
Revisiting Decomposable Submodular Function
Minimization with Incidence Relations

Pan Li
UIUC

panli2@illinois.edu

Olgica Milenkovic
UIUC

milenkov@illinois.edu

Abstract

We introduce a new approach to decomposable submodular function minimiza-
tion (DSFM) that exploits incidence relations. Incidence relations describe which
variables effectively influence the component functions, and when properly uti-
lized, they allow for improving the convergence rates of DSFM solvers. Our
main results include the precise parametrization of the DSFM problem based on
incidence relations, the development of new scalable alternative projections and
parallel coordinate descent methods and an accompanying rigorous analysis of
their convergence rates.

1 Introduction
A set function F : 2[N] → R over a ground set [N] is termed submodular if for all pairs of sets
S1, S2 ⊆ [N], one has F (S1) +F (S2) ≥ F (S1 ∩ S2) +F (S1 ∪ S2). Submodular functions capture
the ubiquitous phenomenon of diminishing marginal costs [1] and they frequently arise as part of the
objective function of various machine learning optimization problems [2, 3, 4, 5, 6, 7].

Among the various submodular function optimization problems, submodular function minimization
(SFM), which may be stated as minS⊆[N] F (S), is one of the most important and commonly studied
questions. The current fastest known SFM algorithm has complexity O(N4 logO(1)N + τN3),
where τ denotes the time needed to evaluate the submodular function [8]. Although SFM solvers
operate in time polynomial in N , the high-degree of the underlying polynomial prohibits their use
in practical large-scale settings. For this reason, a recent line of work has focused on developing
scalable and parallelizable algorithms for solving the SFM problem by leveraging the property of
decomposability [9]. Decomposability asserts that the submodular function may be written as a sum
of “simpler” submodular functions that may be optimized sequentially or in parallel. Formally, the
underlying problem, referred to as decomposable SFM (DSFM), may be stated as:

DSFM: min
S

∑
r∈[R]

Fr(S), (1)

where Fr : 2[N] → R is a submodular function for all r ∈ [R]. Algorithmic solutions for the DSFM
problem fall into two categories, combinatorial optimization approaches [10, 11] and continuous func-
tion optimization methods [12]. In the latter setting, a crucial concept is the Lovász extension of the
submodular function which is convex [13] and lends itself to a norm-regularized convex optimization
framework. Prior work in continuous DSFM has focused on devising efficient algorithms for solving
the convex problem and deriving matching convergence results. The best known approaches include
the alternating projection (AP) methods [14, 15] and the coordinate descent (CD) methods [16].

Despite some simplifications offered through decomposibility, DSFM algorithms still suffer from
scalability issues and have convergence guarantees that are suboptimal. To address the first issue, one
needs to identify additional problem constraints that allow for parallel implementations. To resolve the
second issue and more precisely characterize and improve the convergence rates, one needs to better
understand how the individual submodular components jointly govern the global optimal solution.
In both cases, it is crucial to utilize incidence relations that describe which subsets of variables

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

directly affect the value of any given component function. Often, incidences involve relatively small
subsets of elements, which leads to desirable sparsity constraints. This is especially the case for
min-cut problems on graphs and hypergraphs (where each submodular component involves two or
several vertices) [17, 18] and MAP inference with higher-order potentials (where each submodular
component involves variables corresponding to adjacent pixels) [9]. Although incidence relations
have been used to parametrize the algorithmic complexity of combinatorial optimization methods
for solving DSFM problems [10], they have been largely overlooked in continuous optimization
methods. Some prior work considered merging decomposable parts with nonoverlapping support
into one submodular function, thereby creating a coarser decomposition that may be processed more
efficiently [14, 15, 16], but the accompanying algorithms were neither designed in a form that can
optimally use this information nor analyzed precisely with respect to their convergence rates and
merging strategies. In an independent work, Djolonga and Krause found that the variational inference
problem in L-FIELD could be reduced to a DSFM problem with sparse incidence relations [19],
while their analysis only worked for regular cases.

Here, we revisit two benchmark algorithms for continuous DSFM – AP and CD – and describe how
to modify them to exploit incidence relations that allow for significantly improved computational
complexity. Furthermore, we provide a complete theoretical analysis of the algorithms parametrized
by incidence relations with respect to their convergence rates. AP-based methods that leverage
incidence relations achieve better convergence rates than classical AP algorithms both in the sequential
and parallel optimization scenario. The random CD method (RCDM) and accelerated CD method
(ACDM) that incorporate incidence information can be parallelized. The complexity of sequential
CD methods cannot be improved using incidence relations, but the convergence rate of parallel CD
methods strongly depends on how the incidence relations are used for coordinate sampling: while
a new specialized combinatorial sampling based on equitable coloring [20] is optimal, uniformly
at random sampling produces a 2-approximation. It also leads to a greedy method that empirically
outperforms random sampling. A summary of these and other findings is presented in Table 1.

Prior work This work
Sequential Parallel Sequential Parallel

AP O(N2R2) O(N2R2/K) O(N‖µ‖1R) O(N‖µ‖1R/K)

RCDM O(N2R) - O(N2R) O
((

R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)
R/K

)
ACDM O(NR) - O(NR) O

((
R−K
R−1 N

2 + K−1
R−1N‖µ‖1

)1/2

R/K

)
Table 1: Overview of known and new results: each entry contains the required number of iterations to
achieve an ε-optimal solution (the dependence on ε is the same for all algorithms and hence omitted).
Here, ‖µ‖1 =

∑
i∈[N] µi, where for all i ∈ [N], µi equals the number of submodular functions

that involve element i; K is a parallelization parameter that equals the number of min-norm points
problems that have to be solved within each iteration.

