N

∑N
i=1 φ(Cxih

′) with h′ = Cf (C
>
f Cf )

−1/2h, which is a rotated
version of L′(h) on the sphere. Our analysis consists of three parts:

(1) Geometric structure of EL′′: We first bound minz:‖z‖=1, z⊥h z
>EĤL′′(h)z, which is strictly

positive near its local minima, and strictly negative near all other stationary points (the strict saddle
points). At the same time, at all other points on Sn−1 (the points further away from stationary points),
the Riemannian gradient of EL′′ is bounded away from zero.

(2) Deviation of L′′ (or its rotated version L′) from EL′′: We bound ‖∇̂L′′(h)− E∇̂L′′(h)‖ and
‖ĤL′′(h)− EĤL′′(h)‖ using the matrix Bernstein inequality and union bounds.

(3) Difference between L and L′: We bound ‖∇̂L(h)− ∇̂L′(h)‖ and ‖ĤL(h)− ĤL′(h)‖ using the
matrix Bernstein inequality and Lipschitz continuity of ∇̂L(h) and ĤL(h).

Theorem 3.1 follows by combining the above results.
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4 Optimization Method

Recently, first-order methods have been shown to escape strict saddle points with random initialization
[44, 45]. In this paper, we use the manifold gradient descent algorithm studied by Lee et al. [43].
One can initialize the algorithm with a random h(0), and use the following iterative update:

h(t+1) = A(h(t)) := PSn−1

(
h(t) − γ∇̂L(h(t))

)
. (2)

Each iteration takes a Riemannian gradient descent step in the tangent space, and does a retraction
by normalizing the iterate (projecting onto Sn−1). Using the geometric structure introduced in
Section 3, and some technical results in [42, 43], the following result gives a theoretical guarantee for
manifold gradient descent for our formulation of MSBD: convergence to an accurate estimate (up to
the inherent sign and shift ambiguity) of the true solution.
Theorem 4.1. Suppose that the geometric structure in Theorem 3.1 is satisfied. If manifold gradient
descent (2) is initialized with a random h(0) drawn from a uniform distribution on Sn−1, and the step
size is chosen as γ = 1

128n3 , then (2) converges to a local minimum of L(h) on Sn−1 almost surely.
It particular, after at most T = 4096n8

θ2(1−3θ)2ρ4 iterations, h(T ) ∈ H1. Moreover, for some j ∈ [n]

‖CfRh(T ) ± ej‖ ≤ 2κ
√
ρ.

Corollary 4.2. If the conditions of Theorem 4.1 are satisfied, then the recovered f̂ and x̂i in (1),
computed using the output of manifold gradient descent ĥ = h(T ), satisfy (for some j ∈ [n]):

‖x̂i ± Sj(xi)‖
‖xi‖

≤ 2κ
√
ρn,

‖f̂ ± S−j(f)‖
‖f‖

≤
2κ
√
ρn

1− 2κ
√
ρn
.

Theorem 4.1 and Corollary 4.2 show that, with a random initialization and a fixed step size, manifold
gradient descent outputs, in polynomial time, a solution that is close to a signed and shifted version
of the ground truth. We prove these results in the supplementary material.

5 Numerical Experiments

5.1 Deconvolution with Synthetic Data

In this section, we examine the empirical performance of manifold gradient descent (2) in solving
MSBD (P1). We synthesize {xi}Ni=1 following the Bernoulli-Rademacher model, and synthesize f
following a Gaussian distribution N(0n×1, In). In all experiments, we run manifold gradient descent
for T = 100 iterations, with a fixed step size of γ = 0.1.

Recall that the desired h is a signed shifted version of the ground truth, i.e., CfRh = ±ej
(j ∈ [n]). Therefore, to evaluate the accuracy of the output h(T ), we compute CfRh(T ) with
the true f , and declare successful recovery if ‖CfRh(T )‖∞/‖CfRh(T )‖ > 0.95, or equivalently,
if maxj∈[n]

∣∣cos∠(CfRh(T ), ej
)∣∣ > 0.95. We compute the success rate based on 100 Monte Carlo

instances. In a typical successful instance, h(t) converges to an accurate estimate of the ground truth
after about 50 iterations (as shown by the error and accuracy plots in Figure 4(d) and 4(h)).