2 Background, Notation and Problem Formulation

We start our exposition by reviewing several recent lines of work for solving the DSFM problem, and
focus on approaches that transform the DSFM problem into a continuous optimization problem. Such
approaches exploit the fact that the Lovász extension of a submodular function is convex. Without
loss of generality, we tacitly assume that all submodular functions Fr are normalized, i.e., that
Fr(∅) = 0 for all r ∈ [R]. Also, we define given a vector z ∈ RN and S ⊆ [N], z(S) =

∑
i∈S zi.

Then, the base polytope of the r-th submodular function Fr is defined as

Br , {yr ∈ RN |yr(S) ≤ Fr(S), for any S ⊂ [N], and yr([N]) = Fr([N])}.

The Lovász extention [13] fr(·) : RN → R of a submodular function Fr is defined as fr(x) =
maxyr∈Br 〈yr, x〉, where 〈·, ·〉 denotes the inner product of two vectors. The DSFM problem can be
solved through continuous optimization, minx∈[0,1]N

∑
r fr(x). To counter the nonsmoothness of

the objective function, a proximal formulation of a generalization of the above optimization problem
is considered instead [14],

min
x∈RN

∑
r∈[R]

fr(x) +
1

2
‖x‖22. (2)

2

As the problem (2) is strongly convex, it has a unique optimal solution, denoted by x∗. The exact
discrete solution to the DSFM problem equals S∗ = {i ∈ [N]|x∗i > 0}.

For convenience, we denote the product of base polytopes as B = ⊗Rr=1Br, and write y =
(y1, y2, ..., yR) ∈ B. Also, we let A be a simple linear mapping ⊗Rr=1RN → RN , which given
a point a = (a1, a2, ..., aR) ∈ ⊗Rr=1RN outputs Aa =

∑
r∈[R] ar. The AP and CD algorithms for

solving (2) use the dual form of the problem, described in the next lemma.
Lemma 2.1 ([14]). The dual problem of (2) reads as

min
a,y
‖a− y‖22 s.t. Aa = 0, y ∈ B. (3)

Moreover, problem (3) may be written in the more compact form

min
y
‖Ay‖22 s.t. y ∈ B. (4)

For both problems, the primal and dual variables are related according to x = −Ay. In what follows,
for notational simplicity, we write g(y) = 1

2‖Ay‖
2
2.

The AP [15] and RCD algorithms [16] described below provide solutions to the problems (3) and (4),
respectively. They both rely on repeated projections ΠBr (·) onto the base polytopes Br, r ∈ [R].
These projections are typically less computationally intense than projections onto the complete base
polytope of F as they involve fewer data dimensions. The projection operation ΠBr (·) requires one
to solve a min-norm problem by either exploiting the special forms of Fr or by using the general
purpose algorithm of Wolfe [21]. The complexity of the method is typically characterized by the
number of required projections ΠBr (·).

The AP algorithm. Starting with y = y(0), iteratively compute a sequence (a(k), y(k))k=1,2,... such
that for all r ∈ [R], a(k)

r = y
(k−1)
r −Ay(k−1)/R, y(k)

r = ΠBr (a
(k)
r), until a stopping criteria is met.

The RCDM algorithm. In each iteration k, chose uniformly at random a subset of elements in y
associated with one atomic function in the decomposition (1), say the one with index rk. Then,
compute the sequence (y(k))k=1,2,... according to y(k)

rk = ΠBrk

(
−
∑
r 6=rk y

(k−1)
r

)
, y(k)
r = y

(k−1)
r ,

for r 6= rk.

Finding an ε-optimal solution for both the AP and RCD methods requires O(N2R log(1
ε)) iterations.

In each iteration, the AP algorithm computes the projections onto all R base polytopes, while the
RCDM only computes one projection. Therefore, as may be seen from Table 1, the sequential
AP solver, which computes one projection in each iteration, requires O(N2R2 log(1

ε)) iterations.
However, the projections within one iteration of the AP method can be generated in parallel, while
the projections performed in the RCDM have to be generated sequentially.

2.1 Incidence Relations and Related Notations

We next formally introduce one of the key concepts used in this work: incidence relations between
elements of the ground set and the component submodular functions.

We say that an element i ∈ [N] is incident to a submodular function F iff there exists a S ⊆ [N]/{i}
such that F (S ∪ {i}) 6= F (S); similarly, we say that the submodular function F is incident to an
element i iff i is incident to F . To verify whether an element i is incident to a submodular function
F , one needs to verify that F ({i}) = 0 and that F ([N]) = F ([N]/{i}) since for any S ⊆ [N]/{i}

F ({i}) ≥ F (S ∪ {i})− F (S) ≥ F ([N])− F ([N]/{i}).

Furthermore, note that if i ∈ [N] is not incident to Fr, then for any yr ∈ Br, one has yr,i = 0. Let
Sr be the set of all elements incident to Fr. For each element i, denote the number of submodular
functions that are incident to i by µi = |{r ∈ [R] : i ∈ Sr}|. We also refer to µi as the degree of
element i. We find it useful to partition the set of submodular functions into different groups. Given
a group C ⊆ [R] of submodular functions, we define the degree of the element i within C, µCi , as
µCi = |{r ∈ C : i ∈ Sr}|.

We also define a skewed norm involving two vectors w ∈ RN>0 and z ∈ RN according to ‖z‖2,w ,√∑
i∈[N] wiz

2
i . With a slight abuse of notation, for two vectors θ = (θ1, θ2, ..., θR) ∈ ⊗Rr=1RN>0

3

and y ∈ ⊗Rr=1RN , we also define the norm ‖y‖2,θ ,
√∑

r∈[R] ‖yr‖22,θr . Which of the norms we

refer to should be clear from the context. In addition, we let ‖θ‖1,∞ =
∑
i∈[N] maxr∈[R]:i∈Sr θr,i.

For a closed set K ⊆ ⊗Rr=1RN and a positive vector θ ∈ ⊗Rr=1RN>0, the distance between y and K is
defined as dθ(y,K) = min{‖y − z‖2,θ|z ∈ K}. Also, given a set Ω ⊆ RN , we let ΠΩ,w(·) denote
the projection operation onto Ω with respect to the norm ‖ · ‖2,w.

Given a vector w ∈ RN>0, we also make use of an induced vector I(w) ∈ ⊗Rr=1RN whose r-th entry
satisfies (I(w))r = w. It is easy to check that ‖I(w)‖1,∞ = ‖w‖1. Of special interest are induced
vectors based on pairs of N -dimensional vectors, µ = (µ1, µ2, ..., µN), µC = (µC1 , µ

C
2 , ..., µ

C
N).

Finally, for w,w′ ∈ RN , we denote the element-wise power of w by wα = (wα1 , w
α
2 , ..., w

α
N), for

some α ∈ R, and the element-wise product of w and w′ by w � w′ = (w1w
′
1, w2w

′
2, ..., wNw

′
N).

Next, recall that x∗ is the unique optimal solution of the problem (2) and let Z = {ξ ∈
⊗Rr=1RN |Aξ = −x∗, ξr,i = 0,∀i ∈ Sr,∀r ∈ [R]}. Then, due to the duality relationship of
Lemma 2.1, Ξ = Z ∩ B is the set of optimal solutions {y}.

3 Continuous DSFM Algorithms with Incidence Relations

In what follows, we revisit the AP and CD algorithms and describe how to improve their performance
and analytically establish their convergence rates. Our first result introduces a modification of the
AP algorithm (3) that exploits incidence relations so as to decrease the required number of iterations
from O(N2R) to O(N‖µ‖1). Our second result is an example that shows that the convergence rates
of CD algorithms [11] cannot be directly improved by exploiting the functions’ incidence relations
even when the incidence matrix is extremely sparse. Our third result is a new algorithm that relies of
coordinate descent steps but can be parallelized. In this setting, incidence relations are essential to
the parallelization process.

To analyze solvers for the continuous optimization problem (2) that exploit the incidence structure of
the functions, we make use of the skewed norm ‖ · ‖2,w with respect to some positve vector w that
accounts for the fact that incidences are, in general, nonuniformly distributed. In this context, the
projection ΠBr,w(·) reduces to solving a classical min-norm problem after a simple transformation
of the underlying space which does not incur significant complexity overheads. To see this, note
that in order to solve a generic min-norm point problem, one typically uses either Wolfe’s algorithm
(continuous) or a divide-and-conquer procedure (combinatorial). The complexity of the former is at
most quadratic in Fr,max , maxv,S |Fr(S ∪ {v})− Fr(S)| [22], while the complexity of the latter
merely depends on logFr,max [14] (see Section A in the Supplement). It is unclear if including the
weight vector w into the projection procedure increases or decreases Fr,max. In either case, given that
in our derivations all elements of w are contained in [1,maxi∈[N] µi] instead of N or R, we do not
expect to see significant changes in the complexity of the projection operation. Hence, throughout
the remainder of our exposition, we regard the projection operation as an oracle and measure the
complexity of all algorithms in terms of the number of projections performed.

Also, observe that one may avoid computing projections in skewed-norm spaces by introducing in (2)
a weighted rather than an unweighted proximal term. This gives another continuous objective that
still provides a solution to the discrete problem (1). Even in this case, we can prove that the numbers
of iterations used in the different methods listed Table 1 remain the same. Furthermore, by combining
projections in skewed-norm spaces and weighted proximal terms, it is possible to actually reduce
the number of iterations given in Table 1. However, for simplicity, we focus on the objective (2)
and projections in skewed-norm spaces. Methods using weighted proximal terms with and without
skewed-norm projections are analyzed in a similar manner in Section L of the Supplement.

We make frequent use of the following result which generalizes Lemma 4.1 of [11].

Lemma 3.1. Let θ ∈ ⊗Rr=1RN>0, w ∈ RN>0 be two positive vectors. Let y ∈ B and let z be in the
base polytope of the submodular function F . Then, there exists a point ξ ∈ B such that Aξ = z and

‖ξ − y‖2,θ ≤
√
‖θ‖1,∞

2 ‖Ay − z‖1. Moreover, ‖ξ − y‖2,θ ≤
√
‖θ‖1,∞‖w−1‖1

2 ‖Ay − z‖2,w.

3.1 The Incidence Relation AP (IAP)

The following result establishes the basis of our improved AP method leveraging incidence structures.