In the first experiment, we fix θ = 0.1 (sparsity level, mean of the Bernoulli distribution), and
run experiments with n = 32, 64, . . . , 256 and N = 32, 64, . . . , 256 (see Figure 4(a)). In the
second experiment, we fix n = 256, and run experiments with θ = 0.02, 0.04, . . . , 0.16 and N =
32, 64, . . . , 256 (see Figure 4(b)). The empirical phase transitions suggest that, for sparsity level
relatively small (e.g., θ < 0.16), there exist a constant c > 0 such that manifold gradient descent can
recover a signed shifted version of the ground truth with N ≥ cnθ.

In the third experiment, we examine the phase transition with respect to N and the condition number
κ of f , which is the ratio of the largest and smallest magnitudes of its DFT. To synthesize f with
specific κ, we generate the DFT f̃ of f that is random with the following distribution: (1) The DFT
f̃ is symmetric, i.e., f̃(j) = f̃(n+2−j), so that f is real. (2) The phase of f̃(j) follows a uniform
distribution on [0, 2π), except for the phases of f̃(1) and f̃(n/2+1) (if n is even), which are always
0 for symmetry. (3) The gains of f̃ follows a uniform distribution on [1, κ]. We fix n = 256 and
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θ = 0.1, and run experiments with κ = 1, 2, 4, . . . , 128 and N = 32, 64, . . . , 256 (see Figure 4(c)).
The phase transition suggests that the number N for successful empirical recovery is not sensitive to
the condition number κ.

Manifold gradient descent is robust against noise. We repeat the above experiments with noisy
measurements: yi = xi ~ f + σεi, where εi follows a Gaussian distribution N(0n×1, In). The
phase transitions for σ = 0.1

√
nθ (SNR ≈ 20 dB) are shown in Figure 4(e), 4(f), and 4(g). For a

reasonable noise level, the number N of noisy measurements we need to accurately recover a signed
shifted version of the ground truth is roughly the same as with noiseless measurements.
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Figure 4: Empirical phase transition (grayscale values represent success rates). The first column
shows the phase transitions of N versus n. The second column shows the phase transitions of N
versus θ. The third column shows the phase transitions of N versus κ. (a) - (c) are the results for the
noiseless case. (e) - (g) are the results for SNR ≈ 20 dB. (d) and (h) show the error ‖CfRh(t) − ej‖
and the accuracy ‖CfRh(t)‖∞/‖CfRh(t)‖ as functions of the iteration number t, respectively.

5.2 Blind Gain and Phase Calibration

In this section, we consider the blind calibration problem [31]. Suppose that a sensing system takes
Fourier measurements of unknown signals, with sensors that have unknown gains and phases, i.e.,
ỹi = diag(f̃)Fxi, where xi are the targeted unknown sparse signals, F is the DFT matrix, and the
entries of f̃ represent the unknown gains and phases. In sensor array processing [55], the supports
of xi’s are identical, and represent the directions of arrival of incoming sources. The simultaneous
recovery of f̃ and xi’s is equivalent to MSBD in the frequency domain.

Clearly, Assumption (A1) is not satisfied in this case. For complex f, xi ∈ Cn, we solve:

min
h∈Cn

1

N

N∑
i=1

φ(Re(CyiRh)) + φ(Im(CyiRh)), s.t. ‖h‖ = 1,

where R := ( 1
θnN

∑N
i=1 C

H
yiCyi)

−1/2 ∈ Cn×n, and (·)H represents the Hermitian transpose. If one
treats the real and imaginary parts of h separately, then this optimization in Cn can be recast into
R2n, and the gradient with respect to Re(h) and Im(h) can be used in first-order methods. This
is related to Wirtinger gradient descent algorithms (see the discussion in [56]). The Riemannian
gradient with respect to h is P(R·h)⊥