4

Lemma 3.2. The following problem is equivalent to problem (3):

min
a,y
‖a− y‖22,I(µ) s.t. y ∈ B, Aa = 0, and ar,i = 0, ∀(r, i) : i /∈ Sr, r ∈ [R]. (5)

Let A = {a ∈ ⊗Rr=1RN |Aa = 0, ar,i = 0, ∀(r, i) : i /∈ Sr} and A′ = {a ∈ ⊗Rr=1RN |Aa = 0}.
The AP algorithm for problem (5) consists of alternatively computing projections between A and
B, as opposed to those between A′ and B used in the problem (3). However, as already pointed out,
unlike for the classical AP problem (3), the distance in (5) is not Euclidean, and hence the projections
may not be orthogonal.

The IAP method for solving (5) proceeds as follows. We begin with a = a(0) ∈ A, and iteratively
compute a sequence (a(k), y(k))k=1,2,... as follows: for all r ∈ [R], y(k)

r = ΠBr,µ(a
(k)
r), a

(k)
r,i =

y
(k−1)
r,i − µ−1

i (Ay(k−1))i, ∀ i ∈ Sr. The key difference between the AP and IAP algorithms is that
the latter effectively removes “irrelevant” components of yr by fixing the irrelevant components of a
to 0. In the AP method of Nishihara [15], these components are never zero as they may be “corrupted”
by other components during AP iterations. Removing irrelevant components results in projecting y
into a subspace of lower dimensions, which significantly accelerates the convergence of IAP.

A′

A

By(0)(y′(0))

y′(1)

y′(2)

y(1)

y∗
a′(1)

a′(2)

a(1)

Figure 1: Illustration of the IAP method for solving problem (5): The space A is a subspace of A′,
which leads to faster convergence of the IAP method when compared to AP.

The analysis of the convergence rate of the IAP method follows a similar outline as that used to ana-
lyze (3) in [15]. Following Nishihara et al. [15], we define the following parameter that plays a key role
in determining the rate of convergence of the AP algorithm, κ∗ , sup

y∈Z∪B/Ξ

dI(µ)(y,Ξ)

max{dI(µ)(y,Z),dI(µ)(y,B)} .

Lemma 3.3 ([15]). If κ∗ <∞, the AP algorithm converges linearly with rate 1− 1
κ2
∗

. At the k-th

iteration, the algorithm outputs a value y(k) that satisfies

dI(µ)(y
(k),Ξ) ≤ 2dI(µ)(y

(0),Ξ)

(
1− 1

κ2
∗

)k
.

To apply the above lemma in the IAP setting, one first needs to establish an upper bound on κ∗. This
bound is given in Lemma 3.4 below.

Lemma 3.4. The parameter κ∗ is upper bounded as κ∗ ≤
√
N‖µ‖1/2 + 1.

By using the above lemma and the bound on κ∗, one can establish the following convergence rate for
the IAP method.
Theorem 3.5. After O(N‖µ‖1 log(1/ε)) iterations, the IAP algorithm for solving problem (5)
outputs a pair of points (a, y) that satisfies dI(µ)(y,Ξ) ≤ ε.

Note that in practice, one often has ‖µ‖1 � NR, which shows that the convergence rate of the AP
method for solving the DSBM problem may be significantly improved.

3.2 Sequential Coordinate Descent Algorithms

Unlike the AP algorithm, the CD algorithms by Ene et al. [16] remain unchanged given (4). Our
first goal is to establish whether the convergence rate of the CD algorithms can be improved using a
parameterization that exploits incidence relations.

The convergence rate of CD algorithms is linear if the objective function is component-wise smooth
and `-strong convex. In our case, g(y) is component-wise smooth as for any y, z ∈ B that only differ

5

in the r-th block (i.e., yr 6= zr, yr′ = zr′ for r′ 6= r), one has
‖∇rg(y)−∇rg(z)‖2 ≤ ‖y − z‖2. (6)

Here, ∇rg denotes the gradient vector associated with the r-th block.
Definition 3.6. We say that the function g(y) is `-strongly convex in ‖ · ‖2,, if for any y ∈ B

g(y∗) ≥ g(y) + 〈∇g(y), y∗ − y〉+
`

2
‖y∗ − y‖22, or equivalently, ‖Ay −Ay∗‖22 ≥ `‖y∗ − y‖22,

where y∗ = arg min
z∈Ξ
‖z − y‖22. Moreover, we let `∗ = sup{` : g(y) is `-strongly convex in ‖ · ‖2}.

Note that the above definition essentially establishes a form of weak-strong convexity [23]. Then,
using standard analytical tools for CD algorithms [24], we can prove the following result [16].
Theorem 3.7. The RCDM for problem (4) outputs a point y that satisfies E[g(y)] ≤ g(y∗) + ε after
O(R`∗ log(1/ε)) iterations. The ACDM applied to the problem (4) outputs a point y that satisfies
E[g(y)] ≤ g(y∗) + ε after O(R√

`∗
log(1/ε)) iterations.

To precisely characterize the convergence rate, we need to find an accurate estimate of `∗. Ene et
al. [11] derived `∗ ≥ 1

N2 without taking into account the incidence structure. As sparse incidence
side information improves the performance of the AP method, it is of interest to determine if the
same can be accomplished for the CD algorithms. Example 3.1 establishes that this is not possible in
general if one only relies on `∗.
Example 3.1. Consider a DSFM problem with a extremely sparse incidence structure with |Sr| = 2.
More precisely, letN = 2n+1, R = 2n, and ‖µ‖1 =

∑
r∈[R] |Sr| = 4n� NR. Let Fr be incident

to the elements {r, r + 1}, for all r ∈ [R], and be such that Fr({r}) = Fr({r + 1}) = 1, Fr(∅) =
Fr({r, r + 1}) = 0. Then, `∗ < 7

N2 .

Note that the optimal solution of problem (4) for this particular setting equals y∗ = 0. Let us consider
a point y ∈ B specified as follows. First, due to the given incidence relations, the block yr has two
components corresponding to the elements indexed by r and r + 1. For any r ∈ [R],

yr,r = −yr,r+1 =

{
r
n r ≤ n,

2n+1−r
n r ≥ n+ 1.

(7)

Therefore, g(y) = 1
n , ‖y‖

2
2 >

4
3n, which results in `∗ < 3

2n2 ≤ 7
N2 for all n ≥ 3.

Example 3.1 only illustrates that an important parameter of CDMs cannot be improved using incidence
information; but this does not necessarily imply that a sequential RCDM that uses incidence structures
cannot offer better convergence rates than O(N2R). In Section E of the Supplement, we present
additional experimental evidence that supports our observation, using the setting of Example 3.1.

As a final remark, note that Nishihara et al. [15] also proposed a lower bound that does not make use
of sparse incidence structures and only works for the AP method.

3.3 New Parallel CD methods

In what follows, we propose two CDMs which rely on parallel projections and incidence relations.

The following observation is key to understanding the proposed approach. Suppose that we have a
nonempty group of blocks C ⊆ [R]. Let y, h ∈ ⊗Rr=1RN . If hr,i is nonzero only for block r ∈ C
and i ∈ Sr, then,

g(y + h) = g(y) + 〈∇g(y), h〉+
1

2
‖Ah‖22 ≤ g(y) +

∑
r∈C
〈∇rg(y), hr〉+

∑
r∈C

1

2
‖hr‖22,µC . (8)

Hence, for all r ∈ C, if we perform projections onto Br with respect to the norm ‖ · ‖2,µC simultane-
ously in each iteration of the CDM, convergence is guaranteed as the value of the objective function
remains bounded. The smaller the components of µC , the faster the convergence. Note that the
components of µC are the numbers of incidence relations of elements restricted to the set C. Hence,
in each iteration, blocks that ought to be updated in parallel are those that correspond to submodular
functions that have supports with smallest possible intersections.

One can select blocks that are to be updated in parallel in a combinatorially specified fashion or in a
randomized fashion, as dictated by what we call an α-proper distribution. To describe our parallel
RCDM, we first introduce the notion of an α-proper distribution.

6

Definition 3.8. Let P be a distribution used to sample a group of C blocks. Define θP =
(θP1 , θ

P
2 , ..., θ

P
R) such that for r ∈ [R], θPr , EC∼P

[
µC |r ∈ C

]
. We say that P is an α-proper

distribution, if for any r ∈ [R] and a given α ∈ (0, 1), we have P(r ∈ C) = α.

We are now ready to describe the parallel RCDM algorithm – Algorithm 1; the description of the
parallel ACDM is postponed to Section J of the Supplement.

Algorithm 1: Parallel RCDM for Solving (4)
Input: B, α
0: Initialize y(0) ∈ B, k ← 0
1: Do the following steps iteratively until the dual gap < ε:
2: Sample Cik using some α-proper distribution P
3: For r ∈ Cik :
4: y

(k+1)
r ← ΠBr,θPr (y

(k)
r − (θPr)−1 �∇rg(y(k)))

5: Set y(k+1)
r ← y

(k)
r for r 6∈ Cik , k ← k + 1

6: Output y(k)

Next, we establish strong convexity results for the space ‖ · ‖2,θP by invoking Lemma 3.1.

Lemma 3.9. For any y ∈ B, let y∗ = arg minξ∈Ξ ‖ξ − y‖22,θP . Then,

‖Ay −Ay∗‖22 ≥
2

N‖θP ‖1,∞
‖y − y∗‖22,θP .

The convergence rate of Algorithm 1 is established in the next theorem.
Theorem 3.10. At each iteration of Algorithm 1, y(k) satisfies

E
[
g(y(k))− g(y∗) +

1

2
d2
θP (yk, ξ)

]
≤
[
1− 4α

(N‖θP ‖1,∞ + 2)

]k [
g(y(0))− g(y∗) +

1

2
d2
θP (y0, ξ)

]
.

The parameter N‖θP ‖1,∞ is obtained by combining the strong convexity constant and the properties
of the sampling distribution P . Small values of ‖θP ‖1,∞ ensure better convergence rates, and we
next bound this value.
Lemma 3.11. For any α-proper distribution P and an element i ∈ [N], max

r∈[R]:i∈Sr
θPr,i ≥

max{αµi, 1}. Consequently, ‖θP ‖1,∞ ≥ max{α‖µ‖1, N}.

Without considering incidence relations, i.e., by setting ‖µ‖1 = NR, one always has ‖θP ‖1,∞ ≥
αNR, which shows that parallelization cannot improve the convergence rate of the RCDM.

The next lemma characterizes an achievable ‖θP ‖1,∞ obtained by choosing P to be a uniform
distribution, which, when combined with Theorem 3.10, proves the result of the last column in
Table 1.
Lemma 3.12. If C is a set of size 0 < K ≤ R obtained by sampling the K-subsets of [R] uniformly
at random, then θPr = K−1

R−1µ+ R−K
R−1 1. Moreover, ‖θP ‖1,∞ = K−1

R−1 ‖µ‖1 + R−K
R−1 N .