(
1
N

∑N
i=1R

HCH
yiwi(h)

)
, where wi(h) represents wi(h) =

∇φ(Re(CyiRh)) +
√
−1∇φ(Im(CyiRh)), and P(R·h)⊥ represents the projection onto the tangent

space at h in S2n−1 ⊂ R2n: P(R·h)⊥z = z − Re(hHz) · h. In the complex case, one can initialize
the manifold gradient descent algorithm with a random h(0), for which [Re(h(0))>, Im(h(0))>]>

follows a uniform distribution on S2n−1.
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Figure 5: Empirical phase transition of N versus s, given that n = 128. (a) Manifold gradient
descent. (b) Truncated power iteration [31]. (c) Off-the-grid algebraic method [57]. (d) Off-the-grid
optimization approach [58].

We compare manifold gradient descent (with random initialization) with three blind calibration
algorithms that solve MSBD in the frequency domain: (i) truncated power iteration [31] (initialized
with f (0) = e1 and x(0)i = 0); (ii) an off-the-grid algebraic method [57] (simplified from [55]); and
(iii) an off-the-grid optimization approach [58].

We consider Gaussian random f̃ ∼ CN(0n×1, In), and jointly s-sparse {xi}Ni=1, for which the
support is chosen uniformly at random, and the nonzero entries of {xi}Ni=1 follow a complex
Gaussian distribution CN(0, 1). We fix n = 128, and run experiments for N = 16, 32, 48, · · · , 128,
and s = 2, 4, 6, . . . , 16. We say that the recovery is successful is the accuracy (cosine of the angle
between the true signal and the recovered signal) is greater than 0.7.

By the phase transitions in Figure 5, manifold gradient descent and truncated power iteration are
both successful when N ≥ 48 and s ≤ 8. However, although truncated power iteration achieves
higher success rates when both N and s are small, it fails for s > 8 even with a large N . In contrast,
manifold gradient descent can recover channels with s = 16 when N ≥ 80.

The off-the-grid methods are designed, hence provide better recovery than the first two algorithms,
for the case that the unknown sparse signals do not reside on a discrete grid (i.e., “off the grid”).
However, the off-the-grid methods rely on the properties of the covariance matrix 1

N

∑N
i=1 yiy

H
i , and

require a much larger N than the first two algorithms to achieve high success rates when the sparse
signals actually lie on a regular grid (see the phase transitions in Figure 5).

5.3 Super-Resolution Fluorescence Microscopy

Manifold gradient descent can be applied to deconvolution of time resolved fluorescence microscopy
images. The goal is to recover sharp images xi’s from observations yi’s that are blurred by an
unknown PSF f .

We use a publicly available microtubule dataset [28], which contains N = 626 images (Figure
6(a)). Since fluorophores are are turned on and off stochastically, the images xi’s are random sparse
samples of the 64× 64 microtubule image (Figure 6(e)). The observations yi’s (Figure 6(b), 6(f)) are
synthesized by circular convolutions with the PSF in Figure 6(i). The recovered images (Figure 6(c),
6(g)) and kernel (Figure 6(j)) clearly demonstrate the effectiveness of our approach in this setting.

Blind deconvolution is less sensitive to instrument calibration error than non-blind deconvolution.
If the PSF used in a non-blind deconvolution method fails to account for certain optic aberration,
the resulting images may suffer from spurious artifacts. For example, if we use a miscalibrated PSF
(Figure 6(k)) in non-blind image reconstruction using FISTA [59], then the recovered images (Figure
6(d), 6(h)) suffer from serious spurious artifacts.