Comparing Lemma 3.11 and Lemma 3.12, we see that the ‖θP ‖1,∞ achieved by sampling uniformly
at random is at most a factor of two of the lower bound since α = K/R. A natural question is if
it is possible to devise a better sampling strategy. This question is addressed in Section K of the
Supplement, where we related the sampling problem to equitable coloring [20]. By using Hajnal-
Szemerédi’s Theorem [25], we derived a sufficient condition under which an α-proper distribution P
that achieves the lower bound in Lemma 3.11 can be found in polynomial time. We also described
a greedy algorithm for minimizing ‖θP ‖1,∞ that empirically convergences faster than sampling
uniformly at random.

4 Experiments

In what follows, we illustrate the performance of the newly proposed DSFM algorithms on a
benchmark datasets used for MAP inference in image segmentation [9] and used for semi-supervised

7

0 100 200 300 400 500 600

#Iterations× α

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

s
m

o
o
th

 g
a
p
 (
α

 =
 0

.1
,
o
c
t)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 50 100 150 200 250 300

#Iterations × α

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

d
is

c
re

te
 g

a
p
 (
α

 =
 0

.1
,
o
c
t)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500 600

#Iterations× α

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

s
m

o
o
th

 g
a
p
 (
α

 =
 0

.1
,
s
m

a
llp

la
n
t) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500 600

#Iterations × α

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

d
is

c
re

te
 g

a
p
 (
α

 =
 0

.1
,
s
m

a
llp

la
n
t) RCDM-G

RCDM-U
ACDM-U
IAP
AP

0 0.05 0.1 0.15 0.2

α

300

400

500

600

700

800

900

1000

1100

1200

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

s
 <

 1
0

-2
,

o
c
t) RCDM-G

RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

45

50

55

60

65

70

75

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

d
 <

 1
0

-3
,

o
c
t) RCDM-G

RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

200

300

400

500

600

700

800

900

1000

#
It

e
ra

ti
o

n
s
 ×

 α

(ν
s
 <

 1
0

2
,

s
m

a
llp

la
n

t)

RCDM-G
RCDM-U
ACMD-U

0 0.05 0.1 0.15 0.2

α

100

200

300

400

500

600

700

#
It

e
ra

ti
o

n
s
 ×

 α
 (
ν

d
 <

 1
0

-3
,

s
m

a
llp

la
n

t)

RCDM-G
RCDM-U
ACMD-U

Figure 2: Image segmentation example. First row: Gap vs the number of iterations ×α. Second row:
The number of iterations ×α vs α. Here, α is the parallelization parameter, while K = αR equals
the number of projections that have to be computed in each iteration.

learning over graphs 1. More experiments on semi-supervised learning over hypergraphs can be
found in Section M of the Supplement.

In all the experiments, we evaluated the convergence rate of the algorithms by using the smooth
duality gap νs and the discrete duality gap νd. The primal problem solution equals x = −Ay so
that the smooth duality gap can be computed according to νs =

∑
r fr(x) + 1

2‖x‖
2 − (− 1

2‖Ay‖
2).

Moreover, as the level set Sλ = {v ∈ [N]|xv > λ} can be easily found based on x, the discrete
duality gap can be written as νd = minλ F (Sλ)−

∑
v∈[N] min{−xv, 0}.

MAP inference. We used two images – oct and smallplant – adopted from [14]2. The images
comprise 640 × 427 pixels so that N = 273, 280. The decomposable submodular functions are
constructed following a standard procedure. The first class of functions arises from the 4-neighbor
grid graph over the pixels. Each edge corresponds to a pairwise potential between two adjacent
pixels i, j that follows the formula exp(−‖vi − vj‖22), where vi is the RGB color vector of pixel i.
We split the vertical and horizontal edges into rows and columns that result in 639 + 426 = 1065
components in the decomposition. Note that within each row or each column, the edges have no
overlapping pixels, so the projections of these submodular functions onto the base polytopes reduce
to projections onto the base polytopes of edge-like submodular functions. The second class of
submodular functions contain clique potentials corresponding to the superpixel regions; specifically,
for region r, Fr(S) = |S|(|Sr| − |S|) [26]. These functions give another 500 decomposition
components. We apply the divide and conquer method in [14] to compute the projections required for
this type of submodular functions. Note that in each experiment, all components of the submodular
function are of nearly the same size, and thus the projections performed for different components
incur similar computational costs. As the projections represent the primary computational units, for
comparative purposes we use the number of iterations (similarly to [14, 16]).