6 Conclusion

In this paper, we study the geometric structure of multichannel sparse blind deconvolution over
the unit sphere. Our theoretical analysis reveals that local minima of a sparsity promoting smooth
objective function correspond to signed shifted version of the ground truth, and saddle points have
strictly negative curvatures. Thanks to the favorable geometric properties of the objective, we can
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Figure 6: Super-resolution fluorescence microscopy experiment using manifold gradient descent. (a)
True images. (b) Observed images. (c) Recovered images using blind deconvolution. (d) Recovered
images using non-blind deconvolution and a miscalibrated PSF. (e)(f)(g)(h) are average images of
(a)(b)(c)(d). (i) True PSF. (j) Recovered PSF using blind deconvolution. (k) Miscalibrated PSF used
in non-blind deconvolution. All images in this figure are of the same size (64× 64).

simultaneously recover the unknown signal and unknown channels from convolutional measurements
using manifold gradient descent with a random initialization. In practice, many convolutional
measurement models are subsampled in the spatial domain (e.g., image super-resolution) or in the
frequency domain (e.g., radio astronomy). Studying the effect of subsampling on the geometric
structure of multichannel sparse blind deconvolution is an interesting problem for future work.

Acknowledgments

This work was supported in part by the National Science Foundation (NSF) under Grant IIS 14-47879.
The authors would like to thank Ju Sun for helpful discussions about this paper. The manuscript
benefited from constructive comments by the anonymous reviewers.

References

[1] S. Cho and S. Lee, “Fast motion deblurring,” in ACM Transactions on Graphics (TOG), vol. 28,
no. 5. ACM, 2009, p. 145.

[2] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman, “Understanding blind deconvolution
algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12,
pp. 2354–2367, Dec 2011.

[3] L. Xu, S. Zheng, and J. Jia, “Unnatural l0 sparse representation for natural image deblurring,”
in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE, 2013,
pp. 1107–1114.

[4] A. Ahmed, B. Recht, and J. Romberg, “Blind deconvolution using convex programming,” IEEE
Transactions on Information Theory, vol. 60, no. 3, pp. 1711–1732, March 2014.

[5] S. Ling and T. Strohmer, “Self-calibration and biconvex compressive sensing,” Inverse Problems,
vol. 31, no. 11, p. 115002, 2015.

9



[6] Y. Chi, “Guaranteed blind sparse spikes deconvolution via lifting and convex optimization,”
IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 4, pp. 782–794, June 2016.

[7] X. Li, S. Ling, T. Strohmer, and K. Wei, “Rapid, robust, and reliable blind deconvolution via
nonconvex optimization,” arXiv preprint arXiv:1606.04933, 2016.

[8] K. Lee, Y. Li, M. Junge, and Y. Bresler, “Blind recovery of sparse signals from subsampled
convolution,” IEEE Transactions on Information Theory, vol. 63, no. 2, pp. 802–821, Feb 2017.

[9] W. Huang and P. Hand, “Blind deconvolution by a steepest descent algorithm on a quotient
manifold,” arXiv preprint arXiv:1710.03309, 2017.

[10] Y. Zhang, Y. Lau, H.-w. Kuo, S. Cheung, A. Pasupathy, and J. Wright, “On the global geometry
of sphere-constrained sparse blind deconvolution,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 4894–4902.

[11] Y. Li, K. Lee, and Y. Bresler, “Identifiability in blind deconvolution with subspace or sparsity
constraints,” IEEE Transactions on Information Theory, vol. 62, no. 7, pp. 4266–4275, July
2016.

[12] ——, “Identifiability and stability in blind deconvolution under minimal assumptions,” IEEE
Transactions on Information Theory, vol. 63, no. 7, pp. 4619–4633, July 2017.

[13] L. Tong and S. Perreau, “Multichannel blind identification: from subspace to maximum likeli-
hood methods,” Proceedings of the IEEE, vol. 86, no. 10, pp. 1951–1968, Oct 1998.

[14] H. She, R.-R. Chen, D. Liang, Y. Chang, and L. Ying, “Image reconstruction from phased-array
data based on multichannel blind deconvolution,” Magnetic resonance imaging, vol. 33, no. 9,
pp. 1106–1113, 2015.

[15] H. Zhang, D. Wipf, and Y. Zhang, “Multi-image blind deblurring using a coupled adaptive
sparse prior,” in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on.
IEEE, 2013, pp. 1051–1058.