We compared five algorithms: RCDM with a sampling distribution P found by the greedy algorithm
(RCDM-G), RCDM with uniform sampling (RCDM-U), ACDM with uniform sampling (ACDM-U),
AP based on (5) (IAP) and AP based on (3) (AP). Figure 2 depicts the results. In the first row, we
compared the convergence rates of different algorithms for a fixed parallelization parameter α = 0.1.
The values on the horizontal axis correspond to # iterations ×α, the total number of projections
performed divided by R. The results are averaged over 10 independent experiments. We observe
that the CD-based methods outperform AP-based methods, and that ACDM-U is the best performing
CD-based method. IAP significantly outperforms AP. Similarly, RCDM-G outperforms RCDM-U.
We also investigated the relationship between the number of iterations and the parameter α. We
recorded the number of iterations needed to achieve a smooth and discrete gap below a certain given
threshold. The results are shown in the second row of Figure 2. We did not plot the curves for the
AP-based methods as they are essentially horizontal lines. Among the CD-based methods, ACDM-U
performs best. RCDM-G offers a much better convergence rate than RCDM-U since the sampling
probability P produced by the greedy algorithm leads to a smaller value of ‖θP ‖1,∞ compared to

1The code for this work can be found in https://github.com/lipan00123/DSFM-with-incidence-relations.
2Downloaded from the website of Professor Stefanie Jegelka: http://people.csail.mit.edu/stefje/code.html

8

0 100 200 300 400 500

#Iterations× α

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

s
m

o
o

th
 g

a
p

 (
α

 =
 0

.1
,

K
a

ra
te

) RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 100 200 300 400 500

#Iterations × α

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d
is

c
re

te
 g

a
p
 (
α

=
 0

.1
,
K

a
ra

te
)

RCDM-G
RCDM-U
ACDM-U
IAP
AP

0 0.1 0.2 0.3 0.4

α

30

35

40

45

50

55

60

65

70

#
It
e
ra

ti
o
n
s
 ×

 α
 (

s
m

o
o
th

)

RCDM-G
RCDM-U
ACMD-U

0 0.1 0.2 0.3 0.4

α

10

15

20

25

30

35

40

45

50

55

60

#
It
e
ra

ti
o
n
s
 ×

 α
 (

d
is

c
re

te
)

RCDM-G
RCDM-U
ACMD-U

Figure 3: Zachary’s Karate Club. Left two: Gap vs the number of iterations ×α. Right two: The
number of iterations ×α vs α. Here, α is the parallelization parameter, while K = αR equals the
number of projections that have to be computed in each iteration.

uniform sampling. The reason behind this finding is that the supports of the components in the
decomposition are localized, which makes the sampling P obtained from the greedy algorithm highly
effective. For RCDM-U, the total number of iterations increases almost linearly with α (= K/R),
which confirms the results of Lemma 3.12.

Note that in the above examples of MAP inference, another way to decompose the submodular
functions is available: as there are three natural layers of non-overlapping incidence sets, we can
merge all vertical edges, all horizontal edges, and all superpixel regions into three components
respectively. Then, each of this component is incident to all pixels, and the derived results in this work
will reduce to those of the former works [14, 16]. However, such a way to decompose submodular
function strongly depends on the particular structure and thus is not general for DSFM problems.
The following example on semi-supervised learning over graphs does not contain natural layers for
decomposition.

Semi-supervised learning. We tested our algorithms over the dataset of Zachary’s karate club [27].
This dataset is used as a benchmark example for evaluating semisupervised learning algorithms over
graphs [28]. It includes N = 34 vertices and R = 78 submodular functions in the decomposition,
each corresponding to one edge in the network. The objective function of both semi-supervised
learning problems may be written as

min
x
τ
∑
r∈[R]

fr(x) +
1

2
‖x− x0‖22 (9)

where τ is a parameter that needs to be tuned, and x0 ∈ {−1, 0, 1}N , so that the nonzero components
correspond to the labels that are known a priori. In our case, as we are only concerned with the
convergence rate of the algorithm, we fix τ = 0.1. In the experiments for Zachary’s karate club, we
set x0(1) = 1, x0(34) = −1 and let all other components of x0 be equal to zero.

Figure 3 shows the results of the experiments pertaining to Zachary’s karate club. In the left two
subfigures, we compared the convergence rates of different algorithms for a fixed parallelization
parameter α = 0.1. The values on the horizontal axis correspond to # iterations×α, the total number
of projections performed divided by R. In the right two subfigures, we controlled the numbers of
projections executed within one iteration by tuning the parameter α and recorded the number of
iterations needed to achieve smooth/discrete gaps below 10−3. The values depicted on the vertical
axis correspond to # iterations ×α, describing the total number of projections needed to achieve
the given accuracy. In all cases, we see the similar tendency to that of the MAP inference. As may
be seen, AP-based methods require more projections than CD-based methods, but IAP consistently
outperforms AP, which is consistent with our theoretical results. Among the CD-based methods,
ACDM-U offers the best performance in general, and RCDM-G slightly outperforms RCDM-U, since
the greedy algorithm used for sampling produces a smaller ‖θP ‖1,∞ than uniform sampling. As the
AP-based methods are completely parallelizable, and increasing the parameter α does not increase the
total number of projections. However, for RCDM-U, the total number of iterations required increases
almost linearly with α, which is supported by the result in Lemma 3.12. The performance curve for
RCDM-G exhibits large oscillations due to the discrete problem component, needed for finding a
balanced partition.

9

5 Acknowledgement

The authors gratefully acknowledge many useful suggestions by the reviewers. This work was
supported in part by the NSF grant CCF 15-27636, the NSF Purdue 4101-38050 and the NFT STC
center Science of Information.

References

[1] S. Fujishige, Submodular functions and optimization. Elsevier, 2005, vol. 58.

[2] K. Wei, R. Iyer, and J. Bilmes, “Submodularity in data subset selection and active learning,” in
Proceedings of the International Conference on Machine Learning, 2015, pp. 1954–1963.

[3] P. Li and O. Milenkovic, “Inhomogeneous hypergraph clustering with applications,” in Advances
in Neural Information Processing Systems, 2017, pp. 2305–2315.