[16] L. Tong, G. Xu, and T. Kailath, “A new approach to blind identification and equalization of
multipath channels,” in [1991] Conference Record of the Twenty-Fifth Asilomar Conference on
Signals, Systems Computers, Nov 1991, pp. 856–860 vol.2.

[17] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, “Subspace methods for the blind
identification of multichannel fir filters,” IEEE Transactions on Signal Processing, vol. 43, no. 2,
pp. 516–525, Feb 1995.

[18] G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to blind channel identification,”
IEEE Transactions on Signal Processing, vol. 43, no. 12, pp. 2982–2993, Dec 1995.

[19] M. I. Gurelli and C. L. Nikias, “Evam: an eigenvector-based algorithm for multichannel blind
deconvolution of input colored signals,” IEEE Transactions on Signal Processing, vol. 43, no. 1,
pp. 134–149, Jan 1995.

[20] K. Lee, F. Krahmer, and J. Romberg, “Spectral methods for passive imaging: Non-asymptotic
performance and robustness,” arXiv preprint arXiv:1708.04343, 2017.

[21] C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel estimation for multicarrier
underwater acoustic communication: From subspace methods to compressed sensing,” IEEE
Transactions on Signal Processing, vol. 58, no. 3, pp. 1708–1721, March 2010.

[22] K. G. Sabra and D. R. Dowling, “Blind deconvolution in ocean waveguides using artificial time
reversal,” The Journal of the Acoustical Society of America, vol. 116, no. 1, pp. 262–271, 2004.

[23] N. Tian, S.-H. Byun, K. Sabra, and J. Romberg, “Multichannel myopic deconvolution in
underwater acoustic channels via low-rank recovery,” The Journal of the Acoustical Society of
America, vol. 141, no. 5, pp. 3337–3348, 2017.

[24] K. F. Kaaresen and T. Taxt, “Multichannel blind deconvolution of seismic signals,” Geophysics,
vol. 63, no. 6, pp. 2093–2107, 1998.

[25] D. R. Gitelman, W. D. Penny, J. Ashburner, and K. J. Friston, “Modeling regional and psy-
chophysiologic interactions in fmri: the importance of hemodynamic deconvolution,” Neuroim-
age, vol. 19, no. 1, pp. 200–207, 2003.

[26] M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical
reconstruction microscopy (storm),” Nature methods, vol. 3, no. 10, p. 793, 2006.

10



[27] E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W.
Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at
nanometer resolution,” Science, vol. 313, no. 5793, pp. 1642–1645, 2006.

[28] E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution
fluorescence microscopy,” Biophysical journal, vol. 102, no. 10, pp. 2391–2400, 2012.

[29] P. Sarder and A. Nehorai, “Deconvolution methods for 3-d fluorescence microscopy images,”
IEEE Signal Processing Magazine, vol. 23, no. 3, pp. 32–45, May 2006.

[30] L. Wang and Y. Chi, “Blind deconvolution from multiple sparse inputs,” IEEE Signal Processing
Letters, vol. 23, no. 10, pp. 1384–1388, Oct 2016.

[31] Y. Li, K. Lee, and Y. Bresler, “Blind gain and phase calibration via sparse spectral methods,”
IEEE Transactions on Information Theory, 2018.

[32] T. Strohmer, “Four short stories about toeplitz matrix calculations,” Linear Algebra and its
Applications, vol. 343, pp. 321–344, 2002.

[33] Y. Li, K. Lee, and Y. Bresler, “Identifiability in bilinear inverse problems with applications
to subspace or sparsity-constrained blind gain and phase calibration,” IEEE Transactions on
Information Theory, vol. 63, no. 2, pp. 822–842, Feb 2017.

[34] ——, “Optimal sample complexity for blind gain and phase calibration,” IEEE Transactions on
Signal Processing, vol. 64, no. 21, pp. 5549–5556, Nov 2016.

[35] L. Balzano and R. Nowak, “Blind calibration of sensor networks,” in Proceedings of the 6th
international conference on Information processing in sensor networks. ACM, 2007, pp.
79–88.