[4] ——, “Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral clustering,” in
Proceedings of the International Conference on Machine Learning, 2018, pp. 3014–3023.

[5] P. Kohli, P. H. Torr et al., “Robust higher order potentials for enforcing label consistency,”
International Journal of Computer Vision, vol. 82, no. 3, pp. 302–324, 2009.

[6] H. Lin and J. Bilmes, “A class of submodular functions for document summarization,” in
Proceedings of the Meeting of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics, 2011, pp. 510–520.

[7] A. Krause and C. Guestrin, “Near-optimal observation selection using submodular functions,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 7, 2007, pp. 1650–1654.

[8] Y. T. Lee, A. Sidford, and S. C.-w. Wong, “A faster cutting plane method and its implications
for combinatorial and convex optimization,” in Foundations of Computer Science (FOCS), 2015
IEEE 56th Annual Symposium on. IEEE, 2015, pp. 1049–1065.

[9] P. Stobbe and A. Krause, “Efficient minimization of decomposable submodular functions,” in
Advances in Neural Information Processing Systems, 2010, pp. 2208–2216.

[10] V. Kolmogorov, “Minimizing a sum of submodular functions,” Discrete Applied Mathematics,
vol. 160, no. 15, pp. 2246–2258, 2012.

[11] A. Ene, H. Nguyen, and L. A. Végh, “Decomposable submodular function minimization:
discrete and continuous,” in Advances in Neural Information Processing Systems, 2017, pp.
2874–2884.

[12] F. Bach et al., “Learning with submodular functions: A convex optimization perspective,”
Foundations and Trends R© in Machine Learning, vol. 6, no. 2-3, pp. 145–373, 2013.

[13] L. Lovász, “Submodular functions and convexity,” in Mathematical Programming The State of
the Art. Springer, 1983, pp. 235–257.

[14] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly submodular optimization,”
in Advances in Neural Information Processing Systems, 2013, pp. 1313–1321.

[15] R. Nishihara, S. Jegelka, and M. I. Jordan, “On the convergence rate of decomposable submod-
ular function minimization,” in Advances in Neural Information Processing Systems, 2014, pp.
640–648.

[16] A. Ene and H. Nguyen, “Random coordinate descent methods for minimizing decomposable
submodular functions,” in Proceedings of the International Conference on Machine Learning,
2015, pp. 787–795.

[17] D. R. Karger, “Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.”
in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, vol. 93, 1993, pp. 21–30.

[18] C. Chekuri and C. Xu, “Computing minimum cuts in hypergraphs,” in Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics,
2017, pp. 1085–1100.

[19] J. Djolonga and A. Krause, “Scalable variational inference in log-supermodular models.” in
Proceedings of the International Conference on Machine Learning, 2015, pp. 1804–1813.

10

[20] W. Meyer, “Equitable coloring,” The American Mathematical Monthly, vol. 80, no. 8, pp.
920–922, 1973.

[21] P. Wolfe, “Finding the nearest point in a polytope,” Mathematical Programming, vol. 11, no. 1,
pp. 128–149, 1976.

[22] D. Chakrabarty, P. Jain, and P. Kothari, “Provable submodular minimization using Wolfe’s
algorithm,” in Advances in Neural Information Processing Systems, 2014, pp. 802–809.

[23] H. Karimi, J. Nutini, and M. Schmidt, “Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2016, pp. 795–811.

[24] Y. Nesterov, “Efficiency of coordinate descent methods on huge-scale optimization problems,”
SIAM Journal on Optimization, vol. 22, no. 2, pp. 341–362, 2012.

[25] A. Hajnal and E. Szemerédi, “Proof of a conjecture of Erdös,” Combinatorial Theory and Its
Applications, vol. 2, pp. 601–623, 1970.

[26] A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, “Tur-
bopixels: fast superpixels using geometric flows,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2290–2297, 2009.

[27] W. W. Zachary, “An information flow model for conflict and fission in small groups,” Journal of
Anthropological Research, vol. 33, no. 4, pp. 452–473, 1977.

[28] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
arXiv preprint arXiv:1609.02907, 2016.

[29] S. Fujishige and X. Zhang, “New algorithms for the intersection problem of submodular systems,”
Japan Journal of Industrial and Applied Mathematics, vol. 9, no. 3, p. 369, 1992.

[30] O. Fercoq and P. Richtárik, “Accelerated, parallel, and proximal coordinate descent,” SIAM
Journal on Optimization, vol. 25, no. 4, pp. 1997–2023, 2015.

[31] H. A. Kierstead, A. V. Kostochka, M. Mydlarz, and E. Szemerédi, “A fast algorithm for equitable
coloring,” Combinatorica, vol. 30, no. 2, pp. 217–224, 2010.

[32] A. Chambolle and J. Darbon, “On total variation minimization and surface evolution using
parametric maximum flows,” International journal of computer vision, vol. 84, no. 3, p. 288,
2009.

[33] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of modern
physics, vol. 74, no. 1, p. 47, 2002.

[34] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram, “The total variation on hypergraphs-learning
on hypergraphs revisited,” in Advances in Neural Information Processing Systems, 2013, pp.
2427–2435.

[35] N. Yadati, M. Nimishakavi, P. Yadav, A. Louis, and P. Talukdar, “Hypergcn: Hypergraph
convolutional networks for semi-supervised classification,” arXiv preprint arXiv:1809.02589,
2018.

11