[36] C. Bilen, G. Puy, R. Gribonval, and L. Daudet, “Convex optimization approaches for blind
sensor calibration using sparsity,” IEEE Transactions on Signal Processing, vol. 62, no. 18, pp.
4847–4856, Sept 2014.

[37] S. Ling and T. Strohmer, “Self-calibration via linear least squares,” arXiv preprint, 2016.

[38] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the sphere i: Overview and
the geometric picture,” IEEE Transactions on Information Theory, vol. 63, no. 2, pp. 853–884,
Feb 2017.

[39] ——, “A geometric analysis of phase retrieval,” Foundations of Computational Mathematics,
Aug 2017. [Online]. Available: https://doi.org/10.1007/s10208-017-9365-9

[40] S. Mei, Y. Bai, and A. Montanari, “The landscape of empirical risk for non-convex losses,”
arXiv preprint arXiv:1607.06534, 2016.

[41] J. Sun, Q. Qu, and J. Wright, “Complete dictionary recovery over the sphere ii: Recovery by
riemannian trust-region method,” IEEE Transactions on Information Theory, vol. 63, no. 2, pp.
885–914, Feb 2017.

[42] N. Boumal, P.-A. Absil, and C. Cartis, “Global rates of convergence for nonconvex optimization
on manifolds,” arXiv preprint arXiv:1605.08101, 2016.

[43] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and B. Recht, “First-order
methods almost always avoid saddle points,” arXiv preprint arXiv:1710.07406, 2017.

[44] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent only converges to
minimizers,” in Conference on Learning Theory, 2016, pp. 1246–1257.

[45] I. Panageas and G. Piliouras, “Gradient descent only converges to minimizers: Non-isolated
critical points and invariant regions,” arXiv preprint arXiv:1605.00405, 2016.

[46] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—online stochastic gradient
for tensor decomposition,” in Conference on Learning Theory, 2015, pp. 797–842.

[47] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape saddle points
efficiently,” in International Conference on Machine Learning, 2017, pp. 1724–1732.

[48] Z. Allen-Zhu, “Natasha: Faster stochastic non-convex optimization via strongly non-convex
parameter,” arXiv preprint arXiv:1702.00763, 2017.

[49] ——, “Natasha 2: Faster non-convex optimization than sgd,” arXiv preprint arXiv:1708.08694,
2017.

11

https://doi.org/10.1007/s10208-017-9365-9


[50] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, “Finding approximate local minima
faster than gradient descent,” in Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing. ACM, 2017, pp. 1195–1199.

[51] D. Goldfarb, C. Mu, J. Wright, and C. Zhou, “Using negative curvature in solving nonlinear
programs,” Computational Optimization and Applications, vol. 68, no. 3, pp. 479–502, Dec
2017. [Online]. Available: https://doi.org/10.1007/s10589-017-9925-6

[52] D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal)
dictionaries via `1 minimization,” Proceedings of the National Academy of Sciences, vol. 100,
no. 5, pp. 2197–2202, feb 2003.

[53] Y. Zhang, H.-W. Kuo, and J. Wright, “Structured local optima in sparse blind deconvolution,”
in Proceedings of the 10th NIPS Workshop on Optimization for Machine Learning (OPTML),
2017.

[54] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds.
Princeton University Press, 2009.

[55] A. Paulraj and T. Kailath, “Direction of arrival estimation by eigenstructure methods with
unknown sensor gain and phase,” in ICASSP ’85. IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 10, Apr 1985, pp. 640–643.

[56] E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via wirtinger flow: Theory and
algorithms,” IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1985–2007, April
2015.

[57] M. P. Wylie, S. Roy, and R. F. Schmitt, “Self-calibration of linear equi-spaced (les) arrays,” in
1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, April
1993, pp. 281–284 vol.1.

[58] Y. C. Eldar, W. Liao, and S. Tang, “Sensor calibration for off-the-grid spectral estimation,” arXiv
preprint arXiv:1707.03378, 2017.

[59] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse
problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

12

https://doi.org/10.1007/s10589-017-9925-6

